Klima-, Energi- og Forsyningsudvalget 2022-23 (2. samling)
KEF Alm.del Bilag 228
Offentligt
2691895_0001.png
International Journal of
Molecular Sciences
Review
Magnetic Fields and Cancer: Epidemiology, Cellular Biology,
and Theranostics
Massimo E. Maffei
Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
[email protected]; Tel.: +39-011-670-5967
Citation:
Maffei, M.E. Magnetic
Fields and Cancer: Epidemiology,
Cellular Biology, and Theranostics.
Int. J. Mol. Sci.
2022,
23,
1339.
https://doi.org/10.3390/
ijms23031339
Academic Editor: Maurizio Battino
Received: 30 December 2021
Accepted: 22 January 2022
Published: 25 January 2022
Publisher’s Note:
MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iations.
Abstract:
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs)
at many different frequencies, at home and at work. Epidemiological studies indicate that there is
a positive relationship between residential/domestic and occupational exposure to extremely low
frequency electromagnetic fields and some types of cancer, although some other studies indicate
no relationship. In this review, after an introduction on the MF definition and a description of
natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure
to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo
and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with
particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer
diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic
resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic
nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise
delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of
cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and
methodologies in epidemiological and cell biology studies. Although scientists do not generally
agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be
the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which
could trigger or enhance the expression of oncogenes.
Keywords:
magnetic field; cancer; epidemiology; therapy; diagnostics; theranostic; MRI; magnetic
nanoparticles; nanomedicine; reactive oxygen species
1. Introduction
Public concern about electromagnetic fields (EMFs) from power systems is increasing
along with the electricity demand, wireless technologies, and changes in work systems and
social behavior [1–4]. For modern populations, extremely low-frequency (ELF) electric and
magnetic fields (MFs) are common exposures and complex biological mechanisms underly
the potential effects of externally-applied MFs [5,6]. In 2002, the International Agency for
Research on Cancer (IARC) categorized ELF (including the power frequencies of 50 and
60 Hz) MFs as “possibly carcinogenic to humans” [7].
Controversial and often contradictory scientific reports continue to stimulate debates
on the biological effects of EMFs, often leading to confusion and distraction which hamper
the development of univocal conclusions on the real hazards that are caused by EMFs [8].
In this review the association between MF and cancer will be reviewed by considering
the effect of MF in causing cancer as well as the application of MF as a therapeutic and
diagnostic (theranostic) tool. Epidemiological studies, including both domestic/residential
and occupational data, as well as human and animal cell studies that were published in the
last 20 years will be also considered to provide an overview of the state of the art literature.
The strategy that was implemented to carry out this review was based on a deep
search in the databases Web of Science (2000–2021), PubMed (2000–2021), and the EMF
Copyright:
© 2022 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
Int. J. Mol. Sci.
2022,
23,
1339. https://doi.org/10.3390/ijms23031339
https://www.mdpi.com/journal/ijms
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0002.png
Int. J. Mol. Sci.
2022,
23,
1339
2 of 55
Portal (https://www.EMF-portal.org/en, accessed on 1 December 2021). By considering as
entries the terms “cancer” AND “magnetic field” the total number of Web of Science Core
Collection papers in the period from January 2000 to December 2021 was 12,364, whereas,
for the same period, the total number of papers in PubMed was 11,539. The selection of
papers was done on the terms: diagnostics, therapy, epidemiology, policy, along with a
selection of cancer types, and the exclusion criteria was the impossibility to obtain a full
text or the lack of specificity with the selected areas of the review.
Despite the narrative nature of this view, quantitative data on MF exposure and
methodologies are described in five supplementary Tables (Supplementary Tables S1–S5),
whereas a supplementary data set (Supplementary Data Set S1, EndNote file) contains all
references that were cited in this article in addition to many other references.
1.1. Definition and Natural/Anthropogenic Sources of Magnetic Fields
EMFs are present everywhere in our environment. Electric fields are produced by the
local build-up of electric charges in the atmosphere that are associated with thunderstorms.
The Earth’s MF, or geomagnetic field (GMF), is the principal source of static fields (SFs) [9].
It interacts with the geosphere and the biosphere and plays a major role in shielding the
harmful effects of cosmic radiation. Different areas inside our planet are responsible for the
GMF which can be represented as the sum of MFs of several sources:
FT = F
0
+ F
m
+ F
a
+ F
e
+
δF
where F
0
is the dipolar component of the GMF, F
m
is the field of world anomalies that
are associated with the heterogeneity of the planet interior (non-dipolar field), F
a
is the
magnetization of rocks in the Earth’s crust (anomalous field), F
e
is the external sources
field, and
δF
is the field variation that is also associated to external causes. The main GMF
is also represented by the sum of the dipolar and non-dipolar fields (F = F
0
+ F
m
).
The GMF is composed of three orthogonal vectors:
X, Y,
and
Z.
The combination of the
two horizontal vectors yields the horizontal component
H,
which is aligned in the direction
of the compass needle and that can be expressed as:
H
=
X
2
+
Y
2
Whereas the total field intensity, which at the poles is directed towards the center of
the planet, can be expressed as:
H
=
X
2
+
Y
2
+
Z
2
The angle that is formed between
H
and the geographic north is the declination,
D,
whereas the inclination,
I,
is the angle between the horizontal plane and the vector of
total field intensity
F.
The international SI system the magnetic induction or magnetic flux
density (B) is measured in Tesla (T) and its subunits (µT = 10
6
T; nT = 10
9
T). One tesla
equals one Weber per square meter, corresponding to 10
4
gauss (G), which is the unit of
magnetic field in the centimeter-gram-second system. Thus, 1 G = 100
µT.
The magnetic flux density,
B,
is linked to the magnetic field strength,
H,
by a material
constant, the magnetic permeability
µ
(also called magnetic conductivity).
B
=
µ
×
H
The magnetic permeability,
µ,
is a measure of the permeability of materials for MFs.
The power flux density,
S,
of the EMF consists of energy fractions of the electric and
MF components and is measured in Watts per square meter (W m
2
). The field strength
decreases with increasing distance from the field source.
The strength of the GMF at the surface of the Earth ranges from over 60
µT
around the
magnetic poles in northern Canada, the south of Australia, and in parts of Siberia to less
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0003.png
Int. J. Mol. Sci.
2022,
23,
1339
3 of 55
than 30
µT
in an area that includes most of South America and South Africa (the so-called
South Atlantic anomaly) [10]. In the Earth’s history, the GMF has changed with the so-
called geomagnetic reversals, where the GMF was characterized by periods (more-or-less
extended) with the same polarity. These reversals occurred some hundred times since the
Earth’s formation, with intervals between the polarity phases estimated around 300,000
years. The present normal polarity started around 780,000 years ago; therefore, an imminent
geomagnetic reversal would not be so unexpected. The South Atlantic anomaly, a zone
with significant reduction of the GMF intensity that is located in front of Brazil/Argentina,
could be the initial symptom of a future change of polarity [2]. Changes in GMF intensity
imply a reduction of the GMF shield against cosmic radiation, with possible consequences
for all living organisms, which cannot avoid the effects of the GMF [11].
It is not clear whether the GMF can contribute to potential health risks, being present
in our planet before the evolution of living organisms; however, one question remains
whether different values of GMF in different countries in which epidemiological studies
of anthropogenic sources of MF have been performed might affect the results of those
studies [12].
Besides natural sources, the EM spectrum also includes fields that are generated by
human-made sources. For instance, X-rays are generated and used for diagnosis, power
sockets are associated with low frequency electromagnetic fields (LF EMFs), and various
kinds of higher frequency radio waves are used to transmit information—whether via TV
antennas, radio stations, or mobile phone base stations.
Static magnetic fields (SMF) (with direct current, DC) or alternating magnetic fields
(AMF) (with alternate current, AC) are formed, depending on the current feed. The polarity
of AMF changes according to the cyclic changes in the direction of the current flow (e.g., 100
polarity changes per second with 50 Hz AC), whereas in SMFs, the polarity is unchanged.
The scientifically documented interaction with the organism allows the classification of
non-ionizing electromagnetic fields (NI EMF) into low frequency (LF) and radio frequency
(RF). The stimulation or excitation of nerves, muscles, and sensory receptors may occur
below a threshold of 1 MHz; however, values that are higher than 1 MHz generate only
thermal effects. EMFs and radiation cover a wide frequency range. The NI radiation range
of the EM spectrum up to 300 GHz comprises SMF (0 Hz) and LF fields (
300 Hz), the
intermediate-frequency range between approximately 300 Hz and 10 MHz, and the RF
range from 10 MHz to 300 GHz.
Table
1
summarizes the classification of MFs based on type of radiation, field, fre-
quency, and wavelength along with some examples and general effects. Static, non-ionizing
electric, and MFs that occur as a by-product. SF (0 Hz) occurs in batteries, at high voltage
direct current transmission lines (HVDC lines), where underground cables are present, with
permanent magnets, between objects with different electrical charges, and in the GMF. In
general, the kind of the MF and the level of the magnetic flux density correspond to those
of the GMF. Inside of the converter stations, SMFs occur, and their strengths depend on the
voltage and the amount of flowing current. In medicine, strong SMF are used in magnetic
resonance imaging (MRI, see also Section
4.1).
During an MRI procedure the patient is
exposed a strong SMF normally from 1.5–3 T. Only in research facilities, magnetic fields
from 7 T up to 9.4 T are used. A huge diversity of products with magnets that are in close
proximity to their surface in pillows, belts, bracelets, blankets, pendants, patches, or insoles
exhibit SMF in the range between 0.03 and 0.3 T. However, the levels are reduced to a tenth
at a 3–4 mm distance from the surface. Therefore, at a distance of several centimeters, the
magnetic flux density lowers down to that of the natural GMF.
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0004.png
Int. J. Mol. Sci.
2022,
23,
1339
4 of 55
Table 1.
Types of magnetic fields.
Type of
Radiation
Type of
Field
Frequency
Wavelength
Use
Examples
GMF, permanent magnets, transmission
lines, HVDC lines, batteries, between
objects with different electrical charges,
MRI
Technical appliances such as power lines,
wiring and household appliances such as
appliances for heating (e.g., electric cooker,
electric heating, washing machine, electric
water heater, iron), appliances with a
transformer or magnetic coils (e.g., radio
clock, low-voltage halogen lamps,
television set, WiFi) and appliances with an
electric motor (e.g., vacuum cleaner, drill,
hand blender, hair dryer, electric cars)
Effect
NI
SMF
0 Hz
N.A.
Action of
force
NI
AMF
0.3 Hz
3 Hz
16 2/3 Hz
50 Hz
300 Hz
3 kHz
30 kHz
10
6
km
100,000 km
18,000 km
6000 km
1000 km
100 km
10 km
Low
Frequency
traction
current and
three phase
alternating
current
Stimulation/
irritation
NI
AMF
300 kHz
3 MHz
30 MHz
300 MHz
3 GHz
30 GHz
300 GHz
3 THz
1 km
100 m
10 m
1m
10 mm
10 mm
1 mm
100
µm
Induction cookers and electronic article
surveillance systems in stores, as well as
many industrial and medical applications,
PC monitors, mobile phone, microwave
ovens, radar stations. Broadcasting
Radio
frequency.
frequencies (short wave, AM, and FM
radio), digital television (digital video
Ra-
dio/television, broadcasting-terrestrial, DVBT) and digital
mi-
radio (digital audio broadcasting, DAB).
crowaves,
Wireless local area networks (WiFi, WLAN),
terahertz
cordless telephones, Bluetooth devices,
baby monitors, electronic article
waves
surveillance systems and RFID (radio
frequency range), radar systems, radio relay
systems, satellite TV and satellite Internet,
radio solutions for stationary Internet
Infrared
Visible
Light
Bulb lamps, heaters, body scanners for
security control
Thermal
effect
NI
NI
AMF
AMF
30 THz
300 THz
380 THz
789 THz
3
×
10
15
3
×
10
16
3
×
10
17
3
×
10
18
3
×
10
19
3
×
10
20
Hz
Hz
Hz
Hz
Hz
Hz
10
µm
1
µm
780 nm
380 nm
100 nm
10 nm
1 nm
100 pm
10 pm
1 pm
Thermal
effect
Ionizing
AMF
UV-light,
X-rays,
gamma rays
Nuclear power plants, X-ray machines,
radioactive material.
Ionization
LF refers to the frequency range 0–100 kHz. The energy of the EMF that is absorbed in
biological tissue and is converted into heat defines the specific absorption rate (SAR) that
is obtained by exposure to a frequency that is between 100 kHz and 10 GHz. The SAR is
expressed in Watts per kilogram of tissue (W kg
1
) based on an average exposure time
of six minute intervals, during which a balance between the energy input and the heat
dissipation in the tissue is reached. It is possible to distinguish between the exposure of the
whole body or parts of the body by averaging over different body masses. All electrical
applications that are run on power supply (railways, electrical appliances in the home, and
at working places) lie in the range of LF AMF up to 1 kHz (wavelengths larger than 300
km) (low frequency (0.1 Hz–1 kHz)). No extremely LF AF occur in nature. ELF AFs are
generated by technical appliances such as power lines, wiring, and household appliances.
ELF Electric and MFs are generated by the power lines and their strength and distribution
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0005.png
Int. J. Mol. Sci.
2022,
23,
1339
5 of 55
in the area surrounding the power lines depend on several parameters (including voltage,
amperage, tower shape, as well as alignment, and number, and slackness of the lines).
The strength of electric field is mainly found beneath the power lines; however, this effect
rapidly diminishes with increasing distance from the power line [13]. Electric cars are a
significant source of very high MFs due to the electric motor and large batteries, especially
during starting and stopping. In electric cars ELF MF dominate, but intermediate frequency
fields can occur also [14].
In the natural environment EMFs with intermediate frequencies (1 kHz–10 MHz) can
be generated during the so-called sferics, which are broadband EM impulses that occur in
the Earth’s atmosphere as a consequences of lightning discharges. Sferics may extend from a
few kHz to several tens of kHz (3–100 kHz) [15]. Intermediate frequency includes the lower
range of the radiofrequency band with its corresponding applications, but also applications
that are working with specific frequencies, such as induction cookers and electronic article
surveillance systems in stores, as well as many industrial and medical applications.
Radio frequency (30 kHz–300 GHz) includes a range of "broadcasting frequencies"
(between 30 kHz and 300 MHz; wavelengths from 10 km to 1 m) covering long wave
radio broadcasting, amplitude modulation (AM) radio broadcasting, shortwave radio
broadcasting, and frequency modulation (FM) radio broadcasting (authorized in the very
high frequency range). Terahertz waves are also in the non-ionizing radiation spectral
range, between 300 GHz and 10 THz (wavelengths from 1 mm to 30
µm).
For example,
they are used for quality control of industrial products, at some airports in body scanners
for security control, or in skin cancer scanning systems [16].
The following range of 384 THz to 789 THz (780 nm to 380 nm) is referred to as visible
light. This is succeeded by the ranges of ultraviolet radiation and the ionizing radiation
with even shorter wavelengths.
As noted above, the magnetic field strength around a conductor increases with rising
electric current strength and decreases with growing distance from the field source. It is
dependent on the type of source how fast the field decreases (Figure
1).
1.2. Public Health Initiatives and Concern
In 1996 the World Health Organization (WHO) launched a large, multidisciplinary
research effort to respond to growing public health concerns about the possible health
effects from exposure to EMF sources. The International EMF Project, open to any WHO
Member State government, brings together current knowledge and available resources of
key international and national agencies and scientific institutions. Among the aims and
scopes of the EMF Project are: (a) develop and publish a health risk assessment on EM RF
fields; (b) develop and disseminate information materials on risk management policies of
EMF; (c) provide technical support to national authorities and international organizations
regarding NI radiation; (d) establish an inter-agency committee on NI radiation safety to
exchange information and harmonize activities; and (e) develop international standards for
protection against NI radiation [17].
Worldwide, many countries set their own national standards for exposure based on
the guidelines that are set by the International Commission on Non-Ionizing Radiation
Protection (ICNIRP), a non-governmental organization that was formally recognized by
WHO. Risk assessment analyses that are based on publicly available data are used to help
formulate government guidance on occupational MF by also considering the cancer cases
that were prevented and the monetary benefits accruing to society by reducing workplace
exposures [18]. An overview of the current knowledge regarding EMF-related health risks
including recommendations for the diagnosis, treatment, and accessibility measures of
electromagnetic hypersensitivity (EHS) to improve and restore individual health outcomes
as well as for the development of strategies for prevention has been recently published [19].
The International Radiation Protection Association (IRPA) represents national radiation
protection societies [20]. An updated and reliable source of information is provided by the
EMF Portal (https://www.EMF-portal.org/en, accessed on 30 December 2021).
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0006.png
Int. J. Mol. Sci.
2022,
23,
1339
curity control, or in skin cancer scanning systems [16]. 
 
The following range of 384 THz to 789 THz (780 nm to 380 nm) is referred to as visible 
light. This is succeeded by the ranges of ultraviolet radiation and the ionizing radiation 
with even shorter wavelengths. 
 
As noted above, the magnetic field strength around a conductor increases with rising 
6 of 55
electric current strength and decreases with growing distance from the field source. It is 
dependent on the type of source how fast the field decreases (Figure 1). 
 
Figure 1. The magnetic field intensity decreases with growing distance from the field source. 
Figure 1.
The magnetic field intensity decreases with growing distance from the field source.
 
In general, the type and extent of the cautionary policy that is chosen critically depends
on the strength of the evidence for a health risk and the scale and nature of the potential
consequences. In many countries, the adoption of a principle of caution or prudent avoid-
ance implies the low-cost avoidance of unnecessary exposure as long as there is scientific
uncertainty about its health effects [21,22]. However, still some policies are effective in
preventing new situations with long-term exposure of children to MFs from overhead
power lines, but these generally do not include underground cables and other sources of
MFs [23]. Preventive measures and precautionary principles are necessary to warrant the
reduction of exposure to children because of their greater sensitivity to ELF EMF [24–26].
The American Academy of Pediatrics set out new recommendations to decrease the adverse
effects of exposure on children also to mobile phones [27].
2. Epidemiological Studies Evaluating MF and Cancer Relationships
It is known that epidemiological studies alone cannot be used to determine a clear
cause and effect relationship when considering MF and cancer. This is mainly because
epidemiological studies evaluate only the statistical associations between exposure and
disease, which may not be necessarily caused by the exposure. Only the presence of a
consistent and strong association between the exposure and the effect, a clear dose-response
relationship, support that is provided by relevant animal studies, a credible biological
explanation, and above all, if there is consistency between the studies can support cause
and effect conclusions. In studies involving EMF and cancer most of these factors are
generally missing. Studies of the potential health effects of EMF have concentrated on the
MF because it is generally assumed to be the component that is most likely to have biological
effects [28]. Since the first evidence determining the relationship between the ELF EMF and
leukemia in children [29], epidemiological studies in this context increased and the IARC
classified the ELF EMF in group 2B, a “possible carcinogen” to humans, whereas static
electric and MFs are not classifiable as carcinogenic to humans (Group 3) [30]. Although
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0007.png
Int. J. Mol. Sci.
2022,
23,
1339
7 of 55
it is generally accepted that EMFs can exert biological effects, in general, epidemiological
studies show a weak and sometimes inconsistent association between exposure to power-
frequency fields (PFF) and cancer. In most cases, the studies fail to show a dose-response
relationship [31,32]. The opposite happens in laboratory studies where PFF points towards
causing or contributing to cancer (see below). The application of “Hill’s criteria” (i.e.,
strength, plausibility, specificity, biologic gradient, consistency, coherence, experimental
evidence, temporality, and analogy) to laboratory and epidemiological studies shows a
weak evidence for a causal association between cancer and the exposure to PFF [33].
Because cancer is one of the significant problems of global health, epidemiologic
studies have faced the question of whether occupational and residential exposure to ELF
EMF might be carcinogenic. There are three main explanatory hypotheses that appear in
the literature: (i) the EM hypothesis, attributing EHS to EMF exposure; (ii) the cognitive
hypothesis, assuming that EHS results from false beliefs in EMF harmfulness; (iii) the
attributive hypothesis, considering EHS as a surviving strategy for pre-existing condi-
tions [34]. Most of the epidemiologic studies explored the association between ELF EMFs
and the susceptibility to different cancers. In the next section the residential/domestic and
the occupational exposure to MF as related to cancer occurrence will be described.
2.1. Epidemiology of Residential/Domestic Exposure to MF
A survey of the literature indicates that residential exposure to EMFs is associated to an
increased risk of cancers, particularly breast cancer, brain tumors, and leukemias. However,
most of these studies are based on small numbers of high field-exposed cases [16,35,36]
and an increasing number of studies does not support an epidemiologic association of
adult cancers with residential MFs [35–37]. Many of the studies clearly have shortcomings,
which often prevent any firm conclusions [38,39]. Moreover, the indirect measures of EMF
exposure used may also correlate with other factors such as social status (e.g., age, race,
gender) or environmental pollution. It is possible that these unconsidered and confounding
factors may contribute to the cancer rates that are reported and also to the contrasting
results that are reported in various EMF studies [40]. Indeed, EMF, which itself is not
believed to be genotoxic, could influence carcinogenesis if it exerted either direct or indirect
effects on target cells [41].
Another important issue is the exposure assessment. The exposure to MF can vary
greatly over time and distance, has multiple sources, and is imperceptible and ubiqui-
tous [42–45]. In exposed schools, children may experience a higher chance of receiving a
mean exposure >0.4
µT
during school hours [46,47]; whereas those living in big buildings or
using electric heating appliances in larger families had a generally higher level of personal
indoor exposure [48]. Based on the known location of domestic and service MF sources,
apartments can be reliably classified as high and low MF-exposed [49–51]. Methodologies
for estimating MF at study residences as well as for characterizing the sources of uncer-
tainty in these estimates have been developed [52]. In residential/domestic epidemiological
studies, geographic information that is collected in an exact place of residence at the time
of cancer diagnosis can provide several strategic geophysical elements for assessment [53].
The estimation of the overall exposure level from a single address is also informative [54]. In
general, the public health impact of residential fields is considered limited, but the available
data show the occurrence of both no impact and substantial impact possibilities [55].
2.1.1. Brain Tumor
The incidence of primary brain tumors has increased in many countries world-
wide [56,57] and gliomas are the most frequent primary brain tumors in adults [58]. Res-
idential exposure during childhood to EMF produced inconsistent results and a lack of
an association when related to brain cancers, regardless of the exposure metrics that were
used whether based on wire codes, distance, or the measured or calculated fields [59].
When focusing on the health effects, the most studied sources of ELF MF are power lines.
Exposure to ELF MF that is emitted by power lines can be assessed by direct methods that
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0008.png
Int. J. Mol. Sci.
2022,
23,
1339
8 of 55
rely on measurements at a given place over a time range [60] or by individual monitoring
through measuring ELF MF exposures throughout the day by wearable dosimeters [61].
Both methods give little or no information on historical exposure to ELF MF. Indirect
methods include geographical information system (GIS) which have been used along with
declarative data, such as residential history, to assess residential ELF MF exposure in the
general population [62–65]. Case-control studies that are based on death certificates re-
vealed an association between adult brain tumor mortality and living less than 50 m (odd
ratios, OR 1.10 95%, CI 0.74–1.64) [66] or 100 m (OR 2.99, 95%, CI 0.86–10.40) [67] from
power lines. In a recent work, significant associations were found between the cumulated
duration living at <50 m to high voltage lines (50/60 Hz, 0.3
µT)
and all brain tumors (OR
2.94; 95%CI 1.28–6.75) and glioma (OR 4.96; 95%CI 1.56–15.77) [65], confirming previous
studies [35,66–69]. Contrasting results have been reported for brain tumors in children. In
childhood brain cancer, with the exception of the possibility of a moderate risk increase in
high cut-point analyses (0.3/0.4
µT),
no increased risk was evident for different exposure
metrics [70,71], whereas children whose MF exposure level was above 0.3 or 0.4
µT,
an
elevated risk of brain tumor was observed [72–74]. In residential areas, the transient electric
and MFs would induce higher current density in the child‘s body than power frequency
fields with similar field strength [75]. In some studies, there is no evidence for a role of ELF
cellphone EMFs in childhood brain cancer [27].
2.1.2. Breast Cancer
Breast cancer threatens women with the highest incidence and second highest mortality
rate of all cancers and in women aged 65 and older when nearly one half of all new breast
cancer is diagnosed [76]. The excessive exposure to MFs increases the risk of female breast
cancer, as demonstrated in several pooled or meta-analyses as well as subsequent peer-
reviewed studies [69]. It is questionable whether chronic human exposure to MFs might
affect melatonin secretion, its circadian rhythm, or both [77–80]. In general, no cumulative
effects on melatonin secretion in humans have been found in response to MFs and this
rebuts the “melatonin hypothesis” in which a decrease in plasma melatonin concentration
(or a disruption in its secretion) would be correlated with the occurrence of breast cancers
as a consequence of exposure to MFs [81–88]. Indeed, MF exposure correlates with an
increased proliferative activity of the mammary epithelium, which is a likely explanation
for the cocarcinogenic or tumor-promoting effects of MF exposure that is observed [89].
However, some authors found a motivation for going back to the melatonin hypothesis
in relation to data, suggesting magnetosensory disruption by ELF MF in mammals, and
magnetosensitivity in humans, along with the influence of MFs on circadian rhythmicity
with a consequent disruption of non-photic sensory stimuli of various nature [90].
In studies that were based on the measurement of an electric bedding device, only
premenopausal breast cancer (OR = 1.23; 95% Cl: 1.01, 1.49,
p
= 0.04) showed a slight
increased risk [91]. Breast cancer was found to increase with the number of years and
seasons of bedding device use during sleep. Similar trends in dose response were shown in
both premenopausal and postmenopausal women and for both estrogen receptor-positive
and estrogen receptor-negative tumors. Therefore, there is a growing body of evidence
that the use of electric bedding devices may increase breast cancer risk [92]. In terms of
geographic variation of breast cancer rates, the results are inconclusive and do not support
a major role of MF risk factors in the etiology of breast cancer [93].
2.1.3. Leukemias
Leukemia is the most common cancer in children [94]. The analysis of reports on
childhood leukemia as related to exposure to MFs shows that a statistically significant asso-
ciation between MF exposure and childhood leukemia is found in almost all government
or independent studies with an elevated risk of at least OR = 1.5, while a not significant or
even suggestive association is reported in many industry supported studies [69].
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0009.png
Int. J. Mol. Sci.
2022,
23,
1339
9 of 55
Several meta-analyses showed a statistical association between childhood leukemia
and a range of exposure 0.1–2.36
µT
MF intensity [74,95–99]. Children that are exposed
to elevated ELF-MF show relative risks of leukemia between 1.3 and 2 [100–102] and the
highest exposure was associated with an increased risk of B-lineage acute lymphoblastic
leukemia (B-ALL) when compared with lower exposures [103]. A significant association
was observed during the night (OR = 3.21, 95% CI 1.33–7.80) between childhood leukemia
and MF exposure [104].
Several epidemiologic case-control studies examined the association between child-
hood cancer risk and distance to high-voltage overhead transmission lines (HVOTL).
Statewide, record-based case-control studies of childhood leukemia evidenced the oc-
currence of risk that was associated with greater exposure to MF that was generated in
areas that were close to power lines [66,105–108]. Living in polluted regions and pre-
and post-natal exposure to high voltage power lines has been described as risk factors
of acute lymphoblastic leukemia (ALL) in people of low socioeconomic status Iranian
population [109]. In children with ALL, ELF MF-exposure was found to have no impact on
the survival probability or risk of relapse [110].
The occurrence of childhood acute leukemia (AL) has been studied around nuclear
power plants (NPP). The results suggest a possible excess risk of AL in the close vicinity to
NPP [111]. The small, but statistically significant increased incidence of AL in the surround-
ing of some NPP have motivated governments to work toward a better understanding of
the main causes of AL long-term strategic research agendas through interdisciplinary and
international efforts [112].
MFs are not the only factor that varies in the vicinity of MF sources, complicating
interpretation of any associations. Several reports demonstrate that MFs that are generated
by different sources are not an important cause of leukemia both in adults [37,113,114] and
children in many geographical areas [12,113–120]. Moreover, exposure levels in some big
cities are always significantly far lower than 0.3–0.4
µT
[121].
The associations that were observed between power lines exposure and childhood
leukemia appears to be not related to mobility [122,123]. No indications were also found of
an association of risk for people that are exposed to magnetic fields from underground [124]
and above ground lines [106,107] or of a trend in risk with increasing MF for leukemia.
Residential proximity to transformer stations has been associated with a borderline risk of
childhood cancer [125].
Distance from HVOTLs during the year of birth is unlikely to be associated with an
increased risk of leukemia [73] and little evidence was found between exposure to MF
inside infant incubators and increased risk of childhood leukemia [126]. No statistically
significant association was observed between wire codes and childhood leukemia [127].
Recently, a synoptic analysis provided evidence that the risk of childhood leukemia is not
increased by exposure to ELF EMFs, suggesting that IARC’s classification of ELF EMF
needs revision [128].
By considering both significant and not significant correlations between MF and
leukemia, no major environmental risk factors (including MFs) have been established as
major contributors to the global leukemia burden, although distinct incidence patterns by
geography, age, and sex suggest a role of the environment in its etiology [129]. The results
may be affected by several sources of bias: analyses that are based on continuous exposure
show no exposure-disease association, while incoherent exposure-outcome relationships
characterize analyses that are based on categorical variables [130].
2.1.4. Other Cancers
EMF in the home-environment (color tv, computer monitor, microwave-oven, cellular
phone, etc.) might act as potential contributing factors for the development of cancer,
as well as exert indirect effects on humans. Microwave exposure induces L-amino acids
change to D-amino acids, and exposure of the human body to microwaves over a long
period of time may contribute to induction of cancer [131]. Exposure to EMF that is
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0010.png
Int. J. Mol. Sci.
2022,
23,
1339
10 of 55
generated by electric blankets has been suggested to increase the risk of hormone-dependent
cancers such as testicular [132] and prostatic [133], but was not significantly associated with
endometrial cancer risk [134]. MFs of industrial frequency have been shown to be a risk
factor for occurrence of oncological diseases in the population and an increased incidence of
malignant tumors has been noted as the induction of the magnetic field that is produced by
HVOTL increases [135]. The incidence of melanoma has been linked to the distance to FM
broadcasting towers. A correlation between melanoma incidence and the number of locally
receivable FM transmitters was found when geographic differences in melanoma incidences
were compared with the magnitude of this environmental stress. Therefore, melanoma
might be associated with exposure to FM broadcasting [136]. By considering pregnancy
duration, neonatal birth weight, length, head circumference, gender, and con-genital
malformations, no significant effects of ELF EMFs were observed; however, precautionary
measures are necessary to reduce exposure to EMFs by pregnant women [137].
The Supplementary Table S1 reports the relationship between MFs and cancer in
epidemiologic studies that are related to domestic/residential exposure to MFs. The type
of cancer, study design, source of MF, range of MF exposure, location of the epidemiologic
study, and the main conclusions are reported. Figure
2
summarizes the epidemiology of
residential/domestic exposure to MF.
2.2. Epidemiology of Occupational Exposure to MF
During the last few decades, the intensity level of the EM occupational environment
has dramatically increased. By job category, the most highly exposed jobs (>0.23
µT)
included electronics workers, cooks and kitchen workers, cashiers, bakery workers, textile
machine operators, and residential and industrial sewing machine operators [138]. The
main components of EM pollution are in the ELF (10–300 Hz) and in ultra-low (ULF:
0–10 Hz) frequency bands [139]. Occupational epidemiology reveals that exposure to ELF
EMF is generally greater than that in the general population and concerns a large number of
workers in a variety of industries (see [140,141] for a historical overview of the occupational
EMF epidemiology).
MF exposure limits are more than a thousand times higher than the magnitudes that are
associated with the cancer risks that are observed in epidemiologic studies, leaving millions
of workers exposed to MF in this large gray area where the public health consequences
are unclear [140,141]. The International Labor Organization defines occupational exposure
as “exposure of a worker received or committed during a period of work” [142] while the
ICNIRP defines occupational exposure as “all exposure to EMF experienced by individuals
as a result of performing their regular or assigned job activities” [143].
As discussed for residential/domestic exposure to EMF, in the case of occupational
exposure, contrasting results have also been presented in relation to the co-occurrence of
different cancers including brain and breast cancer and hematological malignancies.
2.2.1. Brain Cancer
Occupational exposure to ELF EMF is a suspected risk factor for brain tumors; however,
the literature reports contrasting results. In adults, some meta-analyses of occupational
studies indicate a slightly higher risk for electrical workers, suggesting a small increase in
brain cancer risk [61,144,145], including childhood brain tumors [146], while others found
no evidence to support the hypothesis that exposure to MFs is a risk factor for gliomas or
meningiomas [147–150].
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0011.png
Int. J. Mol. Sci.
2022,
23,
1339
mations, no significant effects of ELF EMFs were observed; however, precautionary measures 
are necessary to reduce exposure to EMFs by pregnant women [137]. 
The Supplementary Table S1 reports the relationship between MFs and cancer in ep‐
idemiologic studies that are related to domestic/residential exposure to MFs. The type of 
cancer, study design, source of MF, range of MF exposure, location of the epidemiologic 
11 of 55
study, and the main conclusions are reported. Figure 2 summarizes the epidemiology of 
residential/domestic exposure to MF. 
 
Figure 2. Summary of epidemiology of residential/domestic exposure to MF. The major confound‐
Figure 2.
Summary of epidemiology of residential/domestic exposure to MF. The major confounding
ing factors in epidemiological studies are shown along with the main geographical information that 
factors in epidemiological studies are shown along with the main geographical information that is
is based on GIS (data management, hardware/software, topography, remote detection, and popula‐
based on GIS (data management, hardware/software, topography, remote detection, and population
tion demographics). Exposure assessment needs to be evaluated both outside and inside the resi‐
dence.  The  three  major  cancers  are 
needs to be evaluated both outside and inside the residence. The
demographics). Exposure assessment
represented: leukemia  affects  mainly childhood;  brain  cancer 
increases with decreasing distances from EMF sources; and breast cancer is associated with mam‐
three major cancers are represented: leukemia affects mainly childhood; brain cancer increases with
mary epithelium proliferation and with exposure to bedding devices. 
decreasing distances from EMF sources; and breast cancer is associated with mammary epithelium
proliferation and with exposure to bedding devices.
 
2.2.2. Breast Cancer
Several studies have evaluated the evidence linking women’s occupation and work-
place exposures to breast cancer. Overall, the data do not suggest that occupational expo-
sures to EMF increases the risk of breast cancer [144,145,151,152] with some exceptions [153].
Some studies have found an effect when looking at overall risk elevations in the women
studied [154] with increased risk among postmenopausal women but not premenopausal
women [155]. The hypothesis that daytime occupational exposure to MF enhances the
effects of nighttime light exposure on melatonin production (see above the “melatonin
hypothesis”) has been provided [153]. Occupational MF exposure has also been suggested
as a risk factor for breast cancer in men. An elevated risk of breast cancer was found in
men who were exposed to 0.6 T when compared to those with exposures <0.3 T; however,
large case-control studies of breast cancer in men that have been conducted to date provide
limited support for the hypothesis that exposure to MF increases the risk breast cancer in
men [156].
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0012.png
Int. J. Mol. Sci.
2022,
23,
1339
12 of 55
2.2.3. Leukemias
Epidemiological studies addressing occupational ELF MF exposure and risk of leukemia
in adults have yielded slightly increased risks in exposed workers. Some studies show a
positive correlation between occupational MF and leukemias [157–160] and have suggested
that stronger effects may be observed for acute myeloid leukemia (AML) [161,162], chronic
myeloid leukemia (CML), ALL [138], lymphatic leukemia (LL) [163], and for chronic lym-
phocytic leukemia (CLL) [162]. In general, however, no clear exposure-response pattern has
emerged from the studies that evaluated exposure levels and some results do not support
an association between occupational ELF MF or electric shock exposure and AML [164].
Differences between the study designs or the populations that were studied might
be the cause of lack of consistency regarding the type of leukemia that is associated with
MF exposure, and still no firm conclusions can generally be drawn based on the existing
evidence [165–167]. No association was found between childhood leukemia risk and
parental occupational exposure to ELF EMF [168–170].
2.2.4. Other Cancers
In men, exposure to EMF showed an increased incidence of tumors of the liver, biliary
passages, kidney, and pituitary gland; for these cancer sites an exposure-response relation
was indicated [171]. There was very limited evidence for associations between occupational
ionizing radiation and testicular cancer, while there were some positive associations for
EMF [172].
Women that were exposed to MF showed an increased incidence of astrocytoma I-
IV, for cancer of the corpus uteri and multiple myeloma, with a clear exposure-response
pattern [171].
For both men and women, there was weak support for the hypothesis that occupa-
tional MFs exposure increased the risk of non-Hodgkin lymphoma [173], acoustic neu-
roma [174,175], and thyroid cancer [176], while sources that produce ELF fields were not
associated with neuroblastoma in offspring [177].
MF has previously been associated with mortality from acute myocardial infarction
(AMI) and arrhythmia but not from chronic coronary heart disease (CCHD) or atheroscle-
rosis in electric utility workers. For cumulative exposure, no association was observed
with mortality from AMI or CCHD, indicating no exposure-related risk increase for AMI
mortality, which does not confirm previous results [178].
Supplementary Table S2 reports the relationship between MFs and cancer in epidemio-
logic studies that are related to the occupational exposure to MFs. The type of cancer, study
design, source of MF and occupation, range of MF exposure, location of the epidemiological
study, and the main conclusions are reported. Figure
3
summarizes the epidemiology of
occupational exposure to MF.
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0013.png
Int. J. Mol. Sci.
2022,
23,
1339
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 
 
13 of 55
13  of  54 
 
Figure 3. Summary of epidemiology of occupational exposure to MF. There is still little evidence on 
Figure 3.
Summary of epidemiology of occupational exposure to MF. There is still little evidence on
the relationship between occupational exposure to EMF and brain cancer, whereas several leuke‐
the relationship between occupational exposure to EMF and brain cancer, whereas several leukemias
mias  have  been  associated  with  continuous  exposure  to  ELF‐EMFs.  Breast  cancer  occurs  both  in 
have been associated with continuous exposure to ELF-EMFs. Breast cancer occurs
cancers 
women
women  and  men  and  the  risk  increases  in  men  that  are  exposed  to  0.6  T.  Other 
both in
that  are 
associated with MF exposure include myeloma in women and several other types of cancer in both 
and men and the risk increases in men that are exposed to 0.6 T. Other cancers that are associated
women and men. 
with MF exposure include myeloma in women and several other types of cancer in both women
and men.
3. In Vivo and In Vitro Effects of Magnetic Fields on Cancer 
3. In Vivo and In Vitro Effects of Magnetic Fields on Cancer
In many studies ELF exposure causes significant changes in cell survival, cell cycle 
In many studies ELF exposure causes significant changes in cell survival, cell cycle
progression, DNA integrity, and proliferation [40,179]. The cellular response to ELF MF 
progression, DNA
many  parameters  including  osmolarity,  frequency,  waveform, 
MF
may  depend  on 
integrity, and proliferation [40,179]. The cellular response to ELF
the 
may depend on many parameters including osmolarity, frequency, waveform, the strength
strength and the exposure duration of the electromagnetic field, genetic/biological char‐
and the exposure duration of the electromagnetic field, genetic/biological characteristics of
acteristics of the cells [180], specific metabolic state, or the specific stage in the cell cycle 
the cells [180], specific metabolic state, or the specific stage in the cell cycle [180,181]. On
[180,181]. On the other hand, a common effect of exposure to SMF is the promotion of 
the other hand, a common effect of exposure to SMF is the promotion of apoptosis and
apoptosis and mitosis, but not of necrosis or modifications of the cell shape [182,183]. The 
mitosis, but not of necrosis or modifications of the cell shape [182,183]. The unbalance of the
unbalance of the apoptotic process could be linked to Ca
2+
 fluxes that are, in turn, depend‐
apoptotic process could be linked to Ca
2+
fluxes that are, in turn, dependent on the effect
ent on the effect on the plasma membrane that is exerted by SMF [184–187]. Other possible 
on the plasma membrane that is exerted by SMF [184–187]. Other possible effects of SMFs
effects of SMFs that may lead to perturbation of the apoptotic rate, such as an alteration 
that may lead to perturbation of the apoptotic rate, such as an alteration of the gene pattern
of the gene pattern expression or the increase of oxygen free‐radicals, could be, in turn, a 
expression or the increase of oxygen free-radicals, could be, in turn, a co-carcinogenic
co‐carcinogenic factor leading normal cells, most likely with other sub‐lethal changes, to 
contribute to the development of diseases [183]. 
 
 
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0014.png
Int. J. Mol. Sci.
2022,
23,
1339
14 of 55
factor leading normal cells, most likely with other sub-lethal changes, to contribute to the
development of diseases [183].
The reduction of cell proliferation due to MF has been attributed to the interference of
signal transduction processes due to the tangential currents that are induced around the
cells [188]. The poor reproducibility might be caused by the period-dependent converse
cell growth due to the MF and might explain the adverse effects that are observed in several
experimental investigations [189].
Quantitative analyses of protein kinases C (PKC) expression patterns demonstrated
the translocation of PKC from the cytosolic to the membrane fraction was not affected by
MFs [190]. The phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2)
is increased in response to ELF MF; however, the small increase in ERK1/2 phosphory-
lation is probably insufficient to affect proliferation and oncogenic transformation [191].
Furthermore, repeated ELF EMF exposures did not show consistent response profiles
to time courses of immediate early genes, apoptotic genes, cell proliferation, and stress
response [192].
Small changes in transcription may occur in response to MFs [193,194]. Exposure to
900 MHz identified a differential expression of functional pathways genes [195]. Indeed,
epigenetic changes, including modifications of histones and microRNA expression and
DNA methylation, can be associated to ELF MF exposure [196–198]. However, in HeLa
cells, RNA polymerase-catalyzed RNA synthesis as well as DNA polymerase-catalyzed
DNA synthesis were found to not be statistically significantly affected by 60 Hz 0.25–0.5 T
exposure for 0–60 min [199].
Aberrantly-expressed serum exosomal miRNAs upon MF exposure suggests a series
of informative markers to identify the exact dose of MF exposure [200]. ELF MF exposure
stabilizes active chromatin, particularly during the transition from a repressive to an active
state during cell differentiation [201]. Membrane receptors could be one of the most
important targets where ELF MF interacts with the cells [202] and RAS proteins, a member
of a large family of GTP-binding proteins that are involved in intracellular signal pathways,
may participate in the signal transduction process of 50 Hz MF [203]. EMF was also found
to affect the proteasome functionality, inducing an increase in its proteolytic activity [204].
To answer how MF may cause cancer, the action of MF as mutagenic agents and MF
involvement on chemical reactions that generate free-radicals have been considered. MF
does not seem to exert mutagenic effects and the generation of free-radicals that might be
linked to several other factors, beside the variability of MF exposure [40]. In the next part
of this section, the current data that are related to studies on human in vitro and cell-free
systems as well as in animal models will be discussed. This section will also discuss the
role of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and the role of
radical pair (RP) formation in MF-cancer relationship.
3.1. Studies on Human Cells (In Vitro Cellular Studies and Cell-Free Systems)
Exposure to ELF MFs combined with ionizing radiation do not suggest any synergistic
or antagonistic effects on human blood cells [205], whereas, by using sister chromatid
exchanges and comet assays, a slight but significant decrease of cell proliferation was
evident in blood cells that were exposed to 980–1020
µT
[206].
Dermal fibroblasts that were exposed to 1 mT from one to five hours showed a
reduction of their viability [207], while the rePETitive exposure to MF with ELF induced
DNA double-strand breaks and apoptosis in lung fibroblasts [208]. However, a longer
exposure (48–72 h) to a reduced MF intensity (20–500
µT)
did not result in any appreciable
effect in the structural morphology and proliferation of human fibroblasts [209].
Exposure of glioma cells to MF of 1.2
µT
intensity for three hours revealed changes
in both gene and protein expression. Microarray results showed an up-regulation of five
genes, whereas 25 genes were down-regulated upon MF exposure, suggesting a response
in the glioma cells to the MF treatment [210]. Proteomic studies on glioma SF767 cells show
a cytoskeletal intermediate filament protein increased following a low-level MF [211]. On
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0015.png
Int. J. Mol. Sci.
2022,
23,
1339
15 of 55
the other hand no mechanisms that would explain the reported association between MF
and carcinogenesis were observed in H4 glioma cells [212].
In human keratinocytes, ELF EMF induces a slight oxidative stress that does not
overwhelm the metabolic capacity of the cells or have a cytotoxic effect when the cells are
exposed to 25–200
µT
MF intensity [213] but it does not affect melanin synthesis or skin
pigmentation [214].
The adherence of leucocytes and T-lymphocytes that were taken from cancer patients
strongly increased following exposure to sinusoidal MF at 50 Hz and 0.5–10 mT MF intensity
for one hour [215,216], whereas a low-frequency pulsing electromagnetic field of 45 mT for
three hours induces cell death in native peripheral blood mononuclear proliferating cells
that were isolated from AML patients [217].
ELF MF increases the rate of cell death in normal human lymphoblastoid cell lines
and is ineffective on genetic instability syndromes cell lines, i.e., Fanconi anemia group C
and ataxia telangectasia, suggesting that the response of cells to ELF MF is modulated by
genes that are implicated in genetic instability syndromes [218]. Exposure to a pulsating
MF 50 Hz, 45 mT three times for three hours was found to protect U937 human lymphoid
cell lines against puromycin-induced cell death in a cell density-dependent manner (an
increased density induced cells death and prevented puromycin-induced cell death) [219].
The effects of 6- and 10-T SMFs was studied on HL-60 cells to evaluate the expression
of protooncogenes. It was found that exposure to a strong MF gradient induced c-Jun
expression, whereas no alteration of the expression of the
c-fos
and
c-myc
protooncogenes
was observed [220]. In the same cell line, exposure to LF EMF to lower intensity (5, 300,
and 500
µT)
did not affect calcium signaling [221].
An ELF magnetic field was also found to influence the early development of mesenchy-
mal stem cells that were exposed for 23 days to 50 Hz and 20 mT intensity [222], whereas
no variations in surface morphology and cell death occurred between the control and
the exposed osteosarcoma human cells that were exposed to 50 Hz and 0.5 mT, although
significant changes were noted in cell growth [223].
Supplementary Table S3 reports the effects of MFs on human cell lines. The type of
cell, response to MF, range and duration of MF exposure, materials and methods that were
used, and the main conclusions are reported.
3.2. Studies on Animals
Exposure to MF was found to be a cancer promoting factor in animal experiments;
animal studies are often used in the evaluation of suspected human carcinogens [224].
However, discrepancies in results were found to be associated with the use of different
sub-strains, different sources for diet, environmental conditions, and MF exposure met-
rics [225–227]. The continuous monitoring of both MF and other environmental parameters
is, therefore, an important part in the overall quality of the obtained results [228]. Experi-
ments with animals were also important to determine which genetic and environmental
factors are critical for potential carcinogenic or cocarcinogenic effects of ELF EMF expo-
sure [229]. Furthermore, the genetic background was found to play a pivotal role in effects
of MF exposure [230]. To study the effects of MFs on cancer cell growth, multiple exposure
levels have been performed using mice and rats as experimental models.
3.2.1. Studies on Mice
Several studies revealed that there were not significant effects of MF on cancer in
mouse studies, failing to support the hypothesis that acute MF exposure causes DNA
damage. The experimental mice were injected with mammary murine adenocarcinoma to
investigate the interaction between a 50 Hz, 2 mT MF exposure and cell growth.
Neither the time of tumor cell injection nor the time of exposure produced differ-
ences between the unexposed, sham, and exposed mice [231] and no association between
exposure and the incidence of benign or malignant tumors was found in squamous cell
carcinomas of mice that were exposed to 60 Hz, 2 mT [232]. Also, the results do not sup-
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0016.png
Int. J. Mol. Sci.
2022,
23,
1339
16 of 55
port the hypothesis that acute MF exposure causes DNA damage and apoptosis in the
cerebellums of immature mice that were exposed to 60 Hz and 1 mT for 2 h [233,234].
Exposure to 50 Hz and 500
µT
MF did not alter responses of inflammatory genes
and the activation of splenic lymphocytes in mice [235] and was not a significant risk
factor for hematopoietic diseases, even when high exposure levels were used (50 Hz, 1 mT
for 7 days) [236]. In mice, as revealed in humans (see above), long-term and continuous
exposure to simulated powerline MFs (0.5–77
µT)
did not result in a decreased nocturnal
melatonin secretion [85].
The use of NI MFs has shown early promise in a number of animal studies as an
effective tool against many types of cancer (see also below). The effect of varying durations
of MF exposure on tumor growth and viability has been studied in mice that were injected
with breast cancer cells by using an in vivo imaging system. The results showed the
potential of MF in cancer therapeutics, either as adjunct or primary therapy [237].
Long-term exposure showed a significant effect of MF on mice. When a parental
generation of six week-old OF1 mice was exposed to an artificial ELF MF (50 Hz, 15
µT)
for 14 weeks, activated partial thromboplastin time and reptilase time values significantly
increased in the female mice, which also showed a very significant shortening of the
prothrombin time that was associated with ELF MF exposure [238]. A chronic exposure of
mice to a 60 Hz and 110
µT
intensity was found to influence some hematologic parameters
and the weight of thee liver and also caused spleen hyperfunction [239]. Long-term
exposure to MF (50 Hz, 50
µT)
was found to be a significant risk factor for neoplastic
development and fertility in C57BL/6NJ female mice and C3H/HeNJ male mice [240].
3.2.2. Studies on Rat
Both positive and negative effects of MF have been demonstrated in studies using
rats. Artificial MFs of 1 mT that was administered for seven weeks was not carcinogenic
nor cancer-promoting for colon carcinogenesis in male Sprague–Dawley rats [241]. No
overall effects of 60 Hz and 1 mT MF on splenomegaly or survival were found in the
exposed Fischer/344 rats. In addition, no significant and/or consistent differences were
detected in the hematological parameters between the exposed and control rats [242]. MF
exposure for 14 weeks to 6.45
µT
did not appear to be a strong co-tumorigenic agent in
Sprague–Dawley female rats mammary, lung, and skin models [243]. On the other hand,
EMFs resulted in significant alterations in cell adhesion mechanisms when histological,
immunohistochemical, and histopathological analyses were performed on Wistar albino
rats that were exposed for six months to 5 mT MFs [244]. MF exposure (50 Hz, 100
µT
for
2–26 weeks) of female Sprague–Dawley rats resulted in an increased proliferative activity
of the mammary epithelium which was associated with the cocarcinogenic or tumor-
promoting effects of MF exposure that was observed in the 7,12-dimethylbenz(a)anthracene
model of breast cancer [89], and mammary tumorigenesis [245].
The Supplementary Table S4 reports the effects of MFs on both mice and rats. The type
of cell, response to MF, range and duration of MF exposure, materials and methods used,
and the main conclusions are reported. Figure
4
summarizes the in vivo and in vitro effects
of magnetic fields on cancer from studies on human cells (including cell-free systems) and
in animals (mice and rat).
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0017.png
Int. J. Mol. Sci.
2022,
23,
1339
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 
 
17 of 55
17  of  54 
 
Figure 4. Summary of the in vivo and in vitro effects of MFs on cancer from studies on human and 
Figure 4.
Summary of the in vivo and in vitro effects of MFs on cancer from studies on human and
animal cells. Different treatments (e.g., strength, duration, frequency, etc.) induce signal transduc‐
animal cells. Different treatments (e.g., strength, duration, frequency, etc.) induce signal transduction
tion pathways that eventually trigger gene expression. In vitro studies show significant effects on 
pathways that eventually trigger gene expression. In vitro studies show significant effects on cell
cell cycle, proliferation, and apoptosis. Human cells have been used to evaluate the effect of MF on 
cycle, proliferation, and apoptosis. Human cells have been used to evaluate the effect
several cancer types, whereas animal experimentation has been focused on mice and rats. 
of MF on
several cancer types, whereas animal experimentation has been focused on mice and rats.
3.3. Involvement of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) 
 
3.3. Involvement of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS)
ROS (such as superoxide [O
2•−
] and hydrogen peroxide [H
2
O
2
]) and RNS (e.g., nitric 
•−
ROS
]) are generated during the oxidative cell metabolism. The cellular oxidative 
oxide [NO
(such as superoxide [O
2
] and hydrogen peroxide [H
2
O
2
]) and RNS (e.g., nitric
oxide [NO
]) are generated during the oxidative cell metabolism. The cellular oxidative
stress depends on the balance between the production of ROS and RNS and the activity 
stress depends on the balance between the production of ROS and RNS and the activity
of the antioxidant system. Excessive ROS/RNS, which is caused by the deregulated redox 
of the antioxidant system. Excessive ROS/RNS, which is caused by the deregulated
homeostasis, is a hallmark of disease [246]. Free‐radical‐scavenging enzymes, such as cat‐
redox homeostasis, is a hallmark of disease [246]. Free-radical-scavenging enzymes, such
alase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), are the first 
as catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), are
line of defense against oxidative injury [247]. After EMF exposure, significant variations 
the first line of defense against oxidative injury [247]. After EMF exposure, significant
in  the  total  antioxidant  activity;  vitamin  E  and  vitamin  A  concentrations;  increase  of 
malondialdehyde (MDA, a product of polyunsaturated fatty acid peroxidation which is 
 
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0018.png
Int. J. Mol. Sci.
2022,
23,
1339
18 of 55
variations in the total antioxidant activity; vitamin E and vitamin A concentrations; increase
of malondialdehyde (MDA, a product of polyunsaturated fatty acid peroxidation which
is used as an indicator of oxidative stress in cells and tissues); and plasma selenium
concentration in erythrocytes have been observed [248]. A recent review concluded that
most animal and many cell studies show increased oxidative stress that is caused by
MF [249]. Free-radical formation and the consequences of their effects on living systems
explains the increased cancer risks that are associated with mobile phone use, occupational
exposure to MF, and residential exposure to power lines [250].
ROS may be involved in RP reactions that have been considered as one of the mecha-
nisms of transduction that is able to initiate EMF-induced oxidative stress [19]. It is known
that applied MFs and magnetic isotope substitution can alter the rates and product yields
of free-radical reactions with the formation of transient paramagnetic intermediates in
non-equilibrium electron spin states. The most common source of spin-chemical effects
are organic RPs. Typically formed in a singlet (S) or a triplet (T) state by a reaction that
conserves electron spin, RPs interconvert coherently between their S and T states as a
result of the Zeeman, hyperfine, exchange, and dipolar interactions of the electrons and the
nuclear spins to which they are coupled [251]. Applied MFs alter the extent and timing of
the S T interchange and hence the yields of products that are formed spin-selectively from
the S and T states [252]. MFs and spin effects have proven to be useful mechanistic tools
for radical mechanism in biology [252] and the RP mechanism (RPM) has been associated
with increased levels of ROS [253]. Moreover, the role of cryptochromes as the putative
magnetosensitive molecules in magnetoreception has been considered in the RPM and
discussed as related to cancer-relevant biological processes [254]. The results are also
consistent with MF effects on light-independent radical reactions [255].
Significant increases in ROS levels have been found to influence the hepatic redox
state [256] and were observed in several cell lines just after the end of ELF EMF expo-
sure [213,257–265]. ELF EMF exposure also elevates the expression of RNS and O
2
•−
,
which are countered by compensatory changes in antioxidant CAT activity and enzymatic
kinetic parameters that are related to cytochrome P450 (CYP-450) and CAT activity [266].
Moreover, the modulation in kinetic parameters of CAT, CYP-450, SOD, and MDA concen-
tration and iNOS enzymes in response to ELF EMF [267–269] and the negligible effects on
GPX [270] indicates an interaction between the ELF EMF and the enzymological system.
SMF promoted the release of ferrous iron (Fe
2+
) and induced the production of ROS in
osteosarcoma stem cells [271]. Superoxide increased in the micronucleus and mitochondria
with an exposure-response relationship and cytosolic superoxide increased at 10
µT
in
SH-SY5Y and C6 cells [272]. These results confirm that the threshold for biological effects
of ELF MFs may be as low as 10
µT.
In liver tissue of female rats, long-term ELF-MF exposure enhanced the oxidative/
nitrosative stress and might have a deteriorative effect on cellular proteins rather than
lipids by enhancing 3-nitrotyrosine formation [273]. MF appears to induce apoptosis
effects through oxidative stress [274] and mitochondrial depolarization [275], whereas the
influence of correlations between ELF EMF and vitamin E supplementation have been
shown on antioxidant enzyme activity in AT478 malignant cells in vitro [276]. In embryonic
stem cell-derived embryoid bodies, exposure to 10 mT MFs increased ROS [277].
Supplementary Table S5 reports the effects of MFs on ROS and RNS. The type of
cell/tissue/organ, response to MF, range and duration of MF exposure, materials and meth-
ods used, and the main conclusions are reported. Figure
5
summarizes the involvement of
ROS and RNS in the cellular and organismic responses to MFs.
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0019.png
Int. J. Mol. Sci.
2022,
23,
1339
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 
 
19 of 55
19  of  54 
 
Figure 5. Summary of the involvement of ROS and RNS in the cellular and organismic responses to 
Figure 5.
Summary of the involvement of ROS and RNS in the cellular and organismic responses
MFs. There are three major effects of varying MF the are reported. MFs alter the redox status of the 
to MFs. There are three major effects of varying MF the are reported. MFs alter the redox status of
cell by affecting the activity and gene expression of ROS‐scavenging systems, including CAT, SOD, 
the cell by affecting the activity and gene expression of ROS-scavenging systems, including CAT,
GPX, vitamins, and monooxygenases. Membrane degradation is evidenced by MDA detection. On 
SOD, GPX, vitamins, and monooxygenases. Membrane degradation is evidenced by MDA detection.
the other hand, MFs trigger the production of ROS and NOS and early events involving the radical 
On the other hand, MFs trigger the production of ROS and NOS and early events involving the
pair mechanism and spin‐chemical effects. The altered oxidative status eventually induces the ex‐
pression of oncogenes. The alteration of the oxidative status is also evident at the subcellular, cellu‐
radical pair mechanism and spin-chemical effects. The altered oxidative status eventually induces
lar, tissue, and organ level. 
The alteration of the oxidative status is also evident at the subcellular,
the expression of oncogenes.
cellular, tissue, and organ level.
4. Magnetic Fields and Cancer Theranostics 
4. Magnetic Fields and Cancer Theranostics
So far, we have discussed the possibility that exposure to MFs may be correlated with 
So far, we have discussed the possibility that exposure to MFs may be correlated
cancer. However, MFs have been widely used for cancer diagnostic and therapeutic ap‐
with cancer. However, MFs have been widely used for cancer diagnostic and therapeutic
plications. In this section, the use of MRI as a cancer diagnostic and therapeutic method 
applications. In this section, the use of MRI as a cancer diagnostic and therapeutic method
and the use of magnetic nanoparticle for cancer treatment will be discussed. 
and the use of magnetic nanoparticle for cancer treatment will be discussed.
4.1. Magnetic Fields and Cancer Diagnosis 
4.1. Magnetic Fields and Cancer Diagnosis
MRI, a medical application of nuclear magnetic resonance (NMR), uses strong MFs, 
MRI, a medical application of nuclear magnetic resonance (NMR), uses strong MFs,
MF gradients, and radio waves to generate images of the organs in the body [278]. There 
MF gradients, and radio waves to generate images of the organs in the body [278]. There
is a trade‐off between MF dose effects and the image quality of MR‐guided radiotherapy 
 
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0020.png
Int. J. Mol. Sci.
2022,
23,
1339
20 of 55
is a trade-off between MF dose effects and the image quality of MR-guided radiotherapy
systems and the MF strength may affect the severity of MF dose effects [279], such as
the electron return effect [280]. MRI has also been used in combination with positron
emission tomography (PET) and has a strong potential clinical use for the imaging of
several forms of cancer [281]. Using ultrasmall superparamagnetic particles of iron oxide
(USPIO), it is possible to enhance the power of MRI for noninvasive diagnostics of different
types of cancer [282,283] (see also 4.2). Since alterations in the Na
+
ion concentration
may potentially be used as a biomarker for malignant tumor diagnosis and prognosis,
Na-23-magnetic resonance imaging (Na-23-MRI) was found to have potential as a direct
noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in
cancer immunotherapy [284]. The potential role of MRI in the detection of several cancers
will be discussed in the next paragraphs.
4.1.1. Brain and Glioma Cancer
MRI has allowed the characterization and diagnosis of human brain cancers in spatial
and volumetric analysis [285], as a substitute for biopsies [286], in glioma genotyping [287],
brain cancer classification [288,289], as a non-invasive tool for simultaneous and automated
tumor segmentation [290], and to investigate the early stages of slow-growing invasive
tumors [291–294]. MRI is used before treatment and at the end of treatment or disease
progression [295,296] and to assess neurological complications of cancer treatment [297].
PET/MRI is used in brain tumor grading and staging [298,299] as a diagnostic and therapeu-
tic strategy for glioma [300] and for improved diagnostic and therapeutic assessment in pe-
diatric, teenage, and young adult brain tumors [301].
11
C–methyl-L-methionine (C-11-MET)
PET/MRI was found to improve the diagnostic accuracy to differentiate treatment-related
changes from true progression in recurrent glioma [302] and was useful for the assessment
of isocitrate dehydrogenase (IDH) status [303]. Perfusion MRI is used to differentiate
glioma from brain metastasis [304], whereas dynamic glucose-enhanced (DGE) MRI is a fea-
sible technique for studying brain tumor enhancement reflecting differences in tumor blood
volume and permeability with respect to a normal brain [305]. MRI-coupled fluorescence
molecular tomography (MRI-FMT) determines epidermal growth factor receptor status in
brain cancer [306] while advanced MRI techniques contribute to biological and imaging
features of glioma and immune system interactions [307] and in the clinical management
of adult gliomas [308]. The application of gadofluorine-M (GfM) results in superior delin-
eation of experimental glioma compared with conventional MRI techniques [309], whereas
the labeling tumor cells with superparamagnetic iron oxide (SPIO) and performing an
MRI scan dynamically monitors the development and biological behavior of glioma at
a very early stage [310]. Vascular, extracellular, and restricted diffusion for cytometry in
tumors MRI has been used as a potential test for diagnostic stratification to investigate
the tissue microstructure in glioma [311], whereas dynamic contrast-enhanced (DCE) MRI
detects increases in gadolinium (Gd)-enhancement of brain tumors [312] and provides an
unambiguous indication of the brain tumor photodynamic therapy outcome [313]. The
enhancement on MRI may assist in identifying HER2 overexpression in breast cancer brain
metastases [314].
4.1.2. Head and Neck Cancer
According to the National Cancer Data Base, head and neck cancer accounted for
6.6% of all new cancers [315]. The use of PET and MRI, separately or combined, has
been successful for assessing the metastatic lymph nodes in patients with head and neck
cancer and offers advantages in staging with regard to increased anatomical details and
radiation dose reduction [316–318]. Diffusion-weighted imaging (DWI) and intravenous
(IV) contrast T1 dynamic perfusion imaging are a valid support for the functional MRI of
tumors of the head and neck [319–322] and algorithms for automatic head and neck 3D
tumor segmentation from MRI have been developed [323]. For head and neck cancer, MRI-
guided radiotherapy achieves clinical outcomes that are comparable to contemporary series
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0021.png
Int. J. Mol. Sci.
2022,
23,
1339
21 of 55
reporting on intensity-modulated radiotherapy (IMRT) [324] and the use of targeted 3 T
MRI was found to be useful for defining the presence and extent of large nerve perineural
spread in head and neck cancers [325]. Retrospective image fusion of PET/MRI for the
assessment of the extent of the primary tumor (T stage) and metastasis to regional lymph
nodes (N stage) has been evaluated [326], whereas USPIO-enhanced MRI in patients with a
clinical neck cancer was able to differentiate borderline-sized lymph nodes [327].
4.1.3. Thyroid Cancer
Thyroid cancer is one of the fastest growing cancer diagnoses worldwide [328]; it is
the most common endocrine malignancy in children [329], it is three times more frequent
in females [330], and poorly differentiated and anaplastic thyroid carcinomas represent a
challenge to physicians on the basis of the current cancer treatment modalities [331]. MRI
shows sensitivity and specificity to diagnose recurrent thyroid carcinomas [332], thyroid
cancer cervical lymph node metastases [333], papillary carcinomas [334], and is more sensi-
tive than ultrasonography in detecting central compartment metastases in papillary thyroid
carcinoma [335]. However, MRI is inadequate for the detection of metastases in small
lymph nodes [336]. Esophageal invasion by thyroid carcinoma was accurately predicted
with MRI [337], whereas MRI, DWI-MRI, and MRI-based computer-aided diagnosis (CAD)
allow the differentiation of thyroid nodules whether benign or malignant [338–340] and
for the detection of inner and outer thyroid lamina invasion [341]. PET/MRI of the neck is
superior to PET-computed tomography (CT) in detecting iodine-positive lesions [342] and
provided further information in an overwhelming majority of thyroid cancer patients [343]
4.1.4. Breast Cancer
Among current clinical imaging modalities, MRI of the breast has the highest sensitiv-
ity for breast cancer detection and is becoming an indispensable tool for breast-imaging
procedures [344,345]. Multi-parametric (Mp) MRI is the most sensitive imaging modal-
ity for breast cancer detection [346] and has been successfully used in combination with
PET/MRI [347] and other imaging modalities. Abbreviated breast MRI uses only a select
number of sequences and postcontrast imaging reduces the table time and reading time to
maximize availability, patient tolerance, and accessibility [348], and may enable the more
widespread use of breast-MRI for screening [349].
4.1.5. Lung Cancer
Among all cancer, lung cancer has the highest rate of mortality in the western
world [350]. MRI is suitable for lung cancer screening with an excellent sensitivity and
specificity of malignant as well as calcified and subsolid nodules [351–355] and for radia-
tion treatment planning in lung cancer [356]. DWI-MRI protocol have been designed for
imaging malignant lung tumors, achieving satisfactory within-patient repeatability [357],
while recent advances in PET/MRI for lung cancer staging have been reviewed [358,359].
4.1.6. Gastric Cancer
Gastric cancer is an important healthcare problem from a global perspective, being the
fifth most common malignancy and the third leading cause of cancer-related death [360].
Most of the cases are diagnosed at late stages when the treatment is largely ineffective,
and MRI is of great value in patients with gastric cancer [361,362]. MRI is useful for
distant metastasis assessment with particular reference to peritoneal and liver metastases
assessment [361]. DWI-MRI and apparent diffusion coefficient (ADC) values showed to
be useful in preoperative MRI staging of gastric cancer [363,364], but has a low accuracy
to detect or to differentiate metastatic and non-metastatic lymph nodes based on their
ADC values in gastric cancer [365]. MRI is useful for the diagnosis of serosal invasion
of gastric cancer [366], in the diagnosis of regional lymph node metastases [367], and is
the best method in the assessment of gastric wall infiltration in gastric cancer [368]. MRI
is more accurate in achieving adequate staging results [369,370] and in the evaluation of
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0022.png
Int. J. Mol. Sci.
2022,
23,
1339
22 of 55
T-stage than CT [371,372]. DCE-MRI parameters of gastric cancers may provide prognostic
information [373,374], whereas multiparametric fully integrated
18
fluordesoxyglucose
([F-18]-FDG)-PET/MRI may improve the diagnostic accuracy for translational gastric
cancer research [375], for preoperative M staging as well as the resectability of gastric
cancers compared to multi detector computed tomography (MDCT) [376]. Compared with
PET/CT, PET/MRI performs more accurately in TNM staging and is optimal for accurate
N staging [377], whereas high-resolution MRI (HR MRI) has good diagnostic performance
and may serve as an alternative technique in the T staging of patients with esophagogastric
junction cancer in clinical practice [378]. The preoperative prediction results of MRI are
consistent with postoperative pathological results [379], although the clinical use of MRI
for gastric cancer is still under discussion [380].
4.1.7. Pancreatic Cancer
Pancreatic cancer is a deadly disease, mainly because it is very resistant to chemother-
apy and radiation therapy and is generally discovered very late [381]. MRI provides
relevant information for the diagnostic evaluation of malignant pancreatic tumors [382,383]
by predicting the survival in advanced pancreatic cancer patients [384]. The use of MRI of
the liver for the initial staging of pancreatic cancer results in lower total costs and higher
effectiveness [385]. MRI and CT show similar performance in the presurgical evaluation
of pancreatic cancer [386,387]. Preoperative MRI is instrumental to detect the stage and
resectability of pancreatic cancer [388] and preoperative gadoxetic acid-enhanced liver MRI
has a high diagnostic performance in detecting liver metastasis from pancreatic ductal
adenocarcinoma [389,390]. Gadolinium-enhanced MRI with DWI detected synchronous
liver metastases [391], whereas [F-18]-FDG PET/MRI provides an imaging tool to im-
prove the staging of pancreatic cancer and for the identification of Sister Mary Joseph
nodules [392]. However, the addition of DWI to conventional MRI does not facilitate
the differentiation of pancreatic cancer from chronic pancreatitis [393], whereas MRI can
differentiate pancreatic carcinoma from chronic pancreatitis successfully when including
Gd-enhanced T1-weighted 3D-GE sequences [394]. MRI-guided celiac plexus neurolysis
is an effective and minimally invasive procedure for the palliative pain management of
pancreatic cancer [395], whereas dynamic susceptibility contrast MRI (DSC-MRI) may
predict early progression in patients with advanced pancreatic cancer that are undergoing
chemotherapy [396]. MRI has been used to monitor radiofrequency heat (RFH)-enhanced
chemotherapy in pancreatic cancers for the efficient treatment of pancreatic malignancies
using MRI/RFH-integrated local chemotherapy [397].
4.1.8. Hepatocellular Carcinoma
Primary liver cancer is the second most common cause of cancer mortality worldwide
and the sixth most common cancer overall [398]. MRI is superior to CT in sensitivity, speci-
ficity, and accuracy [399] and can be used to determine the differential diagnosis [400–402],
variant analysis [403], arterial phase hyperenhancement [404], small precursor and recur-
rent lesions [405,406], liver perfusion [407], histological grade, microvascular invasion
status, local and systemic therapeutic responses, prognosis [408,409], and as a preoperative
marker [410] in hepatocellular carcinoma patients. PET/MRI imaging is also used for
the diagnosis of patients with hepatocellular carcinoma [411–413], whereas multi-phasic
MRI staging was found to be more accurate than the straight hepatocellular carcinoma-
grading approach [414]. Texture analysis that was based on gadolinium-ethoxybenzyl-
diethylenetriamine penta-acetic acid (GdEOB-DTPA)-enhanced MRI is used for early predic-
tion of therapeutic outcome in intermediate hepatocellular carcinoma [415], identification of
vessels encapsulating tumor clusters-positive hepatocellular carcinoma [416], has a higher
diagnostic rate and a better diagnostic value in small hepatocellular carcinoma [417], and
for the detection of capsule appearance in patients with hepatocellular carcinoma [404] and
liver cirrhosis [418,419]. DCE-MRI is used in the prediction of staging B or C hepatocellular
carcinoma [415] and for the quantification of perfusion metrics [420] with a superior modal-
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0023.png
Int. J. Mol. Sci.
2022,
23,
1339
23 of 55
ity for diagnosis compared with dynamic contrast-enhanced CT-scan [421]. DWI-MRI
is the gold standard in detecting recurrent lesions [405], monitoring response to therapy,
predicting response, assessing prognosis, and distinguishing tumor recurrence from the
treatment effect [422]; however, DWI adds little value to MRI in target delineation [423].
4.1.9. Gallbladder Carcinoma
The most common cancer of the biliary system is gallbladder carcinoma [424]. MRI is a
useful imaging tool for the staging, diagnosis, and evaluation of the treatment response and
provides superior soft-tissue characterization of the gallbladder and biliary tree [425,426].
DWI is the preferred imaging technique for discriminating benign from malignant disease
in gallbladder cancer [427,428].
4.1.10. Renal Cancer
Renal cancer (that is neoplasia of the kidney, renal pelvis, or ureter (ICD-9 189 and
ICD-10 C64-C66)) is the seventh most common malignancy in men [429]. There are three
main risk factors for cancer of the kidney: age, smoking, and obesity [430]. Renal carcinoma
is often first detected and characterized with imaging, with CT and MRI being the most
common modalities that are used for diagnosis, staging, and surveillance [431–433]. MRI
differentiates papillary renal cell carcinoma from other renal masses [434], whereas MRI
and normalized ADC has utility in differentiating central renal cell carcinoma from renal
pelvic urothelial carcinoma [435]. DCE MRI allows an estimation of the grading of renal
cell carcinoma [436] and along with DWI MRI and multiphase contrast-enhanced MRI
(MCE-MRI) contributes with prognostic information, even at baseline scans, by predicting
the tumor response early after initiating therapy [437].
4.1.11. Bladder Cancer
Bladder cancer is the fourth most common cancer worldwide [438]. MRI is effective
in bladder cancer staging as well as differentiating superficial from invasive tumors and
organ-confined from non-organ-confined tumors [439–447]. MRI has shown potential
for the detection of muscle invasion [448]. Mp-MRI has been a useful modality for the T
staging of bladder cancer for clinical and research applications [449,450], whereas DCE-MRI
provides response biomarkers in clinical trials in subjects with primary bladder cancer [451].
For bladder cancer patients, diagnostics that are based on the use of hybrid systems
incorporating both MRI scanning capabilities with the linear accelerator offers a number
of potential advantages [452], whereas in bladder cancer patients that are undergoing
cystectomy, DWI is used in the detection of metastatic pelvic lymph nodes [453] and in the
preoperative T staging of urinary bladder cancer [454].
4.1.12. Ovarian Cancer
Ovarian cancer is the most lethal gynecologic malignancy; it accounts for 2.5% of
all malignancies among females but 5% of female cancer deaths because of low survival
rates that are largely driven by late-stage diagnoses [455]. An MRI of ovarian cancer has
been instrumental to differentiate metastatic ovarian tumors from primary epithelial ovar-
ian cancers [456]. Functional MRI techniques such as tumor-selective molecular imaging
(TSMI), DW-MRI, and DCE-MRI are under evaluation as possible predictive and prognostic
biomarkers in the context of ovarian malignancy and in routine clinical practice [457–461].
Contrasting results are reported about the role of PET/MRI in ovarian cancer [462]. MRI
was found to be more sensitive than PET/CT for detecting local pelvic recurrence and
peritoneal lesions of recurrent ovarian tumors [463,464], although PET/CT had a higher
specificity than pelvic MRI for diagnosis of malignant ovarian tumors [465–467]. A consen-
sus process in the creation of a standardized lexicon for ovarian and adnexal lesions for
MRI and the resultant lexicon has been recently published [468].
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0024.png
Int. J. Mol. Sci.
2022,
23,
1339
24 of 55
4.1.13. Cervical Uterine Cancer
Cervical uterine cancer is the leading cause of morbidity and mortality in women in
developing countries and is known to be related to human papillomavirus [469]. Pelvic
MRI is the reference examination for the evaluation of cervical cancers, allowing the accu-
rate evaluation of tumor size, parametrial extension, and lymph node metastasis, which
are essential factors for therapeutic management [470–473]. MRI, CT/MRI, and PET/MRI
have been used for cervical cancer staging and lymph node metastasis [474,475], and
PET/MRI was found to possess a higher diagnostic sensitivity [476], specificity [477], and
accuracy [478,479], also during pregnancy [480], being helpful in clinical diagnosis [481],
prediction [482], and treatment [483,484]. MRI diagnosis is an auxiliary method for cervical
cancer treatment when used in combination with tumor markers (e.g., squamous cell carci-
noma antigen) [485] and for the management of women with early cervical cancer [486].
DWI-MRI and ADC are used as a non-invasive imaging methods for characterizing the
fraction of collagen I-positive tissue across different tumor models of uterine cervical
cancer [487], for the pathological grade of tumor [488], for the differentiation between
metastatic and non-metastatic pelvic lymph nodes [489], and between normal and can-
cerous tissue in the uterine cervix [490]. Another noninvasive technique that is used to
assess tumor vascular oxygenation at 3 T in cervical cancer staging is blood oxygenation
level-dependent contrast MRI [491].
4.1.14. Endometrial Cancer
Endometrial cancer is the fourth most common malignancy in women and the most
common gynecological malignancy in the developed world after lung, colorectal, and
breast cancer [492]. MRI is recommended for the initial staging and report of endometrial
cancer [493–496] and preoperative pelvic MRI is a moderately sensitive and specific method
of identifying invasion to the outer half of myometrium in endometrial cancer [497–499].
MRI has a high specificity and negative predictive value in endometrial cancer staging [500];
however, its accuracy in detecting myoinvasion is limited [501]. MRI with DWI and DCE
sequences can help establish a correct diagnosis [502,503], while 3.0 T multimodal MRI is an
important imaging tool for preoperative endometrial cancer staging [504]. MRI quantitative
assessments such as tumor area ratio (TAR), tumor volume ratio (TVR), MRI-based whole-
tumor radiomic signatures, and ADC were found to improve the accuracy of preoperative
staging, helping in the risk stratification of endometrial cancer [505–507]. The combination
of MRI and immunohistochemical examination is a powerful tool for preoperative risk
stratification to assist in clinical decision-making for endometrial cancer patients [508].
[F-18]-FDG PET/MRI is a valid imaging technique in patients with endometrial cancer,
both in staging and restaging as an alternative diagnostic strategy to conventional imaging
modalities, also considering the limited radiation exposure [509–511], whereas integrated
PET/MRI successfully assesses the lymph node metastasis and myometrial invasion in
patients with endometrial cancer [512,513]. MRI-guided intensity-modulated radiation
therapy has been used for locally recurrent endometrial cancer after resection [514].
4.1.15. Prostate Cancer
Prostate cancer is the most common cancer for males, and it is estimated that 15% men
are predicted to develop prostate cancer over their lifetime [515]. The application of MRI
has been successfully used for its sensitivity in detecting clinically significant cancer and the
ability to localize the tumor within the prostate gland [516,517] by using Mp-MRI [518–522]
and in the hybrid PET/MRI [523–525]. In addition to the fusion strategy, biopsies with
MRI targets play an important role in the assessment of patients with a previous negative
prostate biopsy [518].
4.1.16. Testicular Cancer
In men between 15 and 49 years-old, the most common nonhematologic malignancy
is testicular cancer [526]. It has excellent cure rates; however, poor guideline adherence
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0025.png
Int. J. Mol. Sci.
2022,
23,
1339
25 of 55
can lead to inappropriate management with a detrimental effect on outcomes [527]. MRI
is successful in the diagnosis of testicular germ cell cancer [528,529], particularly when
directed towards the retroperitoneum and pelvis only [530]. Functional information that is
based on DWI and DCE MRI data improve testicular mass lesion characterization [531,532]
and can be used to characterize small, solid testicular tumors [533] and for the follow-
up of testicular cancer patients [534], independently of the examiner [535]. Mp-MRI can
potentially differentiate benign stromal tumors from malignant testicular neoplasms, which
can help to avoid radical orchiectomy [536,537]. MRI can be used as an alternative to CT to
reduce radiation exposure [538,539] and is a valuable diagnostic aid in the preoperative
localization of ectopic testes in cryptorchidism or if findings are equivocal [540].
4.1.17. Colorectal Cancer
Colorectal cancer is a common cancer and a common cause of death. There is evi-
dence that an important proportion of colorectal cancer patients remain untreated [541].
Pelvic MRI is used for the local of T and N staging of rectal cancer and has the advan-
tage of improved patient comfort [542], improved reproducibility and accuracy [543],
reduced care costs [544], and for completeness and better understanding of related pelvic
anatomy [545–547]. The use of DWI with ADC value in addition to conventional MRI yields
better diagnostic accuracy than using conventional MRI alone in detection, correlation
with tumor histologic grade, and the initial staging in patients with locally advanced col-
orectal cancer [548,549]; however, DW-MRI is inferior to [F-18]-FDG-PET for the detection
of primary lesions but superior for the detection of lymph node metastases [550]. MRI
shows moderate sensitivity and good specificity for the detection of extramural venous
invasion (EMVI) in colorectal cancer [551,552], while 3D colorectal MRI gives better and
accurate segmentation results than 3D fully convolutional neural networks alone [553]. For
lymph node metastasis of colorectal cancer, the sensitivity and specificity of preoperative
diagnosis by diffusion (D-MRI) is higher if the node is hyperintense and more than 9 mm
in diameter [554], whereas high-b-value DWI-MRI has a high sensitivity and specificity to
detect colorectal adenocarcinoma [555]. Recent developments and emerging technologies
in CT and MRI are changing the management of colorectal cancer patients in many clinical
scenarios [556]. MRI is more accurate than CT [557] and MDCT for the evaluation of liver
metastases [558], whereas for patients with colorectal cancer, PET/MRI may aid in the
selection of more appropriate treatment strategies [559]. Whole-body MRI (WB-MRI) is a
radiation-free alternative to standard sequential algorithms of staging and follow-up of
colorectal cancer [560].
4.2. Magnetic Fields and Cancer Treatment
Radiation therapy, chemotherapy, and immunotherapy, alone or in combination with
therapies such as photothermal therapy, photodynamic therapy, hyperthermia, and radio-
therapy have been proposed in the recent literature [561]. In the next section, the use of
magnetic nanoparticles for the delivery of anticancer agents and magnetomechanical tools
and in hyperthermia will be discussed.
4.2.1. Delivery of Anticancer Agents via Magnetic Carrier Particles
An exciting new prospect in treating cancer is the delivery of anticancer agents via
magnetic carrier particles, which are used as a "carrier system" for a variety of anticancer
agents [562–565]. For instance, by using an external MF, it is possible to guide magnetic iron
oxide nanoparticles (MIONs) to their target. This is the principle behind the development of
superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles [566].
Palmitoyl chitosan that is co-encapsulated with SPIONs and the anticancer drug pacli-
taxel via the nanoprecipitation process increased the amount of drug in cancer cells [567],
whereas doxorubicin (Dox)-conjugated heparin was used with the SPION technology for
targeted anticancer drug delivery [568]. In MCF-7 breast cancer cells, Dox was rapidly
internalized and exhibited higher toxicity than treatments with Dox alone when it was
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0026.png
Int. J. Mol. Sci.
2022,
23,
1339
26 of 55
assembled in magnetic nanoparticle-supported lipid bilayers [569] and with Dox-loaded
polymer@Au/Fe
3
O
4
core/shell nanoparticles in simulated cancerous environments [570].
Bioactive molecules such as curcumin can be loaded in magnetic silk fibroin core-shell
nanoparticles to enhance cytotoxicity and cellular uptake in the human Caucasian breast
adenocarcinoma cell lines with superior biomedical applications due to their size range,
which is particularly desired for cell internalization [571].
It has to be considered that since the magnetic force decreases rapidly with the distance
from the magnets, the targeting of tumors that are situated at large distances from the
surface of the human body might be difficult. Therefore, the delivery of anticancer agents
via magnetic carrier particles appears to be more suitable for treating sub-surface cancers
within the human body [572]. Nevertheless, several new magnetic nanoparticles have
been designed and evaluated for cancer treatment, offering the ability to deliver drugs
efficiently [573–575].
Despite the increasing body of evidence supporting promising results, there are some
drawbacks that are related to magnetic nanoparticles (MNP) use in drug delivery, such as
the difficulty in maintaining the therapeutic action in three dimensions inside the human
body, the limitation to maintain efficacy in the target organ once the MF is removed from
outside, and the limited effective incorporation of magnetic iron oxide nanoparticles into
biomedical systems [576,577].
4.2.2. Magnetomechanical Methods for Cancer Therapy
Magnetomechanical therapy is one of the most prospective directions in tumor micro-
surgery based on a physical nanostructure that is able to transform the magnetic moment
to mechanical torque and a ligand molecule that allows the scalpel to precisely target tumor
cells [578]. Nano-magnetomechanical activation (NMMA) of the MNPs is used to localize
and apply force to target biomolecular structures as transport vesicles, cell organelles, en-
zyme molecules, etc., without significant heating [579]. Nanospinners can exert mechanical
forces under a rotating magnetic field at 15 Hz and 40 mT to target the mitochondria of
cancer cells [580]. Iron nanowires that are functionalized with anti-CD44 antibodies have
been used in a combination therapy that included magnetomechanical and photothermal
treatments on colon cancer cells [581]. Hedgehog-like microspheres that were composed
of needle-like MNP with carbon and gold double shells seriously damaged cancer cells
and strongly inhibited tumor growth through mechanical force [582]. Magnetic disks
are a new generation of MNP with outstanding properties to face biomedical challenges
in cancer treatment microsurgery [578] and the investigation toward the most efficient
magnetomechanical actuator to destroy cancer cells has been recently reviewed [583].
4.2.3. Magnetic Hyperthermia Ad Cancer Treatment
Magnetic hyperthermia treatment (MHT) utilizes heat that is generated by MNPs
under an alternating MF to selectively kill tumor cells [584–586]. When exposed to an
alternating magnetic field (AMF), MNPs can generate heat via hysteresis loss (large multi-
domain MNPs) or through Neel- and Brownian relaxation losses (typically small, single-
core MNPs) [587]. The efficiency of MHT depends on the size, concentration, solution
viscosity, and composition of MNPs as well as the strength and frequency of the MF [588].
Several materials are used to prepare MNP for MHT. Ferrimagnetic glass-ceramic have
been successfully used as thermo-seeds for a hyperthermic treatment of carcinoma cells in
Sprague–Dawley rats [589], whereas magnetite cationic liposomes where used to generate
hyperthermia on local tumors and lung metastases in a mouse model of osteosarcoma [590].
Spinel ferrite nanoparticles were successfully synthesized and used for MHT [591], whereas
MIONs (such as crack-free ferrimagnetic maghemite,
γ-Fe
2
O
3
) may be useful for the in
situ hyperthermic treatment of cancer [592–595]. SPIONs have been increasingly studied
for their excellent MHT applications [596,597], whereas lanthanum-strontium manganite
particles that were embellished with gold nanoparticles were found to be suitable for the
treatment of deeper tumors [598].
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0027.png
Int. J. Mol. Sci.
2022,
23,
1339
27 of 55
The limitations and advantages to more effective clinical use of MNP-based ther-
mometry to achieve greater impact on clinical translation of MNH have been recently
reported [599]. Despite the wide use of MHT in clinical application, the technology suffers
from inadequate and uneven heating due to low and heterogeneous concentrations of
MNPs within the target tumor [600,601]. It has been calculated that, to achieve sufficient
hyperthermia in targeted tumors, a high concentration of MNP is required [602] and often
the particle concentration is below that which is needed to induce sufficient heating of
tissue, thus lowering the therapeutic effects of MHT [603].
The use of MNPs in “traditional” biomedical applications that are related to cancer
theranostics, such as drug delivery, hyperthermia, MRI, micro nuclear magnetic reso-
nance, and surface-enhanced Raman spectroscopic detection technology has been demon-
strated [604–609], including the development of next-generation high-performance thera-
nostic agents that are based on MNP assemblies [610]. Figure
6
summarizes the use of MFs
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 
28  of  54 
 
in cancer theranostics.
 
 
Figure 6.
MFs and
MF are used in MRI for the diagnosis of several cancers, whereas the use of magnetic nanoparticles 
therapy.
cancer theranostics. Theranostics combines the terms diagnostics and
for cancer therapy encompasses three major areas: magnetic hyperthermia that is aimed to kill can‐
MF are used in MRI for the diagnosis of several cancers, whereas the use of magnetic nanoparticles
cer cells with heat; drug delivery by the use of SPIONs and MIONs; and the exploitation of MNP 
for cancer therapy
mechanical forces for application in nano and microsurgery. 
hyperthermia that is aimed to kill
encompasses three major areas: magnetic
cancer cells with heat; drug delivery by the use of SPIONs and MIONs; and the exploitation of MNP
 
mechanical forces for application in nano and microsurgery.
Figure 6. MFs and cancer theranostics. Theranostics combines the terms diagnostics and therapy. 
 
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0028.png
Int. J. Mol. Sci.
2022,
23,
1339
28 of 55
5. Conclusions
The potential health effects of man-made EMF have been a topic of scientific interest
since the late 1800s and have received particular attention during the last 40 years. Since the
first studies suggesting a relationship between MF and childhood cancer [29], the scientific
community has evaluated the possible mechanisms for the effects of MFs on biological
systems. Epidemiological studies are often controversial and sometimes misleading. Nev-
ertheless, there is a consensus on the positive relationship between residential/domestic
exposure to ELF EMF and the occurrence of brain cancer, whereas contrasting results
require more experimentation to assess the influence of occupational exposure to MFs on
brain cancer. The epidemiology of leukemia as related to ELF EMF in adults is controversial
in both residential/domestic and occupational exposure. For children, leukemia is not
associated to occupational exposure, whereas a growing body of evidence indicates a corre-
lation between residential/domestic exposure to ELF EMF and childhood leukemia. Breast
cancer has been related to ELF EMF exposure more in residential/domestic epidemiological
studies than in occupational, but the melatonin hypothesis, although recently revisited,
finds little consensus. When studied at the cellular and in vitro level, MFs exert their effect
on both human and animal (rat and mice, mainly) cells when used at a high intensity and
for a long time. The common response is the production of ROS, which trigger a cascade
of other cellular responses which might be the direct consequence of MF exposure. The
use of MF is instrumental for the diagnosis and therapy (theranostic) of cancer. MRI is
instrumental for the precise diagnosis of different cancers, whereas MNPs open the new
era of nanomedicine, allowing (i) the smart delivery of anticancer drugs, (ii) nanosurgery
through their magnetomechanic properties, and (iii) fighting the cancer cells in situ by
exploiting their capability to generate heat (hyperthermia) via hysteresis loss or through
Neel- and Brownian relaxation losses.
Figure
7
summarizes the effects of MFs on cancer that were discussed in this review.
Although humans do not perceive the presence or changes of MFs, variations in MF
intensity and inclination exert biological effects, with the greatest effects observed at the
cellular and subcellular level. The basic response to MF relies on ROS-production with RPM
playing a potential role in magneto-perception. Scientists do not generally agree that there is
a cause-effect relationship between exposure to MF and cancer, also because of the difficulty
in obtaining reproducible effects that are consistent with the hypothesis that MF may cause
or promote cancer. MFs might not be the direct cause of cancer but may contribute to
ROS-production and generate oxidative stress through RPM [611], which could trigger
or enhance the expression of oncogenes [612]. Large-scale epidemiological studies are
needed to help resolve these issues along with in depth studies on the relationship between
magnetoreception, ROS-generation, and cancer.
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0029.png
Int. J. Mol. Sci.
2022,
23,
1339
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 
 
29 of 55
30  of  54 
 
Figure 7. The effects of MFs on cancer. Humans are exposed to a complex mix of man‐made electric 
Figure 7.
The effects of MFs on cancer. Humans are exposed to a complex mix of man-made electric
and magnetic fields at many different frequencies both at home and at work. Epidemiological stud‐
and magnetic fields at many different frequencies both at home and at work. Epidemiological
ies indicate that there is a positive relationship (solid lines) between residential/domestic and occu‐
studies indicate that there is a positive relationship (solid lines) between residential/domestic and
pational exposure to ELF EMF and brain cancer, although some other studies indicate that there is 
occupational exposure to ELF EMF and brain cancer, although some other studies indicate that there
no relationship (dotted lines). Breast cancer appears to be more related to residential/domestic ex‐
posure than occupational and in both epidemiological surveys, the so‐called “melatonin hypothe‐
is no relationship (dotted lines). Breast cancer appears to be more related to residential/domestic
sis” finds weak evidence. Testicular/prostatic cancer is associated with residential/domestic expo‐
exposure than occupational and in both epidemiological surveys, the so-called “melatonin hypothesis”
sure, as is leukemia, which is mostly associated (particularly in children) with the close proximity 
finds weak evidence. Testicular/prostatic cancer is associated with residential/domestic exposure,
to ELF EMF. The cellular and in vitro studies on both animal (mainly rat and mice) and human cells 
as is leukemia, which is mostly associated (particularly in children) with the close proximity to
indicate the role of ROS‐generation as a consequence of exposure to different MF intensity and tim‐
ELF EMF. The cellular and in vitro studies on both animal (mainly rat and mice) and human cells
ing, suggesting also a magnetoreception mechanism that is based on RPs. Finally, MFs can be used 
indicate the role of ROS-generation as a consequence of exposure to different MF intensity and timing,
for theranostic applications; MRI is instrumental for the diagnosis of several cancers, whereas the 
suggesting also a magnetoreception mechanism that is based on RPs. Finally, MFs can be used
use of MNP allows the treatment of cancer by nanomedical applications for the precise delivery of 
for theranostic applications; MRI is
magnetomechanic  methods,  and  the  selective  killing  of  cancer 
anticancer  drugs,  nanosurgery  by 
instrumental for the diagnosis of several cancers, whereas the
use of MNP allows the treatment of cancer by nanomedical applications for the precise delivery of
cells by magnetic hyperthermia. 
anticancer drugs, nanosurgery by magnetomechanic methods, and the selective killing of cancer cells
Supplementary  Materials: 
by magnetic hyperthermia.
The  following  supporting  information  can  be  downloaded  at: 
www.mdpi.com/xxx/s1. 
Funding: This work was supported by the University of Turin local research funds to M.E.M. 
Supplementary Materials:
The following supporting information can be downloaded at:
https:
Data Availability Statement: Supporting Data File S1 contains the EndNote Library used for this 
//www.mdpi.com/article/10.3390/ijms23031339/s1.
review. 
Funding:
This work was supported by the University of Turin local research funds to M.E.M.
Conflicts of Interest: The author declares no conflict of interest. 
Data Availability Statement:
Supporting Data File S1 contains the EndNote Library used for this review.
 
 
Conflicts of Interest:
The author declares no conflict of interest.
 
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0030.png
Int. J. Mol. Sci.
2022,
23,
1339
30 of 55
Abbreviations
[F-18]-FDG
ADC
AF
AL
ALL
AM
AMF
AMI
AML
B-ALL
C-11-MET
CAD
CAT
CCHD
CLL
CML
CT
CYP-450
DAB
DCE
DGE
D-MRI
Dox
DSC-MRI
DVBT
DWI
EHS
ELF
EM
EMF
EMVI
ERK1/2
FM
FMT
GdEOB-DTPA
GfM
GIS
GMF
GPX
HR MRI
HVDC
HVOTL
IARC
ICNIRP
IDH
IRPA
LF
LF EMF
LL
MCE-MRI
MDA
MDCT
MF
MHT
MION
MNP
Desoxy Glucose
Apparent Diffusion Coefficient
Alternating Field
Acute Leukemia
Acute Lymphoblastic/lymphocytic Leukemia
Amplitude Modulation
Alternating Magnetic Field
Acute Myocardial Infarction
Acute Myeloid Leukemia
B-Lineage Acute Lymphoblastic Leukemia
11
C–methyl-L-Methionine
Computer-Aided Diagnosis
Catalase
Chronic Coronary Heart Disease
Chronic Lymphocytic Leukemia
Chronic Myeloid Leukemia
Computed Tomography
Cytochrome P450
Digital Audio Broadcasting
Dynamic Contrast-Enhanced
Dynamic Glucose-Enhanced
Diffusion Magnetic Resonance Imaging
Doxorubicin
Dynamic Susceptibility Contrast Magnetic Resonance Imaging
Digital Video Broadcasting Terrestrial
Diffusion-Weighted Imaging
Electromagnetic Hypersensitivity
Extremely Low Frequency
Electromagnetic
Electromagnetic Field
Extramural Venous Invasion
Extracellular Signal-Regulated Kinases 1/2
Frequency Modulation
Fluorescence Molecular Tomography
Gadolinium-Ethoxybenzyl-Diethylenetriamine Pentaacetic Acid
Gadofluorine-M
Geographical Information System
Geomagnetic Field
Glutathione Peroxidase
High-Resolution Magnetic Resonance Imaging
High Voltage Direct Current
High-Voltage Overhead Transmission Line
International Agency for Research on Cancer
International Commission on Non-Ionizing Radiation Protection
Isocitrate Dehydrogenase
International Radiation Protection Association
Low-Frequency
Low Frequency Electromagnetic Field
Lymphatic Leukemia
Multiphase Contrast-Enhanced Magnetic Resonance Imaging
Malondialdehyde
Multi Detector Computed Tomography
Magnetic Field
Magnetic Hyperthermia Treatment
Magnetic Iron Oxide Nanoparticles
Magnetic NanoParticle
18
Fluor
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0031.png
Int. J. Mol. Sci.
2022,
23,
1339
31 of 55
Mp-MRI
MRI
Na-23-MRI
NI
NI EMF
NMMA
NMR
NPP
OR
PET
PFF
PKC
RF
RFH
RFID
RNS
ROS
RP
RPM
S
SAR
SF
SMF
SOD
SPIO
SPION
T
TAR
TSMI
TVR
ULF
USPIO
WB-MRI
WHO
WLAN
Multi-Parametric Magnetic Resonance Imaging
Magnetic Resonance Imaging
Na-23-Magnetic Resonance Imaging
Non Ionizing
Non-Ionizing Electromagnetic Field
Nano-Magnetomechanical Activation
Nuclear Magnetic Resonance
Nuclear Power Plants
Odd Ratio
Positron Emission Tomography
Power-Frequency Field
Protein Kinases C
Radio Frequency
Radiofrequency Heat
Radio Frequency Range
Reactive Nitrogen Species
Reactive Oxygen Species
Radical Pair
Radical Pair Mechanism
Singlet State
Specific Absorption Rate
Static Field
Static Magnetic Field
Superoxide Dismutase
Superparamagnetic Iron Oxide
Superparamagnetic Iron Oxide Nanoparticle
Triplet State
Tumor Area Ratio
Tumor-Selective Molecular Imaging
Tumor Volume Ratio
Ultra-Low Frequency
Ultrasmall Superparamagnetic Particles of Iron Oxide
Whole Body Magnetic Resonance Imaging
World Health Organization
Wireless Local Area Networks
References
1.
Monadizadeh, S.; Kibert, C.J.; Li, J.X.; Woo, J.; Asutosh, A.; Roostaie, S.; Kouhirostami, M. A review of protocols and guidelines
addressing the exposure of occupants to electromagnetic field radiation (EMFr) in buildings.
J. Green Build.
2021,
16,
55–81.
[CrossRef]
Rathebe, P.C.; Modisane, D.S.; Rampedi, M.B.; Biddesay-Manilal, S.; Mbonane, T.P. A review on residential exposure to
electromagnetic fields from overhead power lines: Electrification as a health burden in rural communities. In Proceedings of the
2019 Open Innovations (OI), Cape Town, South Africa, 2–4 October 2019; pp. 219–221.
Gupta, S.; Sharma, R.S.; Singh, R. Non-ionizing radiation as possible carcinogen.
Int. J. Environ. Health Res.
2020,
1–25. [CrossRef]
[PubMed]
Mazzanti, G. Evaluation of continuous exposure to magnetic field from ac overhead transmission lines via historical load
databases: Common procedures and innovative heuristic formulas.
IEEE Trans. Power Deliv.
2010,
25,
238–247. [CrossRef]
Landler, L.; Keays, D.A. Cryptochrome: The magnetosensor with a sinister side?
PLoS Biol.
2018,
16,
e3000018. [CrossRef]
[PubMed]
Jacobson, J.I. Speculations on the influence of electromagnetism on genomic and associated structures.
J. Int. Med. Res.
1996,
24,
1–11. [CrossRef]
Repacholi, M. Concern that “EMF” magnetic fields from power lines cause cancer.
Sci. Total Environ.
2012,
426,
454–458. [CrossRef]
[PubMed]
Saliev, T.; Begimbetova, D.; Masoud, A.R.; Matkarimov, B. Biological effects of non-ionizing electromagnetic fields: Two sides of a
coin.
Prog. Biophys. Mol. Biol.
2019,
141,
25–36. [CrossRef] [PubMed]
Lednev, V.V. Possible mechanism for the influence of weak magnetic fields on biological systems.
Bioelectromagnetics
1991,
12,
71–75. [CrossRef] [PubMed]
2.
3.
4.
5.
6.
7.
8.
9.
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0032.png
Int. J. Mol. Sci.
2022,
23,
1339
32 of 55
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
Occhipinti, A.; De Santis, A.; Maffei, M.E. Magnetoreception: An unavoidable step for plant evolution?
Trends Plant Sci
2014,
19,
1–4. [CrossRef] [PubMed]
Maffei, M.E. Magnetic field effects on plant growth, development, and evolution.
Front. Plant Sci.
2014,
5,
445. [CrossRef]
Swanson, J.; Kheifets, L. Could the geomagnetic field be an effect modifier for studies of power-frequency magnetic fields and
childhood leukaemia?
J. Radiol. Prot.
2012,
32,
413–418. [CrossRef] [PubMed]
Amoon, A.T.; Swanson, J.; Vergara, X.; Kheifets, L. Relationship between distance to overhead power lines and calculated fields in
two studies.
J. Radiol. Prot.
2020,
40,
431–443. [CrossRef] [PubMed]
Wyszkowska, J.; Szczygiel, M.; Trawinski, T. Static magnetic field and extremely low-frequency magnetic field in hybrid and
electric vehicles.
Prz. Elektrotech.
2020,
96,
60–62. [CrossRef]
Vaitl, D.; Propson, N.; Stark, R.; Schienle, A. Natural very-low-frequency sferics and headache.
Int. J. Biometeorol.
2001,
45,
115–123. [CrossRef] [PubMed]
Feychting, M.; Ahlborn, A.; Kheifets, L. EMF and health.
Annu. Rev. Public Health
2005,
26,
165–189. [CrossRef] [PubMed]
Repacholi, M.H. Who’s international EMF project.
Radiat. Prot. Dosim.
1999,
83,
1–4. [CrossRef]
Bowman, J.D.; Ray, T.K.; Park, R.M. Possible health benefits from reducing occupational magnetic fields.
Am. J. Ind. Med.
2013,
56,
791–805. [CrossRef] [PubMed]
Belyaev, I.; Dean, A.; Eger, H.; Hubmann, G.; Jandrisovits, R.; Kern, M.; Kundi, M.; Moshammer, H.; Lercher, P.; Muller, K.; et al.
Europaem EMF guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses.
Rev.
Environ. Health
2016,
31,
363–397. [CrossRef]
Repacholi, M.H. A history of the international commission on non-ionizing radiation protection.
Health Phys.
2017,
113,
282–300.
[CrossRef] [PubMed]
Soto Sumuano, J.L.; Abundis Gutierrez, E.; Tlacuilo-Parra, J.A.; Garibaldi Covarrubias, R.F.; Romo Rubio, H. Electromagnetic
radiation, childhood leukemia and regulation.
Rev. Int. Contam. Ambient.
2020,
36,
229–240.
Knave, B. Electromagnetic fields and health outcomes.
Ann. Acad. Med. Singap.
2001,
30,
489–493. [PubMed]
Kelfkens, G.; Pruppers, M. Magnetic fields and childhood leukemia; science and policy in the Netherlands. In Proceedings of
the Conference of the European Medical and Biological Engineering Conference (EMBEC) and the Nordic-Baltic Conference
on Biomedical Engineering and Medical Physics (NBC), Tampere, Finland, 11–15 June 2017; Eskola, H., Vaisanen, O., Viik, J.,
Hyttinen, J., Eds.; Springer: Singapore, 2018; Volume 65, pp. 498–501.
Teepen, J.C.; van Dijck, J. Impact of high electromagnetic field levels on childhood leukemia incidence.
Int. J. Cancer
2012,
131,
769–778. [CrossRef] [PubMed]
Calvente, I.; Fernandez, M.F.; Villalba, J.; Olea, N.; Nunez, M.I. Exposure to electromagnetic fields (non-ionizing radiation) and its
relationship with childhood leukemia: A systematic review.
Sci. Total Environ.
2010,
408,
3062–3069. [CrossRef] [PubMed]
Calvente, I.; Davila-Arias, C.; Ocon-Hernandez, O.; Perez-Lobato, R.; Ramos, R.; Artacho-Cordon, F.; Olea, N.; Nunez, M.I.;
Fernandez, M.F. Characterization of indoor extremely low frequency and low frequency electromagnetic fields in the inma-
granada cohort.
PLoS ONE
2014,
9,
e106666. [CrossRef]
Miah, T.; Kamat, D. Current understanding of the health effects of electromagnetic fields.
Pediatric Ann.
2017,
46,
E172–E174.
[CrossRef] [PubMed]
Bates, M.N. Extremely low-frequency electromagnetic-fields and cancer—The epidemiologic evidence.
Environ. Health Perspect.
1991,
95,
147–156. [CrossRef]
Wertheimer, N.; Leeper, E. Electrical wiring configurations and childhood cancer.
Am. J. Epidemiol.
1979,
109,
273–284. [CrossRef]
[PubMed]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 2: Radiofrequency
electromagnetic fields.
IARC Monogr. Eval. Carcinog. Risks Hum.
2013,
102 Pt 2,
1–460.
Deutsch, S.; Wilkening, G.M. Electromagnetic field cancer scares.
Health Phys.
1997,
73,
301–309. [CrossRef] [PubMed]
Karimi, A.; Moghaddam, F.G.; Valipour, M. Insights in the biology of extremely low-frequency magnetic fields exposure on
human health.
Mol. Biol. Rep.
2020,
47,
5621–5633. [CrossRef] [PubMed]
Moulder, J.E.; Foster, K.R. Biological effects of power-frequency fields as they relate to carcinogenesis.
Proc. Soc. Exp. Biol. Med.
1995,
209,
309–324. [CrossRef] [PubMed]
Dieudonne, M. Electromagnetic hypersensitivity: A critical review of explanatory hypotheses.
Environ. Health
2020,
19,
48.
[CrossRef] [PubMed]
Elliott, P.; Shaddick, G.; Douglass, M.; de Hoogh, K.; Briggs, D.J.; Toledano, M.B. Adult cancers near high-voltage overhead power
lines.
Epidemiology
2013,
24,
184–190. [CrossRef]
Lambrozo, J. Electric and magnetic fields with a frequency of 50–60 hz: Assessment of 20 years of research.
Indoor Built Environ.
2001,
10,
299–305.
Souques, M.; Lambrozo, J. 50–60 hz magnetic fields and health: What’s new?
Radioprotection
2015,
50,
95–99. [CrossRef]
Sheppard, A.R.; Kavet, R.; Renew, D.C. Exposure guidelines for low-frequency electric and magnetic fields: Report from the
brussels workshop.
Health Phys.
2002,
83,
324–332. [CrossRef] [PubMed]
Maes, A.; Verschaeve, L. Genetic damage in humans exposed to extremely low-frequency electromagnetic fields.
Arch. Toxicol.
2016,
90,
2337–2348. [CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0033.png
Int. J. Mol. Sci.
2022,
23,
1339
33 of 55
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
Lacy-Hulbert, A.; Metcalfe, J.C.; Hesketh, R. Biological responses to electromagnetic fields.
FASEB J.
1998,
12,
395–420. [CrossRef]
[PubMed]
Kavet, R. EMF and current cancer concepts.
Bioelectromagnetics
1996,
17,
339–357. [CrossRef]
Rathebe, P.; Weyers, C.; Raphela, F. Exposure levels of elf magnetic fields in the residential areas of mangaung metropolitan
municipality.
Environ. Monit. Assess.
2018,
190,
544. [CrossRef] [PubMed]
Navarro-Camba, E.A.; Segura-Garcia, J.; Gomez-Perretta, C. Exposure to 50 hz magnetic fields in homes and areas surrounding
urban transformer stations in silla (spain): Environmental impact assessment.
Sustainability
2018,
10,
2641. [CrossRef]
Sadeghi, T.; Ahmadi, A.; Javadian, M.; Gholamian, S.A.; Delavar, M.A.; Esmailzadeh, S.; Ahmadi, B.; Hadighi, M.S.H. Preterm
birth among women living within 600 meters of high voltage overhead power lines: A case-control study.
Rom. J. Intern. Med.
2017,
55,
145–150. [CrossRef] [PubMed]
Ahlbom, A.; Cardis, E.; Green, A.; Linet, M.; Savitz, D.; Swerdlow, A.; Epidemiology, I.S.C. Review of the epidemiologic literature
on EMF and health.
Environ. Health Perspect.
2001,
109,
911–933. [PubMed]
Alonso, A.; Bahillo, A.; de la Rosa, R.; Carrera, A.; Duran, R.J.; Fernandez, P. Measurement procedure to assess exposure to
extremely low-frequency fields: A primary school case study.
Radiat. Prot. Dosim.
2012,
151,
426–436. [CrossRef] [PubMed]
Li, C.Y.; Sung, F.C.; Chen, F.L.; Lee, P.C.; Silva, M.; Mezei, G. Extremely-low-frequency magnetic field exposure of children at
schools near high voltage transmission lines.
Sci. Total Environ.
2007,
376,
151–159. [CrossRef] [PubMed]
Tognola, G.; Chiaramello, E.; Bonato, M.; Magne, I.; Souques, M.; Fiocchi, S.; Parazzini, M.; Ravazzani, P. Cluster analysis of
residential personal exposure to elf magnetic field in children: Effect of environmental variables.
Int. J. Environ. Res. Public Health
2019,
16,
4363. [CrossRef] [PubMed]
Huss, A.; Goris, K.; Vermeulen, R.; Kromhout, H. Does apartment’s distance to an in-built transformer room predict magnetic
field exposure levels?
J. Expo. Sci. Environ. Epidemiol.
2013,
23,
554–558. [CrossRef] [PubMed]
Roosli, M.; Jenni, D.; Kheifets, L.; Mezei, G. Extremely low frequency magnetic field measurements in buildings with transformer
stations in switzerland.
Sci. Total Environ.
2011,
409,
3364–3369. [CrossRef] [PubMed]
Ilonen, K.; Markkanen, A.; Mezei, G.; Juutilainen, J. Indoor transformer stations as predictors of residential elf magnetic field
exposure.
Bioelectromagnetics
2008,
29,
213–218. [CrossRef]
Vergara, X.P.; Kavet, R.; Crespi, C.M.; Hooper, C.; Silva, J.M.; Kheifets, L. Estimating magnetic fields of homes near transmission
lines in the california power line study.
Environ. Res.
2015,
140,
514–523. [CrossRef]
Aldrich, T.E.; Andrews, K.W.; Liboff, A.R. Brain cancer risk and electromagnetic fields (EMFs): Assessing the geomagnetic
component.
Arch. Environ. Health
2001,
56,
314–319. [CrossRef]
Nikkila, A.; Kendall, G.; Raitanen, J.; Spycher, B.; Lohi, O.; Auvinen, A. Effects of incomplete residential histories on studies of
environmental exposure with application to childhood leukaemia and background radiation.
Environ. Res.
2018,
166,
466–472.
[CrossRef] [PubMed]
Greenland, S.; Kheifets, L.; Zafanella, L.E.; Kalton, G.W. Leukemia attributable to residential magnetic fields: Results from
analyses allowing for study biases.
Risk Anal.
2006,
26,
471–482. [CrossRef]
Miller, K.D.; Ostrom, Q.T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H.E.; Waite, K.A.; Jemal, A.; Siegel, R.L.; et al. Brain
and other central nervous system tumor statistics, 2021.
CA Cancer J. Clin.
2021,
71,
381–406. [CrossRef]
Farmanfarma, K.K.; Mohammadian, M.; Shahabinia, Z.; Hassanipour, S.; Salehiniya, H. Brain cancer in the world: An epidemio-
logical review.
World Cancer Res. J.
2019,
6,
5.
Pourreza, R.; Zhuge, Y.; Ning, H.; Miller, R. Brain tumor segmentation in MRI scans using deeply-supervised neural networks. In
Proceedings of the 3rd International Workshop on Brain-Lesion (BrainLes) Held Jointly at the Conference on Medical Image
Computing for Computer Assisted Intervention (MICCAI), Quebec City, QC, Canada, 14 September 2017; Springer International
Publishing Ag: Quebec City, QC, Canada, 2018; pp. 320–331.
Kheifets, L.I. Electric and magnetic field exposure and brain cancer: A review.
Bioelectromagnetics
2001,
22,
S120–S131. [CrossRef]
Schoenfeld, E.R.; Henderson, K.; O’Leary, E.; Grimson, R.; Kaune, W.; Leske, M.C. Magnetic field exposure assessment: A
comparison of various methods.
Bioelectromagnetics
1999,
20,
487–496. [CrossRef]
Eskelinen, T.; Keinänen, J.; Salonen, H.; Juutilainen, J. Use of spot measurements for assessing residential elf magnetic field
exposure: A validity study.
Bioelectromagnetics
2002,
23,
173–176. [CrossRef] [PubMed]
Ahmadi, H.; Mohseni, S.; Akmal, A.A.S. Electromagnetic fields near transmission lines—Problems and solutions.
Iran. J. Environ.
Health Sci. Eng.
2010,
7,
181–188.
Kheifets, L.; Crespi, C.M.; Hooper, C.; Oksuzyan, S.; Cockburn, M.; Ly, T.; Mezei, G. Epidemiologic study of residential proximity
to transmission lines and childhood cancer in california: Description of design, epidemiologic methods and study population.
J.
Expo. Sci. Environ. Epidemiol.
2015,
25,
45–52. [CrossRef] [PubMed]
Blaasaas, K.G.; Tynes, T. Comparison of three different ways of measuring distances between residences and high voltage power
lines.
Bioelectromagnetics
2002,
23,
288–291. [CrossRef] [PubMed]
Carles, C.; Esquirol, Y.; Turuban, M.; Piel, C.; Migault, L.; Pouchieu, C.; Bouvier, G.; Fabbro-Peray, P.; Lebailly, P.; Baldi, I.
Residential proximity to power lines and risk of brain tumor in the general population.
Environ. Res.
2020,
185,
109473. [CrossRef]
Marcilio, I.; Gouveia, N.; Pereira Filho, M.L.; Kheifets, L. Adult mortality from leukemia, brain cancer, amyotrophic lateral
sclerosis and magnetic fields from power lines: A case-control study in Brazil.
Rev. Bras. Epidemiol.
2011,
14,
580–588. [CrossRef]
[PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0034.png
Int. J. Mol. Sci.
2022,
23,
1339
34 of 55
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
Baldi, I.; Coureau, G.; Jaffré, A.; Gruber, A.; Ducamp, S.; Provost, D.; Lebailly, P.; Vital, A.; Loiseau, H.; Salamon, R. Occupational
and residential exposure to electromagnetic fields and risk of brain tumors in adults: A case–control study in Gironde, France.
Int.
J. Cancer
2011,
129,
1477–1484. [CrossRef] [PubMed]
Li, C.Y.; Lin, R.S.; Sung, F.C. Elevated residential exposure to power frequency magnetic field associated with greater average age
at diagnosis for patients with brain tumors.
Bioelectromagnetics
2003,
24,
218–221. [CrossRef] [PubMed]
Carpenter, D.O. Extremely low frequency electromagnetic fields and cancer: How source of funding affects results.
Environ. Res
2019,
178,
108688. [CrossRef] [PubMed]
Mezei, G.; Gadallah, M.; Kheifets, L. Residential magnetic field exposure and childhood brain cancer—A meta-analysis.
Epidemi-
ology
2008,
19,
424–430. [CrossRef] [PubMed]
Kheifets, L.; Ahlbom, A.; Crespi, C.M.; Feychting, M.; Johansen, C.; Monroe, J.; Murphy, M.F.G.; Oksuzyan, S.; Preston-Martin, S.;
Roman, E.; et al. A pooled analysis of extremely low-frequency magnetic fields and childhood brain tumors.
Am. J. Epidemiol.
2010,
172,
752–761. [CrossRef] [PubMed]
Saito, T.; Nitta, H.; Kubo, O.; Yamamoto, S.; Yamaguchi, N.; Akiba, S.; Honda, Y.; Hagihara, J.; Isaka, K.; Ojima, T.; et al.
Power-frequency magnetic fields and childhood brain tumors: A case-control study in Japan.
J. Epidemiol.
2010,
20,
54–61.
[CrossRef] [PubMed]
Kroll, M.E.; Swanson, J.; Vincent, T.J.; Draper, G.J. Childhood cancer and magnetic fields from high-voltage power lines in england
and wales: A case-control study.
Br. J. Cancer
2010,
103,
1122–1127. [CrossRef]
Seomun, G.; Lee, J.; Park, J. Exposure to extremely low-frequency magnetic fields and childhood cancer: A systematic review and
meta-analysis.
PLoS ONE
2021,
16,
e0251628. [CrossRef]
Ozen, S. Low-frequency transient electric and magnetic fields coupling to child body.
Radiat. Prot. Dosim.
2008,
128,
62–67.
[CrossRef]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer
treatment and survivorship statistics, 2019.
CA Cancer J. Clin.
2019,
69,
363–385. [CrossRef]
Davis, S.; Mirick, D.K.; Chen, C.; Stanczyk, F.Z. Effects of 60-hz magnetic field exposure on nocturnal 6-sulfatoxymelatonin,
estrogens, luteinizing hormone, and follicle, stimulating hormone in healthy reproductive-age women: Results of a crossover
trial.
Ann. Epidemiol.
2006,
16,
622–631. [CrossRef] [PubMed]
Graham, C.; Cook, M.R.; Gerkovich, M.M.; Sastre, A. Melatonin and 6-ohms in high-intensity magnetic fields.
J. Pineal Res.
2001,
31,
85–88. [CrossRef] [PubMed]
Youngstedt, S.D.; Kripke, D.F.; Elliott, J.A.; Assmus, J.D. No association of 6-sulfatoxymelatonin with in-bed 60-hz magnetic field
exposure or illumination level among older adults.
Environ. Res.
2002,
89,
201–209. [CrossRef]
Levallois, P.; Dumont, M.; Touitou, Y.; Gingras, S.; Masse, B.; Gauvin, D.; Kroger, E.; Bourdages, M.; Douville, P. Effects of electric
and magnetic fields from high-power lines on female urinary excretion of 6-sulfatoxymelatonin.
Am. J. Epidemiol.
2001,
154,
601–609. [CrossRef] [PubMed]
Feychting, M. Invited commentary: Extremely low-frequency magnetic fields and breast cancerunow it is enough!
Am. J.
Epidemiol.
2013,
178,
1046–1050. [CrossRef] [PubMed]
Touitou, Y.; Lambrozo, J.; Camus, F.O.; Charbuy, H. Magnetic fields and the melatonin hypothesis: A study of workers chronically
exposed to 50-hz magnetic fields.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
2003,
284,
R1529–R1535. [CrossRef] [PubMed]
Touitou, Y.; Selmaoui, B.; Lambrozo, J.; Auzeby, A. Assessment of the effects of magnetic fields (50 hz) on melatonin secretion in
humans and rats. A circadian study.
Bull. Acad. Natl. Med.
2002,
186,
1625–1639. [PubMed]
Davis, S.; Mirick, D.K. Residential magnetic fields, medication use, and the risk of breast cancer.
Epidemiology
2007,
18,
266–269.
[CrossRef] [PubMed]
de Bruyn, L.; de Jager, L.; Kuyl, J.M. The influence of long-term exposure of mice to randomly varied power frequency magnetic
fields on their nocturnal melatonin secretion patterns.
Environ. Res.
2001,
85,
115–121. [CrossRef] [PubMed]
O’Leary, E.S.; Schoenfeld, E.R.; Henderson, K.; Grimson, R.; Kabat, G.C.; Kaune, W.T.; Gammon, M.D.; Leske, C.; Grp, E. Wire
coding in the EMF and breast cancer on long island study: Relationship to magnetic fields.
J. Expo. Anal. Environ. Epidemiol.
2003,
13,
283–293. [CrossRef]
London, S.J.; Pogoda, J.M.; Hwang, K.L.; Langholz, B.; Monroe, K.R.; Kolonel, L.N.; Kaune, W.T.; Peters, J.M.; Henderson, B.E.
Residential magnetic field exposure and breast cancer risk: A nested case-control study from a multiethnic cohort in los angeles
county, california.
Am. J. Epidemiol.
2003,
158,
969–980. [CrossRef] [PubMed]
Haugsdal, B.; Tynes, T.; Rotnes, J.S.; Griffiths, D. A single nocturnal exposure to 2–7 millitesla static magnetic fields does not
inhibit the excretion of 6-sulfatoxymelatonin in healthy young men.
Bioelectromagnetics
2001,
22,
1–6. [CrossRef]
Fedrowitz, M.; Westermann, J.; Loscher, W. Magnetic field exposure increases cell proliferation but does not affect melatonin
levels in the mammary gland of female sprague dawley rats.
Cancer Res.
2002,
62,
1356–1363. [PubMed]
Vanderstraeten, J.; Verschaeve, L.; Burda, H.; Bouland, C.; Brouwer, C. Health effects of extremely low-frequency magnetic fields:
Reconsidering the melatonin hypothesis in the light of current data on magnetoreception.
J. Appl. Toxicol.
2012,
32,
952–958.
[CrossRef]
Zhang, Y.M.; Lai, J.S.; Ruan, G.R.; Chen, C.; Wang, D.W. Meta-analysis of extremely low frequency electromagnetic fields and
cancer risk: A pooled analysis of epidemiologic studies.
Environ. Int.
2016,
88,
36–43. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0035.png
Int. J. Mol. Sci.
2022,
23,
1339
35 of 55
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
Zhu, K.M.; Hunter, S.; Payne-Wilks, K.; Roland, C.L.; Forbes, D.S. Use of electric bedding devices and risk of breast cancer in
african-american women.
Am. J. Epidemiol.
2003,
158,
798–806. [CrossRef] [PubMed]
Laden, F.; Hunter, D.J. Environmental risk factors and female breast cancer.
Annu. Rev. Public Health
1998,
19,
101–123. [CrossRef]
[PubMed]
Amoon, A.T.; Swanson, J.; Magnani, C.; Johansen, C.; Kheifets, L. Pooled analysis of recent studies of magnetic fields and
childhood leukemia.
Environ. Res.
2022,
204,
7. [CrossRef] [PubMed]
Elwood, J.M. Childhood leukemia and residential magnetic fields: Are pooled analyses more valid than the original studies?
Bioelectromagnetics
2006,
27,
112–118. [CrossRef] [PubMed]
Schuz, J. Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: Update of the epidemiological
evidence.
Prog. Biophys. Mol. Biol.
2011,
107,
339–342. [CrossRef]
Ghahremani, S.; Shiroudbakhshi, K.; Kordasiabi, A.H.S.; FiroozBakht, M.; Hosseinzadegan, M.; Ashrafinia, F.; Rahafard, S.
Exposure to magnetic fields and childhood leukemia: An overview of meta-analysis.
Int. J. Pediatr.-Mashhad
2020,
8,
11361–11365.
Tafrishi, R.; Seyfari, B.; Rahimi, R.; Chaichi, Z.; Tarazjani, A.D.; Marvi, N.; Maazallahi, M.; Dolatian, Z.; Ashrafinia, F. Modifiable
and non-modifiable factors affecting the risk of childhood leukemia: An overview of meta-analysis.
Int. J. Pediatr.
2021,
9,
13243–13248.
Zhao, L.Y.; Liu, X.D.; Wang, C.P.; Yan, K.K.; Lin, X.J.; Li, S.; Bao, H.H.; Liu, X. Magnetic fields exposure and childhood leukemia
risk: A meta-analysis based on 11,699 cases and 13,194 controls.
Leuk. Res.
2014,
38,
269–274. [CrossRef] [PubMed]
Amoon, A.T.; Crespi, C.M.; Ahlbom, A.; Bhatnagar, M.; Bray, I.; Bunch, K.J.; Clavel, J.; Feychting, M.; Hemon, D.; Johansen, C.;
et al. Proximity to overhead power lines and childhood leukaemia: An international pooled analysis.
Br. J. Cancer
2018,
119,
364–373. [CrossRef] [PubMed]
Pedersen, C.; Brauner, E.V.; Rod, N.H.; Albieri, V.; Andersen, C.E.; Ulbak, K.; Hertel, O.; Johansen, C.; Schuz, J.; Raaschou-Nielsen,
O. Distance to high-voltage power lines and risk of childhood leukemia—An analysis of confounding by and interaction with
other potential risk factors.
PLoS ONE
2014,
9,
e107096. [CrossRef] [PubMed]
Pedersen, C.; Johansen, C.; Schuz, J.; Olsen, J.H.; Raaschou-Nielsen, O. Residential exposure to extremely low-frequency magnetic
fields and risk of childhood leukaemia, cns tumour and lymphoma in denmark.
Br. J. Cancer
2015,
113,
1370–1374. [CrossRef]
Nunez-Enriquez, J.C.; Correa-Correa, V.; Flores-Lujano, J.; Perez-Saldivar, M.L.; Jimenez-Hernandez, E.; Martin-Trejo, J.A.;
Espinoza-Hernandez, L.E.; Medina-Sanson, A.; Cardenas-Cardos, R.; Flores-Villegas, L.V.; et al. Extremely low-frequency
magnetic fields and the risk of childhood b-lineage acute lymphoblastic leukemia in a city with high incidence of leukemia and
elevated exposure to elf magnetic fields.
Bioelectromagnetics
2020,
41,
581–597. [CrossRef] [PubMed]
Schuz, J.; Grigat, J.P.; Brinkmann, K.; Michaelis, J. Residential magnetic fields as a risk factor for childhood acute leukaemia:
Results from a german population-based case-control study.
Int. J. Cancer
2001,
91,
728–735. [CrossRef]
Kheifets, L.; Crespi, C.M.; Hooper, C.; Cockburn, M.; Amoon, A.T.; Vergara, X.P. Residential magnetic fields exposure and
childhood leukemia: A population-based case-control study in california.
Cancer Causes Control
2017,
28,
1117–1123. [CrossRef]
Crespi, C.M.; Swanson, J.; Vergara, X.P.; Kheifets, L. Childhood leukemia risk in the california power line study: Magnetic fields
versus distance from power lines.
Environ. Res.
2019,
171,
530–535. [CrossRef] [PubMed]
Crespi, C.M.; Vergara, X.P.; Hooper, C.; Oksuzyan, S.; Wu, S.; Cockburn, M.; Kheifets, L. Childhood leukaemia and distance from
power lines in california: A population-based case-control study.
Br. J. Cancer
2016,
115,
122–128. [CrossRef]
Sermage-Faure, C.; Demoury, C.; Rudant, J.; Goujon-Bellec, S.; Guyot-Goubin, A.; Deschamps, F.; Hemon, D.; Clavel, J. Childhood
leukaemia close to high-voltage power lines—The geocap study, 2002–2007.
Br. J. Cancer
2013,
108,
1899–1906. [CrossRef]
Tabrizi, M.M.; Bidgoli, S.-A. Increased risk of childhood acute lymphoblastic leukemia (all) by prenatal and postnatal exposure to
high voltage power lines: A case control study in isfahan, iran.
Asian Pac. J. Cancer Prev.
2015,
16,
2347–2350. [CrossRef] [PubMed]
Schuz, J.; Dasenbrock, C.; Ravazzani, P.; Roosli, M.; Schar, P.; Bounds, P.L.; Erdmann, F.; Borkhardt, A.; Cobaleda, C.; Fedrowitz, M.;
et al. Extremely low-frequency magnetic fields and risk of childhood leukemia: A risk assessment by the arimmora consortium.
Bioelectromagnetics
2016,
37,
183–189. [CrossRef] [PubMed]
Sermage-Faure, C.; Laurier, D.; Goujon-Bellec, S.; Chartier, M.; Guyot-Goubin, A.; Rudant, J.; Hemon, D.; Clavel, J. Childhood
leukemia around french nuclear power plantsuthe geocap study, 2002–2007.
Int. J. Cancer
2012,
131,
E769–E780. [CrossRef]
[PubMed]
Ziegelberger, G.; Dehos, A.; Grosche, B.; Hornhardt, S.; Jung, T.; Weiss, W. Childhood leukemia—Risk factors and the need for an
interdisciplinary research agenda.
Prog. Biophys. Mol. Biol.
2011,
107,
312–314. [CrossRef]
Wünsch, V.; Pelissari, D.M.; Barbieri, F.E.; Sant’Anna, L.; de Oliveira, C.T.; de Mata, J.F.; Tone, L.G.; Lee, M.L.D.; de Andrea,
M.L.M.; Bruniera, P.; et al. Exposure to magnetic fields and childhood acute lymphocytic leukemia in Sao Paulo, Brazil.
Cancer
Epidemiol.
2011,
35,
534–539. [CrossRef]
Jirik, V.; Pekarek, L.; Janout, V.; Tomaskova, H. Association between childhood leukaemia and exposure to power-frequency
magnetic fields in Middle Europe.
Biomed. Environ. Sci.
2012,
25,
597–601. [PubMed]
Hakim, A.S.B.; Abd Rahman, N.B.; Mokhtar, M.Z.; Bin Said, I.; Hussain, H. ELF-EMF correlation study on distance from overhead
transmission lines and acute leukemia among children in Klang Valley, Malaysia. In Proceedings of the 2014 IEEE Conference on
Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 8–10 December 2014; pp. 710–714.
Karipidis, K.K. Survey of residential power-frequency magnetic fields in Melbourne, Australia.
Radiat. Prot. Dosim.
2015,
163,
81–91. [CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0036.png
Int. J. Mol. Sci.
2022,
23,
1339
36 of 55
117. Jirik, V.; Pekarek, L.; Janout, V. Assessment of population exposure to extremely low frequency magnetic fields and its possible
childhood health risk in the Czech Republic.
Indoor Built Environ.
2011,
20,
362–368. [CrossRef]
118. Kokate, P.A.; Mishra, A.K.; Lokhande, S.K.; Bodhe, G.L. Extremely low frequency electromagnetic field (ELF-EMF) and childhood
leukemia (cl) near transmission lines: A review.
Adv. Electromagn.
2016,
5,
30–40. [CrossRef]
119. Zaki, A.M.; Abd Rahim, M.A.; Zaidun, Z.; Ramdzan, A.R.; Isa, Z.M. Exposure to non-ionizing radiation and childhood cancer: A
meta-analysis.
Middle East J. Cancer
2020,
11,
1–11.
120. Swanson, J.; Bunch, K.J. Reanalysis of risks of childhood leukaemia with distance from overhead power lines in the UK.
J. Radiol.
Prot.
2018,
38,
N30–N35. [CrossRef] [PubMed]
121. Liorni, I.; Parazzini, M.; Struchen, B.; Fiocchi, S.; Roosli, M.; Ravazzani, P. Children’s personal exposure measurements to
extremely low frequency magnetic fields in Italy.
Int. J. Environ. Res. Public Health
2016,
13,
549. [CrossRef]
122. Amoon, A.T.; Arah, O.A.; Kheifets, L. The sensitivity of reported effects of EMF on childhood leukemia to uncontrolled
confounding by residential mobility: A hybrid simulation study and an empirical analysis using caps data.
Cancer Causes Control
2019,
30,
901–908. [CrossRef] [PubMed]
123. Amoon, A.T.; Oksuzyan, S.; Crespi, C.M.; Arah, O.A.; Cockburn, M.; Vergara, X.; Kheifets, L. Residential mobility and childhood
leukemia.
Environ. Res.
2018,
164,
459–466. [CrossRef] [PubMed]
124. Bunch, K.J.; Swanson, J.; Vincent, T.J.; Murphy, M.F.G. Magnetic fields and childhood cancer: An epidemiological investigation of
the effects of high-voltage underground cables.
J. Radiol. Prot.
2015,
35,
695–705. [CrossRef] [PubMed]
125. Auger, N.; Bilodeau-Bertrand, M.; Marcoux, S.; Kosatsky, T. Residential exposure to electromagnetic fields during pregnancy and
risk of child cancer: A longitudinal cohort study.
Environ. Res.
2019,
176,
108524. [CrossRef] [PubMed]
126. Soderberg, K.C.; Naumburg, E.; Anger, G.; Cnattingius, S.; Ekbom, A.; Feychting, M. Childhood leukemia and magnetic fields in
infant incubators.
Epidemiology
2002,
13,
45–49. [CrossRef] [PubMed]
127. Slusky, D.A.; Does, M.; Metayer, C.; Mezei, G.; Selvin, S.; Buffler, P.A. Potential role of selection bias in the association between
childhood leukemia and residential magnetic fields exposure: A population-based assessment.
Cancer Epidemiol.
2014,
38,
307–313.
[CrossRef] [PubMed]
128. Leitgeb, N. Synoptic analysis clarifies childhood leukemia risk from elf magnetic field exposure.
J. Electromagn. Anal. Appl.
2015,
7,
10. [CrossRef]
129. Schuz, J.; Erdmann, F. Environmental exposure and risk of childhood leukemia: An overview.
Arch. Med. Res.
2016,
47,
607–614.
[CrossRef]
130. Salvan, A.; Ranucci, A.; Lagorio, S.; Magnani, C.; Grp, S.R. Childhood leukemia and 50 hz magnetic fields: Findings from the
italian setil case-control study.
Int. J. Environ. Res. Public Health
2015,
12,
2184–2204. [CrossRef]
131. Omura, Y.; Losco, M. Electromagnetic-fields in the home-environment (color tv, computer monitor, microwave-oven, cellular
phone, etc) as potential contributing factors for the induction of oncogen c-fos ab1, oncogen c-fos ab2, integrin alpha-5-beta-1 and
development of cancer, as well as effects of microwave on amino-acid-composition of food and living human brain.
Acupunct.
Electro-Ther. Res.
1993,
18,
33–73.
132. Verreault, R.; Weiss, N.S.; Hollenbach, K.A.; Strader, C.H.; Daling, J.R. Use of electric blankets and risk of testicular cancer.
Am. J.
Epidemiol.
1990,
131,
759–762. [CrossRef]
133. Zhu, K.; Weiss, N.S.; Stanford, J.L.; Daling, J.R.; Stergachis, A.; McKnight, B.; Brawer, M.K.; Levine, R.S. Prostate cancer in relation
to the use of electric blanket or heated water bed.
Epidemiology
1999,
10,
83–85. [CrossRef]
134. McElroy, J.A.; Newcomb, P.A.; Trentham-Dietz, A.; Hampton, J.M.; Kanarek, M.S.; Remington, P.L. Endometrial cancer incidence
in relation to electric blanket use.
Am. J. Epidemiol.
2002,
156,
262–267. [CrossRef]
135. Gudina, M.V.; Borodin, A.S.; Tuzhilkin, D.A.; Pikalova, L.V. Malignant neoplasms on territories with different levels of magnetic
fields of industrial frequency. In Proceedings of the 24th International Symposium on Atmospheric and Ocean Optics: Atmo-
spheric Physics, Tomsk, Russia, 2–5 July 2018; Matvienko, G.G., Romanovskii, O.A., Eds.; SPIE—International Society for Optics
and Photonics: Bellingham, WA, USA, 2018; Volume 10833.
136. Hallberg, O.; Johansson, O. Melanoma incidence and frequency modulation (FM) broadcasting.
Arch. Environ. Health
2002,
57,
32–40. [CrossRef]
137. Mahram, M.; Ghazavi, M. The effect of extremely low frequency electromagnetic fields on pregnancy and fetal growth, and
development.
Arch. Iran. Med.
2013,
16,
221–224.
138. Deadman, J.E.; Infante-Rivard, C. Individual estimation of exposures to extremely low frequency magnetic fields in jobs commonly
held by women.
Am. J. Epidemiol.
2002,
155,
368–378. [CrossRef]
139. Ptitsyna, N.G.; Villoresi, G.; Kopytenko, Y.A. Railway-generated magnetic field: Environmental aspects.
Railw. Transp. Policies
Technol. Perspect.
2009,
87–140.
140. Bowman, J.D.; Methner, M.M. Hazard surveillance for industrial magnetic fields: II. Field characteristics from waveform
measurements.
Ann. Occup. Hyg.
2000,
44,
615–633. [CrossRef]
141. Methner, M.M.; Bowman, J.D. Hazard surveillance for industrial magnetic fields: I. Walkthrough survey of ambient fields and
sources.
Ann. Occup. Hyg.
2000,
44,
603–614. [CrossRef]
142. ILO.
Radiation Protection of Workers–Ionizing Radiation, ILO Code of Practice;
International Labour Office: Geneva, Switzerland, 1987.
143. ICNIRP. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 hz–100 khz).
Health Phys.
2010,
99,
818–836. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0037.png
Int. J. Mol. Sci.
2022,
23,
1339
37 of 55
144. Engel, C.L.; Rasanayagam, M.S.; Gray, J.M.; Rizzo, J. Work and female breast cancer: The state of the evidence, 2002–2017.
New
Solut.
2018,
28,
55–78. [CrossRef]
145. McCurdy, A.L.; Wijnberg, L.; Loomis, D.; Savitz, D.; Nylander-French, L.A. Exposure to extremely low frequency magnetic fields
among working women and homemakers.
Ann. Occup. Hyg.
2001,
45,
643–650. [CrossRef]
146. Li, P.; McLaughlin, J.; Infante-Rivard, C. Maternal occupational exposure to extremely low frequency magnetic fields and the risk
of brain cancer in the offspring.
Cancer Causes Control
2009,
20,
945–955. [CrossRef]
147. Sorahan, T. Magnetic fields and brain tumour risks in uk electricity supply workers.
Occup. Med.
2014,
64,
157–165. [CrossRef]
[PubMed]
148. Turner, M.C.; Benke, G.; Bowman, J.D.; Figuerola, J.; Fleming, S.; Hours, M.; Kincl, L.; Krewski, D.; McLean, D.; Parent, M.E.; et al.
Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the interocc study.
Cancer Epidemiol.
Biomark. Prev.
2014,
23,
1863–1872. [CrossRef] [PubMed]
149. Oraby, T.; Sivaganesan, S.; Bowman, J.D.; Kincl, L.; Richardson, L.; McBride, M.; Siemiatycki, J.; Cardis, E.; Krewski, D.; On behalf
of the INTEROCC Study Group. Berkson error adjustment and other exposure surrogates in occupational case-control studies,
with application to the canadian interocc study.
J. Expo. Sci. Environ. Epidemiol.
2018,
28,
251–258. [CrossRef] [PubMed]
150. Carlberg, M.; Koppel, T.; Ahonen, M.; Hardell, L. Case-control study on occupational exposure to extremely low-frequency
electromagnetic fields and the association with meningioma.
BioMed Res. Int.
2018,
2018,
5912394. [CrossRef]
151. Goodman, M.; Kelsh, M.; Ebi, K.; Iannuzzi, J.; Langholz, B. Evaluation of potential confounders in planning a study of occupational
magnetic field exposure and female breast cancer.
Epidemiology
2002,
13,
50–58. [CrossRef]
152. Kelsh, M.A.; Bracken, T.D.; Sahl, J.D.; Shum, M.; Ebi, K.L. Occupational magnetic field exposures of garment workers: Results of
personal and survey measurements.
Bioelectromagnetics
2003,
24,
316–326. [CrossRef]
153. Juutilainen, J.; Kumlin, T. Occupational magnetic field exposure and melatonin: Interaction with light-at-night.
Bioelectromagnetics
2006,
27,
423–426. [CrossRef]
154. Hardell, L.; Holmberg, B.; Malker, H.; Paulsson, L.E. Exposure to extremely-low-frequency electromagnetic-fields and the risk of
malignant diseases—An evaluation of epidemiologic and experimental findings.
Eur. J. Cancer Prev.
1995,
4,
3–107. [CrossRef]
[PubMed]
155. McElroy, J.A.; Egan, K.M.; Titus-Ernstoff, L.; Anderson, H.A.; Trentham-Dietz, A.; Hampton, J.M.; Newcomb, P.A. Occupational
exposure to electromagnetic field and breast cancer risk in a large, population based, case-control study in the united states.
J.
Occup. Environ. Med.
2007,
49,
266–274. [CrossRef]
156. Grundy, A.; Harris, S.A.; Demers, P.A.; Johnson, K.C.; Agnew, D.A.; Villeneuve, P.J.; Canadian Canc Registries, E. Occupational
exposure to magnetic fields and breast cancer among canadian men.
Cancer Med.
2016,
5,
586–596. [CrossRef]
157. Minder, C.E.; Pfluger, D.H. Leukemia, brain tumors, and exposure to extremely low frequency electromagnetic fields in swiss
railway employees.
Am. J. Epidemiol.
2001,
153,
825–835. [CrossRef] [PubMed]
158. Cam, S.T.; Firlarer, A.; Ozden, S.; Canseven, A.G.; Seyhan, N. Occupational exposure to magnetic fields from transformer stations
and electric enclosures in Turkey.
Electromagn. Biol. Med.
2011,
30,
74–79. [CrossRef] [PubMed]
159. Bethwaite, P.; Cook, A.; Kennedy, J.; Pearce, N. Acute leukemia in electrical workers: A new zealand case-control study.
Cancer
Causes Control
2001,
12,
683–689. [CrossRef] [PubMed]
160. Kheifets, L.; Monroe, J.; Vergara, X.; Mezei, G.; Afifi, A.A. Occupational electromagnetic fields and leukemia and brain cancer: An
update to two meta-analyses.
J. Occup. Environ. Med.
2008,
50,
677–688. [CrossRef]
161. Roosli, M.; Lortscher, M.; Egger, M.; Pfluger, D.; Schreier, N.; Lortscher, E.; Locher, P.; Spoerri, A.; Minder, C. Leukaemia, brain
tumours and exposure to extremely low frequency magnetic fields: Cohort study of Swiss railway employees.
Occup. Environ.
Med.
2007,
64,
553–559. [CrossRef]
162. Huss, A.; Spoerri, A.; Egger, M.; Kromhout, H.; Vermeulen, R.; Swiss Natl, C. Occupational extremely low frequency magnetic
fields (elf-mf) exposure and hematolymphopoietic cancers—Swiss national cohort analysis and updated meta-analysis.
Environ.
Res.
2018,
164,
467–474. [CrossRef]
163. Nordenson, I.; Mild, K.H.; Jarventaus, H.; Hirvonen, A.; Sandstrom, M.; Wilen, J.; Blix, N.; Norppa, H. Chromosomal aberrations
in peripheral lymphocytes of train engine drivers.
Bioelectromagnetics
2001,
22,
306–315. [CrossRef]
164. Talibov, M.; Guxens, M.; Pukkala, E.; Huss, A.; Kromhout, H.; Slottje, P.; Martinsen, J.I.; Kjaerheim, K.; Sparen, P.; Weiderpass, E.;
et al. Occupational exposure to extremely low-frequency magnetic fields and electrical shocks and acute myeloid leukemia in
four nordic countries.
Cancer Causes Control
2015,
26,
1079–1085. [CrossRef]
165. Tynes, T.; Haldorsen, T. Residential and occupational exposure to 50 hz magnetic fields and hematological cancers in Norway.
Cancer Causes Control
2003,
14,
715–720. [CrossRef]
166. Harrington, J.M.; Nichols, L.; Sorahan, T.; van Tongeren, M. Leukaemia mortality in relation to magnetic field exposure: Findings
from a study of united kingdom electricity generation and transmission workers, 1973–1997.
Occup. Environ. Med.
2001,
58,
307–314. [CrossRef]
167. Willett, E.V.; McKinney, P.A.; Fear, N.T.; Cartwright, R.A.; Roman, E. Occupational exposure to electromagnetic fields and acute
leukaemia: Analysis of a case-control study.
Occup. Environ. Med.
2003,
60,
577–583. [CrossRef] [PubMed]
168. Hug, K.; Grize, L.; Seidler, A.; Kaatsch, P.; Schuz, J. Parental occupational exposure to extremely low frequency magnetic fields
and childhood cancer: A german case-control study.
Am. J. Epidemiol.
2010,
171,
27–35. [CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0038.png
Int. J. Mol. Sci.
2022,
23,
1339
38 of 55
169. Talibov, M.; Olsson, A.; Bailey, H.; Erdmann, F.; Metayer, C.; Magnani, C.; Petridou, E.; Auvinen, A.; Spector, L.; Clavel, J.; et al.
Parental occupational exposure to low-frequency magnetic fields and risk of leukaemia in the offspring: Findings from the
childhood leukaemia international consortium (CLIC).
Occup. Environ. Med.
2019,
76,
746–753. [CrossRef]
170. Su, L.L.; Fei, Y.; Wei, X.X.; Guo, J.; Jiang, X.G.; Lu, L.Q.; Chen, G.D. Associations of parental occupational exposure to extremely
low-frequency magnetic fields with childhood leukemia risk.
Leuk. Lymphoma
2016,
57,
2855–2862. [CrossRef]
171. Hakansson, N.; Floderus, B.; Gustavsson, P.; Johansen, C.; Olsen, J.H. Cancer incidence and magnetic field exposure in industries
using resistance welding in Sweden.
Occup. Environ. Med.
2002,
59,
481–486. [CrossRef]
172. Yousif, L.; Blettner, M.; Hammer, G.P.; Zeeb, H. Testicular cancer risk associated with occupational radiation exposure: A
systematic literature review.
J. Radiol. Prot.
2010,
30,
389–406. [CrossRef]
173. Karipidis, K.; Benke, G.; Sim, M.; Fritschi, L.; Yost, M.; Armstrong, B.; Hughes, A.M.; Grulich, A.; Vajdic, C.M.; Kaldor, J.M.; et al.
Occupational exposure to power frequency magnetic fields and risk of non-hodgkin lymphoma.
Occup. Environ. Med.
2007,
64,
25–29. [CrossRef]
174. Forssen, U.M.; Lonn, S.; Ahlbom, A.; Savitz, D.A.; Feychting, M. Occupational magnetic field exposure and the risk of acoustic
neuroma.
Am. J. Ind. Med.
2006,
49,
112–118. [CrossRef]
175. Carlberg, M.; Koppel, T.; Ahonen, M.; Hardell, L. Case-control study on occupational exposure to extremely low-frequency
electromagnetic fields and the association with acoustic neuroma.
Environ. Res.
2020,
187,
109621. [CrossRef]
176. Lope, V.; Perez-Gomez, B.; Aragones, N.; Lopez-Abentes, G.; Gustavsson, P.; Floderus, B.; Dosemeci, M.; Silva, A.; Pollan, M.
Occupational exposure to ionizing radiation and electromagnetic fields in relation to the risk of thyroid cancer in Sweden.
Scand.
J. Work Environ. Health
2006,
32,
276–284. [CrossRef]
177. De Roos, A.J.; Teschke, K.; Savitz, D.A.; Poole, C.; Grufferman, S.; Pollock, B.H.; Olshan, A.F. Parental occupational exposures to
electromagnetic fields and radiation and the incidence of neuroblastoma in offspring.
Epidemiology
2001,
12,
508–517. [CrossRef]
[PubMed]
178. Sahl, J.; Mezei, G.; Kavet, R.; McMillan, A.; Silvers, A.; Sastre, A.; Kheifets, L. Occupational magnetic field exposure and
cardiovascular mortality in a cohort of electric utility workers.
Am. J. Epidemiol.
2002,
156,
913–918. [CrossRef] [PubMed]
179. Lange, S.; Viergutz, T.; Simko, M. Modifications in cell cycle kinetics and in expression of g(1) phase-regulating proteins in human
amniotic cells after exposure to electromagnetic fields and ionizing radiation.
Cell Prolif.
2004,
37,
337–349. [CrossRef] [PubMed]
180. Huang, L.Z.; Dong, L.A.; Chen, Y.T.; Qi, H.S.; Xiao, D.M. Effects of sinusoidal magnetic field observed on cell proliferation, ion
concentration, and osmolarity in two human cancer cell lines.
Electromagn. Biol. Med.
2006,
25,
113–126. [CrossRef] [PubMed]
181. Buemi, M.; Marino, D.; Di Pasquale, G.; Floccari, F.; Senatore, M.; Aloisi, C.; Grasso, F.; Mondio, G.; Perillo, P.; Frisina, N.; et al.
Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field.
Nephron
2001,
87,
269–273.
[CrossRef]
182. Sztafrowski, D.; Jazwiec, B.; Gumiela, J.; Kuliczkowski, K. Influence of north and south poles of static magnetic field (SMF) on
apoptosis of hl60 cell line.
Prz. Elektrotech.
2018,
94,
182–185.
183. Tenuzzo, B.; Chionna, A.; Panzarini, E.; Lanubile, R.; Tarantino, P.; Di Jeso, B.; Dwikat, M.; Dini, L. Biological effects of 6 mt static
magnetic fields: A comparative study in different cell types.
Bioelectromagnetics
2006,
27,
560–577. [CrossRef]
184. Naziroglu, M.; Clg, B.; Dogan, S.; Uguz, A.C.; Dilek, S.; Faouzi, D. 2.45-gz wireless devices induce oxidative stress and proliferation
through cytosolic ca2+ influx in human leukemia cancer cells.
Int. J. Radiat. Biol.
2012,
88,
449–456. [CrossRef]
185. Barati, M.; Javidi, M.A.; Darvishi, B.; Shariatpanahi, S.P.; Moosavi, Z.S.M.; Ghadirian, R.; Khani, T.; Sanati, H.; Simaee, H.;
Barough, M.S.; et al. Necroptosis triggered by ros accumulation and Ca
2+
overload, partly explains the inflammatory responses
and anti-cancer effects associated with 1 hz, 100 mt elf-mf in vivo.
Free Radic. Biol. Med.
2021,
169,
84–98. [CrossRef]
186. Rosen, A.D. Mechanism of action of moderate-intensity static magnetic fields on biological systems.
Cell Biochem. Biophys.
2003,
39,
163–173. [CrossRef]
187. Wei, J.; Sun, J.; Xu, H.; Shi, L.; Sun, L.; Zhang, J. Effects of extremely low frequency electromagnetic fields on intracellular calcium
transients in cardiomyocytes.
Electromagn. Biol. Med.
2015,
34,
77–84. [CrossRef] [PubMed]
188. Chen, Y.C.; Chen, C.C.; Tu, W.; Cheng, Y.T.; Tseng, F.G. Design and fabrication of a microplatform for the proximity effect study of
localized elf-EMF on the growth of in vitro hela and pc-12 cells.
J. Micromech. Microeng.
2010,
20,
125023. [CrossRef]
189. Bae, J.E.; Do, J.Y.; Kwon, S.H.; Lee, S.D.; Jung, Y.W.; Kim, S.C.; Chae, K.S. Electromagnetic field-induced converse cell growth
during a long-term observation.
Int. J. Radiat. Biol.
2013,
89,
1035–1044. [CrossRef] [PubMed]
190. Richard, D.; Lange, S.; Viergutz, T.; Kriehuber, R.; Weiss, D.G.; Simko, M. Influence of 50 hz electromagnetic fields in combination
with a tumour promoting phorbol ester on protein kinase c and cell cycle in human cells.
Mol. Cell. Biochem.
2002,
232,
133–141.
[CrossRef] [PubMed]
191. Kapri-Pardes, E.; Hanoch, T.; Maik-Rachline, G.; Murbach, M.; Bounds, P.L.; Kuster, N.; Seger, R. Activation of signaling cascades
by weak extremely low frequency electromagnetic fields.
Cell. Physiol. Biochem.
2017,
43,
1533–1546. [CrossRef] [PubMed]
192. Kirschenlohr, H.; Ellis, P.; Hesketh, R.; Metcalfe, J. Gene expression profiles in white blood cells of volunteers exposed to a 50 hz
electromagnetic field.
Radiat. Res.
2012,
178,
138–149. [CrossRef] [PubMed]
193. Kabacik, S.; Kirschenlohr, H.; Raffy, C.; Whitehill, K.; Coster, M.; Abe, M.; Brindle, K.; Badie, C.; Sienkiewicz, Z.; Bouffler, S.
Investigation of transcriptional responses of juvenile mouse bone marrow to power frequency magnetic fields.
Mutat. Res./Fundam.
Mol. Mech. Mutagenesis
2013,
745,
40–45. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0039.png
Int. J. Mol. Sci.
2022,
23,
1339
39 of 55
194. Panagopoulos, D.J.; Karabarbounis, A.; Lioliousis, C. Elf alternating magnetic field decreases reproduction by DNA damage
induction.
Cell Biochem. Biophys.
2013,
67,
703–716. [CrossRef]
195. Pardo, J.C.T.; Grimaldi, S.; Taranta, M.; Naldi, I.; Cinti, C. Microwave electromagnetic field regulates gene expression in
t-lymphoblastoid leukemia ccrf-cem cell line exposed to 900 mhz.
Electromagn. Biol. Med.
2012,
31,
1–18. [CrossRef]
196. Zhou, J.L.; Li, C.L.; Yao, G.D.; Chiang, H.A.; Chang, Z.L. Gene expression of cytokine receptors in hl60 cells exposed to a 50 hz
magnetic field.
Bioelectromagnetics
2002,
23,
339–346. [CrossRef]
197. Diab, K.A. The impact of the low frequency of the electromagnetic field on human. In
Cell Biology and Translational Medicine,
Volume 7: Stem Cells and Therapy: Emerging Approaches;
Turksen, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; Volume
1237, pp. 135–149.
198. Giorgi, G.; Del Re, B. Epigenetic dysregulation in various types of cells exposed to extremely low-frequency magnetic fields.
Cell
Tissue Res
2021,
386,
1–15. [CrossRef] [PubMed]
199. Harada, S.; Yamada, S.; Kuramata, O.; Gunji, Y.; Kawasaki, M.; Miyakawa, T.; Yonekura, H.; Sakurai, S.; Bessho, K.; Hosono, R.;
et al. Effects of high elf magnetic fields on enzyme-catalyzed DNA and RNA synthesis in vitro and on a cell-free DNA mismatch
repair.
Bioelectromagnetics
2001,
22,
260–266. [CrossRef] [PubMed]
200. Li, H.L.; Lin, L.; Li, L.; Zhou, L.; Zhang, Y.; Hao, S.; Ding, Z.H. Exosomal small rna sequencing uncovers the microrna dose
markers for power frequency electromagnetic field exposure.
Biomarkers
2018,
23,
315–327. [CrossRef] [PubMed]
201. Manser, M.; Sater, M.R.A.; Schmid, C.D.; Noreen, F.; Murbach, M.; Kuster, N.; Schuermann, D.; Schar, P. ELF-MF exposure affects
the robustness of epigenetic programming during granulopoiesis.
Sci. Rep.
2017,
7,
43345. [CrossRef]
202. Sun, W.J.; Gan, Y.P.; Fu, Y.T.; Lu, D.Q.; Chiang, H. An incoherent magnetic field inhibited EGF receptor clustering and phosphory-
lation induced by a 50-hz magnetic field in cultured FL cells.
Cell. Physiol. Biochem.
2008,
22,
507–514. [CrossRef]
203. Ke, X.Q.; Sun, W.J.; Lu, D.Q.; Fu, Y.T.; Chiang, H. 50-hz magnetic field induces EGF-receptor clustering and activates RAS.
Int. J.
Radiat. Biol.
2008,
84,
413–420. [CrossRef] [PubMed]
204. Eleuteri, A.M.; Amici, M.; Bonfili, L.; Cecarini, V.; Cuccioloni, M.; Grimaldi, S.; Giuliani, L.; Angeletti, M.; Fioretti, E. 50 hz
extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: Effects on proteasomal
systems.
J. Biomed. Biotechnol.
2009,
2009,
834239. [CrossRef]
205. Testa, A.; Cordelli, E.; Stronati, L.; Marino, C.; Lovisolo, G.A.; Fresegna, A.M.; Conti, D.; Villani, P. Evaluation of genotoxic effect
of low level 50 hz magnetic fields on human blood cells using different cytogenetic assays.
Bioelectromagnetics
2004,
25,
613–619.
[CrossRef]
206. Stronati, L.; Testa, A.; Villani, R.; Marino, C.; Lovisolo, G.A.; Conti, D.; Russo, F.; Fresegna, A.M.; Cordelli, E. Absence of
genotoxicity in human blood cells exposed to 50 hz magnetic fields as assessed by comet assay, chromosome aberration,
micronucleus, and sister chromatid exchange analyses.
Bioelectromagnetics
2004,
25,
41–48. [CrossRef]
207. Kayhan, H.; Erdebilli, B.; Gonen, S.; Esmekaya, M.A.; Ertekin, E.; Canseven, A.G. Effects of extremely low-frequency magnetic
field on healthy fibroblasts and breast cancer cells.
J. Istanb. Fac. Med.
2020,
83,
384–389. [CrossRef]
208. Kim, J.; Ha, C.S.; Lee, H.J.; Song, K. RePETitive exposure to a 60-hz time-varying magnetic field induces DNA double-strand
breaks and apoptosis in human cells.
Biochem. Biophys. Res. Commun.
2010,
400,
739–744. [CrossRef] [PubMed]
209. Supino, R.; Bottone, M.G.; Pellicciari, C.; Caserini, C.; Bottiroli, G.; Belleri, M.; Veicsteinas, A. Sinusoidal 50 hz magnetic fields do
not affect structural morphology and proliferation of human cells in vitro.
Histol. Histopathol.
2001,
16,
719–726.
210. Savage, R.E.; Kanitz, M.H.; Lotz, W.G.; Conover, D.; Hennessey, E.M.; Hanneman, W.H.; Witzmann, F.A. Changes in gene and
protein expression in magnetic field-treated human glioma cells.
Toxicol. Mech. Methods
2005,
15,
115–120. [CrossRef] [PubMed]
211. Kanitz, M.H.; Witzmann, F.A.; Lotz, W.G.; Conover, D.; Savage, R.E. Investigation of protein expression in magnetic field-treated
human glioma cells.
Bioelectromagnetics
2007,
28,
546–552. [CrossRef] [PubMed]
212. Yoshizawa, H.; Tsuchiya, T.; Mizoe, H.; Ozeki, H.; Kanao, S.; Yomori, H.; Sakane, C.; Hasebe, S.; Motomura, T.; Yamakawa, T.; et al.
No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human
cancer cell lines.
Bioelectromagnetics
2002,
23,
355–368. [CrossRef] [PubMed]
213. Calcabrini, C.; Mancini, U.; De Bellis, R.; Diaz, A.R.; Martinelli, M.; Cucchiarini, L.; Sestili, P.; Stocchi, V.; Potenza, L. Effect of
extremely low-frequency electromagnetic fields on antioxidant activity in the human keratinocyte cell line nctc 2544.
Biotechnol.
Appl. Biochem.
2017,
64,
415–422. [CrossRef]
214. Kim, K.; Lee, Y.S.; Kim, N.; Choi, H.D.; Kang, D.J.; Kim, H.R.; Lim, K.M. Effects of electromagnetic waves with LTE and 5g
bandwidth on the skin pigmentation in vitro.
Int. J. Mol. Sci.
2021,
22,
170. [CrossRef]
215. Jandova, A.; Pokorny, J.; Cocek, A.; Trojan, S.; Nedbalova, M.; Dohnalova, A. Effects of sinusoidal 0.5 mt magnetic field on
leukocyte adherence inhibition.
Electromagn. Biol. Med.
2004,
23,
81–96.
216. Jandova, A.; Hurych, J.; Pokorny, J.; Cocek, A.; Trojan, S.; Nedbalova, M.; Dohnalova, A. Effects of sinusoidal magnetic field on
adherence inhibition of leukocytes.
Electro- Magn.
2001,
20,
397–413. [CrossRef]
217. Kaszuba-Zwoinska, J.; Zdzilowska, E.; Chorobik, P.; Slodowska-Hajduk, Z.; Juszczak, K.; Zaraska, W.; Thor, P.J. Pulsing
electromagnetic field and death of proliferating peripheral blood mononuclear cells from patients with acute myelogenic
leukemia.
Adv. Clin. Exp. Med.
2011,
20,
721–727.
218. Mangiacasale, R.; Tritarelli, A.; Sciamanna, I.; Cannone, M.; Lavia, P.; Barberis, M.C.; Lorenzini, R.; Cundari, E. Normal and
cancer-prone human cells respond differently to extremely low frequency magnetic fields.
FEBS Lett.
2001,
487,
397–403.
[CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0040.png
Int. J. Mol. Sci.
2022,
23,
1339
40 of 55
219. Kaszuba-Zwoinska, J.; Wojcik, K.; Bereta, M.; Ziomber, A.; Pierzchalski, P.; Rokita, E.; Marcinkiewicz, J.; Zaraska, W.; Thor, P.
Pulsating electromagnetic field stimulation prevents cell death of puromycin treated u937 cell line.
J. Physiol. Pharmacol.
2010,
61,
201–205. [PubMed]
220. Hirose, H.; Nakahara, T.; Zhang, Q.M.; Yonei, S.; Miyakoshi, J. Static magnetic field with a strong magnetic field gradient (41.7
t/m) induces c-jun expression in hl-60 cells.
In Vitro Cell. Dev. Biol.-Anim.
2003,
39,
348–352. [CrossRef]
221. Golbach, L.A.; Philippi, J.G.M.; Cuppen, J.J.M.; Savelkoul, H.F.J.; Verburg-van Kemenade, B.M.L. Calcium signalling in human
neutrophil cell lines is not affected by low-frequency electromagnetic fields.
Bioelectromagnetics
2015,
36,
430–443. [CrossRef]
[PubMed]
222. Yan, J.H.; Dong, L.A.; Zhang, B.H.; Qi, N.M. Effects of extremely low-frequency magnetic field on growth and differentiation of
human mesenchymal stem cells.
Electromagn. Biol. Med.
2010,
29,
165–176. [CrossRef] [PubMed]
223. Santini, M.T.; Rainaldi, G.; Ferrante, A.; Indovina, P.L.; Vecchia, P.; Donelli, G. Effects of a 50 hz sinusoidal magnetic field on cell
adhesion molecule expression in two human osteosarcoma cell lines (mg-63 and saos-2).
Bioelectromagnetics
2003,
24,
327–338.
[CrossRef]
224. Saunders, R. Static magnetic fields: Animal studies.
Prog. Biophys. Mol. Biol.
2005,
87,
225–239. [CrossRef]
225. Mild, K.H.; Mattsson, M.O. Elf noise fields: A review.
Electromagn. Biol. Med.
2010,
29,
72–97. [CrossRef]
226. Marino, A.A.; Wolcott, R.M.; Chervenak, R.; Jourd’heuil, F.; Nilsen, E.; Frilot, C. Nonlinear dynamical law governs magnetic field
induced changes in lymphoid phenotype.
Bioelectromagnetics
2001,
22,
529–546. [CrossRef] [PubMed]
227. Anderson, L.E.; Morris, J.E.; Sasser, L.B.; Loscher, W. Effects of 50-or 60-hertz, 100 mu t magnetic field exposure in the dmba
mammary cancer model in sprague-dawley rats: Possible explanations for different results from two laboratories.
Environ. Health
Perspect.
2000,
108,
797–802.
228. Maruvada, P.S.; Harvey, S.M.; Jutras, P.; Goulet, D.; Mandeville, R. A magnetic field exposure facility for evaluation of animal
carcinogenicity.
Bioelectromagnetics
2000,
21,
432–438. [CrossRef]
229. Loscher, W. Do cocarcinogenic effects of elf electromagnetic fields require repeated long-term interaction with carcinogens?
Characteristics of positive studies using the dmba breast cancer model in rats.
Bioelectromagnetics
2001,
22,
603–614. [CrossRef]
[PubMed]
230. Fedrowitz, M.; Kamino, K.; Loscher, W. Significant differences in the effects of magnetic field exposure on 7,12-dimethylbenz(a)anthracene-
induced mammary carcinogenesis in two substrains of sprague-dawley rats.
Cancer Res.
2004,
64,
243–251. [CrossRef] [PubMed]
231. Galloni, P.; Marino, C. Effects of 50 hz magnetic field exposure on tumor experimental models.
Bioelectromagnetics
2000,
21,
608–614. [CrossRef]
232. McLean, J.R.; Thansandote, A.; McNamee, J.P.; Tryphonas, L.; Lecuyer, D.; Gajda, G. A 60 hz magnetic field does not affect the
incidence of squamous cell carcinomas in sencar mice.
Bioelectromagnetics
2003,
24,
75–81. [CrossRef]
233. McNamee, J.P.; Bellier, P.V.; McLean, J.R.N.; Marro, L.; Gajda, G.B.; Thansandote, A. DNA damage and apoptosis in the immature
mouse cerebellum after acute exposure to a 1 mt, 60 hz magnetic field.
Mutat. Res. Genet. Toxicol. Environ. Mutagenesis
2002,
513,
121–133. [CrossRef]
234. McNamee, J.P.; Bellier, P.V.; Chauhan, V.; Gajda, G.B.; Lemay, E.; Thansandote, A. Evaluating DNA damage in rodent brain after
acute 60 hz magnetic-field exposure.
Radiat. Res.
2005,
164,
791–797. [CrossRef]
235. Luo, X.; Jia, S.J.; Li, R.Y.; Gao, P.; Zhang, Y.W. Occupational exposure to 50 hz magnetic fields does not alter responses of
inflammatory genes and activation of splenic lymphocytes in mice.
Int. J. Occup. Med. Environ. Health
2016,
29,
277–291.
[CrossRef]
236. Sommer, A.M.; Lerchl, A. 50 hz magnetic fields of 1 mt do not promote lymphoma development in AKR/J mice.
Radiat. Res.
2006,
165,
343–349. [CrossRef]
237. Tatarov, I.; Panda, A.; Petkov, D.; Kolappaswamy, K.; Thompson, K.; Kavirayani, A.; Lipsky, M.M.; Elson, E.; Davis, C.C.; Martin,
S.S.; et al. Effect of magnetic fields on tumor growth and viability.
Comp. Med.
2011,
61,
339–345.
238. Vallejo, D.; Hidalgo, M.A.; Hernandez, J.M. Effects of long-term exposure to an extremely low frequency magnetic field (15
microt) on selected blood coagulation variables in of1 mice.
Electromagn. Biol. Med.
2019,
38,
279–286. [CrossRef] [PubMed]
239. Cabrales, L.B.; Ciria, H.C.; Bruzon, R.P.; Quevedo, M.S.; Cespedes, M.C.; Salas, M.F. Elf magnetic field effects on some hematologi-
cal and biochemical parameters of peripheral blood in mice.
Electro- Magn.
2001,
20,
185–191. [CrossRef]
240. Qi, G.Y.; Zuo, X.X.; Zhou, L.H.; Aoki, E.; Okamula, A.; Watanebe, M.; Wang, H.P.; Wu, Q.H.; Lu, H.L.; Tuncel, H.; et al. Effects of
extremely low-frequency electromagnetic fields (elf-EMF) exposure on b6c3f1 mice.
Environ. Health Prev. Med.
2015,
20,
287–293.
[CrossRef]
241. Salim, E.I.; Omar, K.M.; Abou-Hattab, H.A.; Abou-Zaid, F.A. Pituitary toxicity but lack of rat colon carcinogenicity of a dc-magnetic
field in a medium-term bioassay.
Asian Pac. J. Cancer Prev.
2008,
9,
131–140.
242. Anderson, L.E.; Morris, J.E.; Miller, D.L.; Rafferty, C.N.; Ebi, K.L.; Sasser, L.B. Large granular lymphocytic (lgl) leukemia in rats
exposed to intermittent 60 hz magnetic fields.
Bioelectromagnetics
2001,
22,
185–193. [CrossRef] [PubMed]
243. Lee, H.J.; Choi, S.Y.; Jang, J.J.; Gimm, Y.M.; Pack, J.K.; Choi, H.D.; Kim, N.; Lee, Y.S. Lack of promotion of mammary, lung and
skin tumorigenesis by 20 khz triangular magnetic fields.
Bioelectromagnetics
2007,
28,
446–453. [CrossRef] [PubMed]
244. Tuncel, H.; Shimamoto, F.; Cagatay, P.; Kalkan, M.T. Variable e-cadherin expression in a mnu-induced colon tumor model in rats
which exposed with 50 hz frequency sinusoidal magnetic field.
Tohoku J. Exp. Med.
2002,
198,
245–249. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0041.png
Int. J. Mol. Sci.
2022,
23,
1339
41 of 55
245. Fedrowitz, M.; Loscher, W. Exposure of fischer 344 rats to a weak power frequency magnetic field facilitates mammary tumorige-
nesis in the dmba model of breast cancer.
Carcinogenesis
2008,
29,
186–193. [CrossRef]
246. Ushio-Fukai, M.; Ash, D.; Nagarkoti, S.; de Chantemele, E.J.B.; Fulton, D.J.R.; Fukai, T. Interplay between reactive oxygen/reactive
nitrogen species and metabolism in vascular biology and disease.
Antioxid. Redox Signal.
2021,
34,
1319–1354. [CrossRef] [PubMed]
247. Sies, H. Oxidative stress: A concept in redox biology and medicine.
Redox Biol.
2015,
4,
180–183. [CrossRef]
248. Azab, A.E.; Ebrahim, S.A. Exposure to electromagnetic fields induces oxidative stress and pathophysiological changes in the
cardiovascular system.
J. Appl. Biotechnol. Bioeng.
2017,
4,
96–102. [CrossRef]
249. Schuermann, D.; Mevissen, M. Manmade electromagnetic fields and oxidative stress-biological effects and consequences for
health.
Int. J. Mol. Sci.
2021,
22,
3772. [CrossRef] [PubMed]
250. Havas, M. When theory and observation collide: Can non-ionizing radiation cause cancer?
Environ. Pollut.
2017,
221,
501–505.
[CrossRef] [PubMed]
251. Hore, P.J.; Ivanov, K.L.; Wasielewski, M.R. Spin chemistry.
J. Chem. Phys.
2020,
152,
120401. [CrossRef]
252. Jones, A.R. Magnetic field effects in proteins.
Mol. Phys.
2016,
114,
1691–1702. [CrossRef]
253. Mattsson, M.O.; Simkó, M. Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency
magnetic fields on oxidative response in in vitro studies.
Front. Public Health
2014,
2,
132. [CrossRef]
254. Juutilainen, J.; Herrala, M.; Luukkonen, J.; Naarala, J.; Hore, P.J. Magnetocarcinogenesis: Is there a mechanism for carcinogenic
effects of weak magnetic fields?
Proc. Biol. Sci.
2018,
285,
20180590. [CrossRef]
255. Höytö, A.; Herrala, M.; Luukkonen, J.; Juutilainen, J.; Naarala, J. Cellular detection of 50 hz magnetic fields and weak blue light:
Effects on superoxide levels and genotoxicity.
Int. J. Radiat. Biol.
2017,
93,
646–652. [CrossRef]
256. Orel, V.E.; Krotevych, M.; Dasyukevich, O.; Rykhalskyi, O.; Syvak, L.; Tsvir, H.; Tsvir, D.; Garmanchuk, L.; Orel Vcapital Ve, C.;
Sheina, I.; et al. Effects induced by a 50 hz electromagnetic field and doxorubicin on walker-256 carcinosarcoma growth and
hepatic redox state in rats.
Electromagn. Biol. Med.
2021,
40,
475–487. [CrossRef]
257. Mannerling, A.C.; Simko, M.; Mild, K.H.; Mattsson, M.O. Effects of 50-hz magnetic field exposure on superoxide radical anion
formation and hsp70 induction in human k562 cells.
Radiat. Environ. Biophys.
2010,
49,
731–741. [CrossRef]
˙
258. Bułdak, R.J.; Polaniak, R.; Bułdak, Ł.; Zwirska-Korczala, K.; Skonieczna, M.; Monsiol, A.; Kukla, M.; Duława-Bułdak, A.; Birkner,
E. Short-term exposure to 50 hz elf-EMF alters the cisplatin-induced oxidative response in at478 murine squamous cell carcinoma
cells.
Bioelectromagnetics
2012,
33,
641–651. [CrossRef] [PubMed]
259. Luukkonen, J.; Liimatainen, A.; Juutilainen, J.; Naarala, J. Induction of genomic instability, oxidative processes, and mitochondrial
activity by 50hz magnetic fields in human sh-sy5y neuroblastoma cells.
Mutat. Res./Fundam. Mol. Mech. Mutagenesis
2014,
760,
33–41. [CrossRef]
260. Xu, A.; Wang, Q.; Lin, T. Low-frequency magnetic fields (lf-mfs) inhibit proliferation by triggering apoptosis and altering cell
cycle distribution in breast cancer cells.
Int. J. Mol. Sci.
2020,
21,
2952. [CrossRef] [PubMed]
261. Cios, A.; Ciepielak, M.; Stankiewicz, W.; Szymanski, L. The influence of the extremely low frequency electromagnetic field on
clear cell renal carcinoma.
Int. J. Mol. Sci.
2021,
22,
1342. [CrossRef] [PubMed]
262. Amara, S.; Abdelmelek, H.; Garrel, C.; Guiraud, P.; Douki, T.; Ravanat, J.L.; Favier, A.; Sakly, M.; Ben Rhouma, K. Zinc
supplementation ameliorates static magnetic field-induced oxidative stress in rat tissues.
Environ. Toxicol. Pharmacol.
2007,
23,
193–197. [CrossRef] [PubMed]
263. Amara, S.; Abdelmelek, H.; Garrel, C.; Guiraud, P.; Douki, T.; Ravanat, J.L.; Favier, A.; Sakly, M.; Ben Rhouma, K. Influence of
static magnetic field on cadmium toxicity: Study of oxidative stress and DNA damage in rat tissues.
J. Trace Elem. Med. Biol.
2006,
20,
263–269. [CrossRef] [PubMed]
264. Amara, S.; Douki, T.; Garel, C.; Favier, A.; Sakly, M.; Rhouma, K.B.; Abdelmelek, H. Effects of static magnetic field exposure on
antioxidative enzymes activity and DNA in rat brain.
Gen. Physiol. Biophys.
2009,
28,
260–265. [CrossRef]
265. Amara, S.; Douki, T.; Ravanat, J.L.; Garrel, C.; Guiraud, P.; Favier, A.; Sakly, M.; Ben Rhouma, K.; Abdelmelek, H. Influence of a
static magnetic field (250 mt) on the antioxidant response and DNA integrity in thp1 cells.
Phys. Med. Biol.
2007,
52,
889–898.
[CrossRef]
266. Reale, M.; Kamal, M.A.; Patruno, A.; Costantini, E.; D’Angelo, C.; Pesce, M.; Greig, N.H. Neuronal cellular responses to extremely
low frequency electromagnetic field exposure: Implications regarding oxidative stress and neurodegeneration.
PLoS ONE
2014,
9,
e104973. [CrossRef]
267. Patruno, A.; Tabrez, S.; Pesce, M.; Shakil, S.; Kamal, M.A.; Reale, M. Effects of extremely low frequency electromagnetic field
(elf-EMF) on catalase, cytochrome p450 and nitric oxide synthase in erythro-leukemic cells.
Life Sci.
2015,
121,
117–123. [CrossRef]
268. Lee, B.C.; Johng, H.M.; Lim, J.K.; Jeong, J.H.; Baik, K.Y.; Nam, T.J.; Lee, J.H.; Kim, J.; Sohn, U.D.; Yoon, G.; et al. Effects of extremely
low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study.
J. Photochem.
Photobiol. B Biol.
2004,
73,
43–48. [CrossRef] [PubMed]
269. Lewicka, M.; Henrykowska, G.A.; Pacholski, K.; Smigielski, J.; Rutkowski, M.; Dziedziczak-Buczynska, M.; Buczynski, A. The
effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism—In vitro studies.
Arch. Med. Sci.
2015,
11,
1330–1339. [CrossRef] [PubMed]
270. Zwirska-Korczala, K.; Adamczyk-Sowa, M.; Polaniak, R.; Sowa, P.; Birkner, E.; Drzazga, Z.; Brzozowski, T.; Konturek, S.J.
Influence of extremely-low-frequency magnetic field on antioxidative melatonin properties in at478 murine squamous cell
carcinoma culture.
Biol. Trace Elem. Res.
2004,
102,
227–243. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0042.png
Int. J. Mol. Sci.
2022,
23,
1339
42 of 55
271. Zhao, B.; Yu, T.; Wang, S.; Che, J.; Zhou, L.; Shang, P. Static magnetic field (0.2–0.4 t) stimulates the self-renewal ability of
osteosarcoma stem cells through autophagic degradation of ferritin.
Bioelectromagnetics
2021,
42,
371–383. [CrossRef]
272. Kesari, K.K.; Juutilainen, J.; Luukkonen, J.; Naarala, J. Induction of micronuclei and superoxide production in neuroblastoma and
glioma cell lines exposed to weak 50 hz magnetic fields.
J. R. Soc. Interface
2016,
13,
20150995. [CrossRef]
273. Erdal, N.; Gürgül, S.; Tamer, L.; Ayaz, L. Effects of long-term exposure of extremely low frequency magnetic field on oxida-
tive/nitrosative stress in rat liver.
J. Radiat. Res.
2008,
49,
181–187. [CrossRef]
274. Koh, E.K.; Ryu, B.K.; Jeong, D.Y.; Bang, I.S.; Nam, M.H.; Chae, K.S. A 60-hz sinusoidal magnetic field induces apoptosis of
prostate cancer cells through reactive oxygen species.
Int. J. Radiat. Biol.
2008,
84,
945–955. [CrossRef]
275. Kahya, M.C.; Nazıroglu, M.; Çig, B. Selenium reduces mobile phone (900 mhz)-induced oxidative stress, mitochondrial function,
˘
˘
and apoptosis in breast cancer cells.
Biol. Trace Elem. Res.
2014,
160,
285–293. [CrossRef]
276. Polaniak, R.; Buldak, R.J.; Karon, M.; Birkner, K.; Kukla, M.; Zwirska-Korczala, K.; Birkner, E. Influence of an extremely low
frequency magnetic field (elf-EMF) on antioxidative vitamin e properties in at478 murine squamous cell carcinoma culture
in vitro.
Int. J. Toxicol.
2010,
29,
221–230. [CrossRef]
277. Bekhite, M.M.; Finkensieper, A.; Abou-Zaid, F.A.; El-Shourbagy, I.K.; El-Fiky, N.K.; Omar, K.M.; Sauer, H.; Wartenberg, M.
Differential effects of high and low strength magnetic fields on mouse embryonic development and vasculogenesis of embryonic
stem cells.
Reprod. Toxicol.
2016,
65,
46–58. [CrossRef]
278. Kang, S.K. Measuring the value of MRI: Comparative effectiveness & outcomes research.
J. Magn. Reson. Imaging
2019,
49,
e78–e84. [PubMed]
279. van der Heide, U.A.; Frantzen-Steneker, M.; Astreinidou, E.; Nowee, M.E.; van Houdt, P.J. MRI basics for radiation oncologists.
Clin. Transl. Radiat. Oncol.
2019,
18,
74–79. [CrossRef] [PubMed]
280. Raaijmakers, A.J.E.; Raaymakers, B.W.; Lagendijk, J.J.W. Magnetic-field-induced dose effects in mr-guided radiotherapy systems:
Dependence on the magnetic field strength.
Phys. Med. Biol.
2008,
53,
909–923. [CrossRef] [PubMed]
281. Morsing, A.; Hildebrandt, M.G.; Vilstrup, M.H.; Wallenius, S.E.; Gerke, O.; Petersen, H.; Johansen, A.; Andersen, T.L.; Hoilund-
Carlsen, P.F. Hybrid PET/MRI in major cancers: A scoping review.
Eur. J. Nucl. Med. Mol. Imaging
2019,
46,
2138–2151.
[CrossRef]
282. Scheenen, T.W.J.; Zamecnik, P. The role of magnetic resonance imaging in (future) cancer staging note the nodes.
Investig. Radiol.
2021,
56,
42–49. [CrossRef]
283. Avasthi, A.; Caro, C.; Pozo-Torres, E.; Leal, M.P.; Garcia-Martin, M.L. Magnetic nanoparticles as MRI contrast agents.
Top. Curr.
Chem.
2020,
378,
43.
284. Poku, L.O.; Cheng, Y.N.; Wang, K.; Sun, X.L. Na-23-MRI as a noninvasive biomarker for cancer diagnosis and prognosis.
J. Magn.
Reson. Imaging
2021,
53,
995–1014. [CrossRef]
285. Visser, M.; Muller, D.M.J.; van Duijn, J.M.; Smits, M.; Verburg, N.; Hendriks, E.J.; Nabuurs, R.J.A.; Bot, J.C.J.; Eijgelaar, R.S.; Witte,
M.; et al. Inter-rater agreement in glioma segmentations on longitudinal MRI.
NeuroImage Clin.
2019,
22,
101727. [CrossRef]
286. Patil, R.; Ljubimov, A.V.; Gangalum, P.R.; Ding, H.; Portilla-Arias, J.; Wagner, S.; Inoue, S.; Konda, B.; Rekechenetskiy, A.;
Chesnokova, A.; et al. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: Nanoclinic
in the brain.
ACS Nano
2015,
9,
5594–5608. [CrossRef]
287. Lasocki, A.; Anjari, M.; Kokurcan, S.O.; Thust, S.C. Conventional MRI features of adult diffuse glioma molecular subtypes: A
systematic review.
Neuroradiology
2021,
63,
353–362. [CrossRef]
288. Machhale, K.; Nandpuru, H.B.; Kapur, V.; Kosta, L. MRI brain cancer classification using hybrid classifier (SVM-KNN). In
Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015;
pp. 60–65.
289. Nandpuru, H.B.; Salankar, S.S.; Bora, V.R. MRI brain cancer classification using support vector machine. In Proceedings of the
2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, India, 1–2 March 2014.
290. Naser, M.A.; Deen, M.J. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images.
Comput. Biol. Med.
2020,
121,
8. [CrossRef] [PubMed]
291. Clement, P.; Booth, T.; Borovecki, F.; Emblem, K.E.; Figueiredo, P.; Hirschler, L.; Jancalek, R.; Keil, V.C.; Maumet, C.; Ozsunar, Y.;
et al. Glimr: Cross-border collaborations to promote advanced MRI biomarkers for glioma.
J. Med. Biol. Eng.
2021,
41,
115–125.
[CrossRef] [PubMed]
292. Zhuge, Y.; Ning, H.; Mathen, P.; Cheng, J.Y.; Krauze, A.V.; Camphausen, K.; Miller, R.W. Automated glioma grading on
conventional MRI images using deep convolutional neural networks.
Med. Phys.
2020,
47,
3044–3053. [CrossRef] [PubMed]
293. Wietelmann, D.; Schumacher, M.; Muendel, J. Brain-stem glioma.
Radiologe
1998,
38,
904–912. [CrossRef] [PubMed]
294. Porcari, P.; Hegi, M.E.; Lei, H.; Hamou, M.F.; Vassallo, I.; Capuani, S.; Gruetter, R.; Mlynarik, V. Early detection of human glioma
sphere xenografts in mouse brain using diffusion MRI at 14.1t.
NMR Biomed.
2016,
29,
1577–1589. [CrossRef] [PubMed]
295. Rogers, C.M.; Jones, P.S.; Weinberg, J.S. Intraoperative MRI for brain tumors.
J. Neuro-Oncol.
2021,
151,
479–490. [CrossRef]
[PubMed]
296. Poussaint, T.Y.; Kocak, M.; Vajapeyam, S.; Packer, R.I.; Robertson, R.L.; Geyer, R.; Haas-Kogan, D.; Pollack, I.F.; Vezina, G.;
Zimmerman, R.; et al. MRI as a central component of clinical trials analysis in brainstem glioma: A report from the pediatric
brain tumor consortium (pbtc).
Neuro-Oncology
2011,
13,
417–427. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0043.png
Int. J. Mol. Sci.
2022,
23,
1339
43 of 55
297. Cabaj, A.; Bekiesinska-Figatowska, M.; Duczkowska, A.; Duczkowski, M. Brain MRI findings in neurological complications of
cancer treatment.
Adv. Clin. Exp. Med.
2016,
25,
789–797. [CrossRef] [PubMed]
298. Kjaer, A.; Loft, A.; Law, I.; Berthelsen, A.K.; Borgwardt, L.; Lofgren, J.; Johnbeck, C.B.; Hansen, A.E.; Keller, S.; Holm, S.; et al.
Pet/MRI in cancer patients: First experiences and vision from copenhagen.
Magn. Reson. Mat. Phys. Biol. Med.
2013,
26,
37–47.
[CrossRef]
299. Tsiouris, S.; Bougias, C.; Fotopoulos, A. Principles and current trends in the correlative evaluation of glioma with advanced MRI
techniques and PET.
Hell. J. Nucl. Med.
2019,
22,
206–219.
300. Puttick, S.; Bell, C.; Dowson, N.; Rose, S.; Fay, M. PET, MRI, and simultaneous PET/MRI in the development of diagnostic and
therapeutic strategies for glioma.
Drug Discov. Today
2015,
20,
306–317. [CrossRef] [PubMed]
301. Shankar, A.; Bomanji, J.; Hyare, H. Hybrid PET-MRI imaging in paediatric and TYA brain tumours: Clinical applications and
challenges.
J. Pers. Med.
2020,
10,
218. [CrossRef] [PubMed]
302. Deuschl, C.; Kirchner, J.; Poeppel, T.D.; Schaarschmidt, B.; Kebir, S.; El Hindy, N.; Hense, J.; Quick, H.H.; Glas, M.; Herrmann,
K.; et al. C-11-met PET/MRI for detection of recurrent glioma.
Eur. J. Nucl. Med. Mol. Imaging
2018,
45,
593–601. [CrossRef]
[PubMed]
303. Kebir, S.; Weber, M.; Lazaridis, L.; Deuschl, C.; Schmidt, T.; Monninghoff, C.; Keyvani, K.; Umutlu, L.; Pierscianek, D.; Forsting,
M.; et al. Hybrid c-11-met PET/MRI combined with “machine learning” in glioma diagnosis according to the revised glioma who
classification 2016.
Clin. Nucl. Med.
2019,
44,
214–220. [CrossRef]
304. Suh, C.H.; Kim, H.S.; Jung, S.C.; Choi, C.G.; Kim, S.J. Perfusion MRI as a diagnostic biomarker for differentiating glioma from
brain metastasis: A systematic review and meta-analysis.
Eur. Radiol.
2018,
28,
3819–3831. [CrossRef]
305. Xu, X.; Chan, K.W.Y.; Knutsson, L.; Artemov, D.; Xu, J.D.; Liu, G.; Kato, Y.; Lal, B.; Laterra, J.; McMahon, M.T.; et al. Dynamic
glucose enhanced (dge) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain
cancer.
Magn. Reson. Med.
2015,
74,
1556–1563. [CrossRef]
306. Davis, S.C.; Samkoe, K.S.; O’Hara, J.A.; Gibbs-Strauss, S.L.; Payne, H.L.; Hoopes, P.J.; Paulsen, K.D.; Pogue, B.W. MRI-coupled
fluorescence tomography quantifies EGFR activity in brain tumors.
Acad. Radiol.
2010,
17,
271–276. [CrossRef]
307. Aquino, D.; Gioppo, A.; Finocchiaro, G.; Bruzzone, M.G.; Cuccarini, V. MRI in glioma immunotherapy: Evidence, pitfalls, and
perspectives.
J. Immunol. Res.
2017,
2017,
5813951. [CrossRef]
308. Jenkinson, M.D.; Du Plessis, D.G.; Walker, C.; Smith, T.S. Advanced MRI in the management of adult gliomas.
Br. J. Neurosurg.
2007,
21,
550–561. [CrossRef]
309. Jestaedt, L.; Lemke, D.; Weiler, M.; Pfenning, P.N.; Heiland, S.; Wick, W.; Bendszus, M. Gadofluorine m enhanced MRI in
experimental glioma: Superior and persistent intracellular tumor enhancement compared with conventional MRI.
J. Magn. Reson.
Imaging
2012,
35,
551–560. [CrossRef]
310. Liao, J.C.; Xia, R.; Liu, T.; Feng, H.; Ai, H.; Song, B.; Gao, F.B. In vivo dynamic monitoring of the biological behavior of labeled c6
glioma by MRI.
Mol. Med. Rep.
2013,
7,
1397–1402. [CrossRef] [PubMed]
311. Zaccagna, F.; Riemer, F.; Priest, A.N.; McLean, M.A.; Allinson, K.; Grist, J.T.; Dragos, C.; Matys, T.; Gillard, J.H.; Watts, C.; et al.
Non-invasive assessment of glioma microstructure using verdict MRI: Correlation with histology.
Eur. Radiol.
2019,
29,
5559–5566.
[CrossRef] [PubMed]
312. Anka, A.; Thompson, P.; Mott, E.; Sharma, R.; Zhang, R.Z.; Cross, N.; Sun, J.Y.; Flask, C.A.; Oleinick, N.L.; Dean, D. Dynamic
contrast enhanced-magnetic resonance imaging (DCE-MRI) for the assessment of pc 4-sensitized photodynamic therapy of a
u87-derived glioma model in the athymic nude rat. In Proceedings of the Conference on Photonic Therapeutics and Diagnostics
VI, San Francisco, CA, USA, 23–25 January 2010; SPIE—Society of Photo-Optical Instrumentation Engineers: San Francisco, CA,
USA, 2010.
313. Belle, V.; Anka, A.; Cross, N.; Thompson, P.; Mott, E.; Sharma, R.; Gray, K.; Zhang, R.Z.; Xu, Y.S.; Sun, J.Y.; et al. Dynamic contrast
enhanced-magnetic resonance imaging (DCE-MRI) of photodynamic therapy (PDT) outcome and associated changes in the
blood-brain barrier following PC 4-PDT of glioma in an athymic nude rat model. In Proceedings of the Conference on Photonic
Therapeutics and Diagnostics VIII, San Francisco, CA, USA, 21–24 January 2012; SPIE-Society of Photo-Optical Instrumentation
Engineers: San Francisco, CA, USA, 2012.
314. Young, J.R.; Ressler, J.A.; Mortimer, J.E.; Schmolze, D.; Fitzgibbons, M.; Chen, B.H.T. Performance of enhancement on brain MRI
for identifying her2 overexpression in breast cancer brain metastases.
Eur. J. Radiol.
2021,
144,
6. [CrossRef]
315. Papadimitrakopoulou, V.A. Carcinogenesis of head and neck cancer and the role of chemoprevention in its reversal.
Curr. Opin.
Oncol.
2000,
12,
240–245. [CrossRef]
316. Loeffelbein, D.J.; Souvatzoglou, M.; Wankerl, V.; Dinges, J.; Ritschl, L.M.; Mucke, T.; Pickhard, A.; Eiber, M.; Schwaiger, M.; Beer,
A.J. Diagnostic value of retrospective PET-MRI fusion in head-and-neck cancer.
BMC Cancer
2014,
14,
10. [CrossRef] [PubMed]
317. Wang, K.; Mullins, B.T.; Falchook, A.D.; Lian, J.; He, K.L.; Shen, D.G.; Dance, M.; Lin, W.L.; Sills, T.M.; Das, S.K.; et al. Evaluation
of PET/MRI for tumor volume delineation for head and neck cancer.
Front. Oncol.
2017,
7,
8. [CrossRef] [PubMed]
318. Grosse, J.; Hellwig, D. Pet/CT and PET/MRI in head and neck cancer.
Laryngorhinootologie
2020,
99,
12–21.
319. Hermans, R. Diffusion-weighted MRI in head and neck cancer.
Curr. Opin. Otolaryngol. Head Neck Surg.
2010,
18,
72–78. [CrossRef]
320. Thoeny, H.C. Diffusion-weighted MRI in head and neck radiology: Applications in oncology.
Cancer Imaging
2011,
10,
209–214.
[CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0044.png
Int. J. Mol. Sci.
2022,
23,
1339
44 of 55
321. Schakel, T.; Hoogduin, J.M.; Terhaard, C.H.J.; Philippens, M.E.P. Diffusion weighted MRI in head-and-neck cancer: Geometrical
accuracy.
Radiother. Oncol.
2013,
109,
394–397. [CrossRef]
322. El Beltagi, A.H.; Elsotouhy, A.H.; Own, A.M.; Abdelfattah, W.; Nair, K.; Vattoth, S. Functional magnetic resonance imaging of
head and neck cancer: Performance and potential.
Neuradiol. J.
2019,
32,
36–52. [CrossRef] [PubMed]
323. Zhao, B.X.; Soraghan, J.; Di-caterina, G.; Grose, D.; Doshi, T. Automatic 3D detection and segmentation of head and neck cancer
from MRI data. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland,
26–28 November 2018.
324. Chen, A.M.; Hsu, S.; Lamb, J.; Yang, Y.; Agazaryan, N.; Steinberg, M.L.; Low, D.A.; Cao, M. MRI-guided radiotherapy for head
and neck cancer: Initial clinical experience.
Clin. Transl. Oncol.
2018,
20,
160–168. [CrossRef] [PubMed]
325. Baulch, J.; Gandhi, M.; Sommerville, J.; Panizza, B. 3t MRI evaluation of large nerve perineural spread of head and neck cancers.
J.
Med. Imaging Radiat. Oncol.
2015,
59,
578–585. [CrossRef] [PubMed]
326. Kanda, T.; Kitajima, K.; Suenaga, Y.; Konishi, J.; Sasaki, R.; Morimoto, K.; Saito, M.; Otsuki, N.; Nibu, K.; Sugimura, K. Value of
retrospective image fusion of
18
F-FDG PET and MRI for preoperative staging of head and neck cancer: Comparison with PET/CT
and contrast-enhanced neck MRI.
Eur. J. Radiol.
2013,
82,
2005–2010. [CrossRef] [PubMed]
327. Baghi, M.; Mack, M.G.; Hambek, M.; Rieger, J.; Vogl, T.; Gstoettner, W.; Knecht, R. The efficacy of MRI with ultrasmall
superparamagnetic iron oxide particles (uspio) in head and neck cancers.
Anticancer Res.
2005,
25,
3665–3670. [PubMed]
328. Rahbari, R.; Zhang, L.S.; Kebebew, E. Thyroid cancer gender disparity.
Future Oncol.
2010,
6,
1771–1779. [CrossRef] [PubMed]
329. Dinauer, C.A.; Breuer, C.; Rivkees, S.A. Differentiated thyroid cancer in children: Diagnosis and management.
Curr. Opin. Oncol.
2008,
20,
59–65. [CrossRef]
330. Massimino, M.; Evans, D.B.; Podda, M.; Spinelli, C.; Collini, P.; Pizzi, N.; Bleyer, A. Thyroid cancer in adolescents and young
adults.
Pediatr. Blood Cancer
2018,
65,
9. [CrossRef]
331. Regalbuto, C.; Frasca, F.; Pellegriti, G.; Malandrino, P.; Marturano, I.; Di Carlo, I.; Pezzino, V. Update on thyroid cancer treatment.
Future Oncol.
2012,
8,
1331–1348. [CrossRef]
332. CynaGorse, F.; Toubert, M.E.; Zagdanski, A.M.; deKerviler, E.; Feger, C.; Benchaib, N.; Attal, P.; Frija, J.; LavalJeantet, M.
Recurrence of differentiated thyroid carcinomas: Value of MRI.
J. Radiol.
1996,
77,
1195–1200.
333. Chen, Q.H.; Raghavan, P.; Mukherjee, S.; Jameson, M.J.; Patrie, J.; Xin, W.J.; Xian, J.F.; Wang, Z.C.; Levine, P.A.; Wintermark, M.
Accuracy of MRI for the diagnosis of metastatic cervical lymphadenopathy in patients with thyroid cancer.
Radiol. Med.
2015,
120,
959–966. [CrossRef] [PubMed]
334. Gross, N.D.; Weissman, J.L.; Talbot, J.M.; Andersen, P.E.; Wax, M.K.; Cohen, J.I. MRI detection of cervical metastasis from
differentiated thyroid carcinoma.
Laryngoscope
2001,
111,
1905–1909. [CrossRef] [PubMed]
335. Liu, Z.M.; Xun, X.Q.; Wang, Y.Z.; Mei, L.; He, L.; Zeng, W.; Wang, C.Y.; Tao, H. MRI and ultrasonography detection of cervical
lymph node metastases in differentiated thyroid carcinoma before reoperation.
Am. J. Transl. Res.
2014,
6,
147–154. [PubMed]
336. Samanci, C.; Onal, Y.; Sager, S.; Asa, S.; Ustabasioglu, F.E.; Alis, D.; Akman, C.; Sonmezoglu, K. Diagnostic capabilities of MRI
versus
18
F FDG PET-ct in postoperative patients with thyroglobulin positive,
131
I-negative local recurrent or metastatic thyroid
cancer.
Curr. Med. Imaging
2019,
15,
956–964. [CrossRef]
337. Wang, J.C.; Takashima, S.; Matsushita, T.; Takayama, F.; Kobayashi, T.; Kadoya, M. Esophageal invasion by thyroid carcinomas:
Prediction using magnetic resonance imaging.
J. Comput. Assist. Tomogr.
2003,
27,
18–25. [CrossRef]
338. Brown, A.M.; Nagala, S.; McLean, M.A.; Lu, Y.G.; Scoffings, D.; Apte, A.; Gonen, M.; Stambuk, H.E.; Shaha, A.R.; Tuttle, R.M.;
et al. Multi-institutional validation of a novel textural analysis tool for preoperative stratification of suspected thyroid tumors on
diffusion-weighted MRI.
Magn. Reson. Med.
2016,
75,
1708–1716. [CrossRef]
339. Naglah, A.; Khalifa, F.; Khaled, R.; Razek, A.; Ghazal, M.; Giridharan, G.; El-Baz, A. Novel MRI-based cad system for early
detection of thyroid cancer using multi-input CNN.
Sensors
2021,
21,
3878. [CrossRef]
340. Abd el Aziz, L.M.; Hamisa, M.; Badwy, M.E. Differentiation of thyroid nodules using diffusion-weighted MRI.
Alex. J. Med.
2015,
51,
305–309. [CrossRef]
341. Taha, M.S.; Hassan, O.; Amir, M.; Taha, T.; Riad, M.A. Diffusion-weighted MRI in diagnosing thyroid cartilage invasion in
laryngeal carcinoma.
Eur. Arch. Oto-Rhino-Laryngol.
2014,
271,
2511–2516. [CrossRef]
342. Binse, I.; Poeppel, T.D.; Ruhlmann, M.; Gomez, B.; Umutlu, L.; Bockisch, A.; Rosenbaum-Krumme, S.J. Imaging with i-124
in differentiated thyroid carcinoma: Is PET/MRI superior to PET/CT?
Eur. J. Nucl. Med. Mol. Imaging
2016,
43,
1011–1017.
[CrossRef]
343. Seiboth, L.; Van Nostrand, D.; Wartofsky, L.; Ousman, Y.; Jonklaas, J.; Butler, C.; Atkins, F.; Burman, K. Utility of PET/neck MRI
digital fusion images in the management of recurrent or persistent thyroid cancer.
Thyroid
2008,
18,
103–111. [CrossRef] [PubMed]
344. Teller, P.; Jefford, V.J.; Gabram, S.G.A.; Newell, M.; Carlson, G.W. The utility of breast MRI in the management of breast cancer.
Breast J.
2010,
16,
394–403. [CrossRef] [PubMed]
345. Mann, R.M.; Cho, N.; Moy, L. Breast MRI: State of the art.
Radiology
2019,
292,
520–536. [CrossRef] [PubMed]
346. Militello, C.; Rundo, L.; Dimarco, M.; Orlando, A.; Conti, V.; Woitek, R.; D’Angelo, I.; Bartolotta, T.V.; Russo, G. Semi-automated
and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering.
Biomed. Signal
Process. Control
2022,
71,
12. [CrossRef]
347. Vogel, W.V.; Nestle, U.; Valli, M.C. Pet/MRI in breast cancer.
Clin. Transl. Imaging
2017,
5,
71–78. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0045.png
Int. J. Mol. Sci.
2022,
23,
1339
45 of 55
348. Heacock, L.; Reig, B.; Lewin, A.A.; Toth, H.K.; Moy, L.; Lee, C.S. Abbreviated breast MRI: Road to clinical implementation.
J.
Breast Imaging
2020,
2,
201–214. [CrossRef]
349. Mann, R.M.; Kuhl, C.K.; Moy, L. Contrast-enhanced MRI for breast cancer screening.
J. Magn. Reson. Imaging
2019,
50,
377–390.
[CrossRef]
350. van Zandwijk, N. Chemoprevention of lung cancer.
Lung Cancer
2001,
34,
S91–S94. [CrossRef]
351. Hintze, C.; Dinkel, J.; Biederer, J.; Heussel, C.P.; Puderbach, M. New procedures—Comprehensive staging of lung cancer with
MRI.
Radiologe
2010,
50,
699–705. [CrossRef]
352. Khalil, A.; Bouhela, T.; Carette, M.F. Contribution of MRI in lung cancer staging.
JBR-BTR
2013,
96,
132–141. [CrossRef]
353. Biederer, J.; Ohno, Y.; Hatabu, H.; Schiebler, M.L.; van Beek, E.J.R.; Vogel-Claussen, J.; Kauczor, H.U. Screening for lung cancer:
Does MRI have a role?
Eur. J. Radiol.
2017,
86,
353–360. [CrossRef]
354. Meier-Schroers, M.; Homsi, R.; Schild, H.H.; Thomas, D. Lung cancer screening with MRI: Characterization of nodules with
different non-enhanced MRI sequences.
Acta Radiol.
2019,
60,
168–176. [CrossRef]
355. Meier-Schroers, M.; Homsi, R.; Skowasch, D.; Buermann, J.; Zipfel, M.; Schild, H.H.; Thomas, D. Lung cancer screening with MRI:
Results of the first screening round.
J. Cancer Res. Clin. Oncol.
2018,
144,
117–125. [CrossRef]
356. Cobben, D.C.P.; de Boer, H.C.J.; Tijssen, R.H.; Rutten, E.; van Vulpen, M.; Peerlings, J.; Troost, E.G.C.; Hoffmann, A.L.; van Lier, A.
Emerging role of MRI for radiation treatment planning in lung cancer.
Technol. Cancer Res. Treat.
2016,
15,
NP47–NP60. [CrossRef]
357. Weller, A.; Papoutsaki, M.V.; Waterton, J.C.; Chiti, A.; Stroobants, S.; Kuijer, J.; Blackledge, M.; Morgan, V.; deSouza, N.M.
Diffusion-weighted (dw) MRI in lung cancers: Adc test-retest repeatability.
Eur. Radiol.
2017,
27,
4552–4562. [CrossRef]
358. Kim, H.S.; Lee, K.S.; Ohno, Y.; van Beek, E.J.R.; Biederer, J.; Int Workshop Pulm, F. PET/CT versus MRI for diagnosis, staging, and
follow-up of lung cancer.
J. Magn. Reson. Imaging
2015,
42,
247–260. [CrossRef]
359. Ohno, Y.; Koyama, H.; Lee, H.Y.; Yoshikawa, T.; Sugimura, K. Magnetic resonance imaging (MRI) and positron emission
tomography (PET)/MRI for lung cancer staging.
J. Thorac. Imaging
2016,
31,
215–227. [CrossRef]
360. Pasechnikov, V.; Chukov, S.; Fedorov, E.; Kikuste, I.; Leja, M. Gastric cancer: Prevention, screening and early diagnosis.
World J.
Gastroenterol.
2014,
20,
13842–13862. [CrossRef]
361. Renzulli, M.; Clemente, A.; Spinelli, D.; Ierardi, A.M.; Marasco, G.; Farina, D.; Brocchi, S.; Ravaioli, M.; Pettinari, I.; Cescon, M.;
et al. Gastric cancer staging: Is it time for magnetic resonance imaging?
Cancers
2020,
12,
1402. [CrossRef]
362. Zhang, Y.J.; Yu, J.C. The role of MRI in the diagnosis and treatment of gastric cancer.
Diagn. Interv. Radiol.
2020,
26,
176–182.
[CrossRef]
363. De Vuysere, S.; Vandecaveye, V.; De Bruecker, Y.; Carton, S.; Vermeiren, K.; Tollens, T.; De Keyzer, F.; Dresen, R.C. Accuracy of
whole-body diffusion-weighted MRI (wb-dwi/MRI) in diagnosis, staging and follow-up of gastric cancer, in comparison to CT: A
pilot study.
BMC Med. Imaging
2021,
21,
9. [CrossRef]
364. Caivano, R.; Rabasco, P.; Lotumolo, A.; D’ Antuono, F.; Zandolino, A.; Villonio, A.; Macarini, L.; Guglielmi, G.; Salvatore, M.;
Cammarota, A. Gastric cancer: The role of diffusion weighted imaging in the preoperative staging.
Cancer Investig.
2014,
32,
184–190. [CrossRef]
365. Hasbahceci, M.; Akcakaya, A.; Memmi, N.; Turkmen, I.; Cipe, G.; Yildiz, P.; Arici, D.S.; Muslumanoglu, M. Diffusion MRI on
lymph node staging of gastric adenocarcinoma.
Quant. Imaging Med. Surg.
2015,
5,
392–400.
366. Takahashi, H.; Yano, H.; Matsushita, M.; Monden, T.; Kinuta, M.; Tateishi, H.; Nakano, Y.; Matsui, S.; Iwazawa, T.; Kanoh, T.; et al.
Preoperative staging of gastric cancer: Diagnosing the depth of invasion in the gastric wall with MRI. In Proceedings of the 3rd
International Gastric Cancer Congress, Seoul, Korea, 27–30 April 1999; pp. 411–414.
367. Tokuhara, T.; Tanigawa, N.; Matsuki, M.; Nomura, E.; Mabuchi, H.; Lee, S.W.; Tatsumi, Y.; Nishimura, H.; Yoshinaka, R.;
Kurisu, Y.; et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall
superparamagnetic iron oxide (uspio): Diagnostic performance in post-contrast images using new diagnostic criteria.
Gastric
Cancer
2008,
11,
194–200. [CrossRef]
368. Arocena, M.G.; Barturen, A.; Bujanda, L.; Casado, O.; Ramirez, M.M.; Oleagoitia, J.M.; Iturri, M.G.; Mugica, P.; Cosme, A.;
Gutierrez-Stampa, M.A.; et al. MRI and endoscopic ultrasonography in the staging of gastric cancer.
Rev. Esp. Enferm. Dig.
2006,
98,
582–586. [CrossRef]
369. Malaj, A.; Bilaj, F.; Shahini, A.; Miraka, M. Ct/MRI accuracy in detecting and determining preoperative stage of gastric
adenocarcinoma in albania.
Wspolczesna Onkol.
2017,
21,
168–173. [CrossRef]
370. Heye, T.; Kuntz, C.; Dux, M.; Encke, J.; Palmowski, M.; Autschbach, F.; Volke, F.; Kauffmann, G.W.; Grenacher, L. Ct and
endoscopic ultrasound in comparison to endoluminal MRI-preliminary results in staging gastric carcinoma.
Eur. J. Radiol.
2009,
70,
336–341. [CrossRef]
371. Kim, A.Y.; Han, J.K.; Seong, C.K.; Kim, T.K.; Choi, B.I. MRI in staging advanced gastric cancer: Is it useful compared with spiral
CT?
J. Comput. Assist. Tomogr.
2000,
24,
389–394. [CrossRef]
372. Maccioni, F.; Marcelli, G.; Al Ansari, N.; Zippi, M.; De Marco, V.; Kagarmanova, A.; Vestri, A.; Marcheg-giano-Clarke, L.; Marini,
M. Preoperative t and n staging of gastric cancer: Magnetic resonance imaging (MRI) versus multi detector computed tomography
(MDCT).
Clin. Ter.
2010,
161,
e57–e62.
373. Ma, L.; Xu, X.W.; Zhang, M.; Zheng, S.Q.; Zhang, B.; Zhang, W.; Wang, P.J. Dynamic contrast-enhanced MRI of gastric cancer:
Correlations of the pharmacokinetic parameters with histological type, lauren classification, and angiogenesis.
Magn. Reson.
Imaging
2017,
37,
27–32. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0046.png
Int. J. Mol. Sci.
2022,
23,
1339
46 of 55
374. Joo, I.; Lee, J.M.; Han, J.K.; Yang, H.K.; Lee, H.J.; Choi, B.I. Dynamic contrast-enhanced MRI of gastric cancer: Correlation of the
perfusion parameters with pathological prognostic factors.
J. Magn. Reson. Imaging
2015,
41,
1608–1614. [CrossRef]
375. Bae, S.W.; Berlth, F.; Jeong, K.Y.; Suh, Y.S.; Kong, S.H.; Lee, H.J.; Kim, W.H.; Chung, J.K.; Yang, H.K. Establishment of a
18
F
FDG-PET/MRI imaging protocol for gastric cancer pdx as a preclinical research tool.
J. Gasric Cancer
2020,
20,
60–71. [CrossRef]
376. Lee, D.H.; Kim, S.H.; Joo, I.; Hur, B.Y.; Han, J.K. Comparison between
18
F-FDG PET/MRI and mdct for the assessment of
preoperative staging and resectability of gastric cancer.
Eur. J. Radiol.
2016,
85,
1085–1091. [CrossRef]
377. Liu, Y.; Zheng, D.; Liu, J.J.; Cui, J.X.; Xi, H.Q.; Zhang, K.C.; Huang, X.H.; Wei, B.; Wang, X.X.; Xu, B.X.; et al. Comparing PET/MRI
with PET/CT for pretreatment staging of gastric cancer.
Gastroenterol. Res. Pract.
2019,
2019,
9564627. [CrossRef]
378. Yuan, Y.; Chen, L.G.; Ren, S.N.; Wang, Z.; Chen, Y.K.; Jin, A.G.; Li, S.; Fang, X.; Wang, T.G.; Bian, Y.; et al. Diagnostic performance
in t staging for patients with esophagogastric junction cancer using high-resolution MRI: A comparison with conventional MRI at
3 tesla.
Cancer Imaging
2019,
19,
9. [CrossRef]
379. Pang, L.; Wang, J.; Fan, Y.; Xu, R.; Bai, Y.P.; Bai, L.C. Correlations of tnm staging and lymph node metastasis of gastric cancer with
MRI features and vegf expression.
Cancer Biomark.
2018,
23,
53–59. [CrossRef]
380. Giganti, F.; Orsenigo, E.; Arcidiacono, P.G.; Nicoletti, R.; Albarello, L.; Ambrosi, A.; Salerno, A.; Esposito, A.; Petrone, M.C.;
Chiari, D.; et al. Preoperative locoregional staging of gastric cancer: Is there a place for magnetic resonance imaging? Prospective
comparison with eus and multidetector computed tomography.
Gastric Cancer
2016,
19,
216–225. [CrossRef]
381. Garrido-Laguna, I.; Hidalgo, M. Pancreatic cancer: From state-of-the-art treatments to promising novel therapies.
Nat. Rev. Clin.
Oncol.
2015,
12,
319–334. [CrossRef]
382. Barnes, C.A.; Krzywda, E.; Lahiff, S.; McDowell, D.; Christians, K.K.; Knechtges, P.; Tolat, P.; Hohenwalter, M.; Dua, K.; Khan,
A.H.; et al. Development of a high risk pancreatic screening clinic using 3.0 t MRI.
Fam. Cancer
2018,
17,
101–111. [CrossRef]
383. Gaa, J.; Fingerle, A.A.; Holzapfel, K.; Rummeny, E.J. MRI for malignant pancreatic tumors.
Radiologe
2009,
49,
124–130. [CrossRef]
384. Ueno, M.; Niwa, T.; Ohkawa, S.; Amano, A.; Masaki, T.; Miyakawa, K.; Yoshida, T. The usefulness of perfusion-weighted magnetic
resonance imaging in advanced pancreatic cancer.
Pancreas
2009,
38,
644–648. [CrossRef] [PubMed]
385. Gassert, F.G.; Ziegelmayer, S.; Luitjens, J.; Gassert, F.T.; Tollens, F.; Rink, J.; Makowski, M.R.; Rubenthaler, J.; Froelich, M.F.
Additional MRI for initial m-staging in pancreatic cancer: A cost-effectiveness analysis.
Eur. Radiol.
2021,
1–9. [CrossRef]
[PubMed]
386. Visser, B.C.; Yeh, B.M.; Qayyum, A.; Way, L.W.; McCulloch, C.E.; Coakley, F.V. Characterization of cystic pancreatic masses:
Relative accuracy of CT and MRI.
Am. J. Roentgenol.
2007,
189,
648–656. [CrossRef] [PubMed]
387. Chen, F.M.; Ni, J.M.; Zhang, Z.Y.; Zhang, L.; Li, B.; Jiang, C.J. Presurgical evaluation of pancreatic cancer: A comprehensive
imaging comparison of CT versus MRI.
Am. J. Roentgenol.
2016,
206,
526–535. [CrossRef] [PubMed]
388. Deng, Y.; Ming, B.; Wu, J.L.; Zhou, T.; Zhang, S.Y.; Chen, Y.; Lan, C.; Zhang, X.M. Magnetic resonance imaging for preoperative
staging of pancreatic cancer based on the 8th edition of ajcc guidelines.
J. Gastrointest. Oncol.
2020,
11,
329–336. [CrossRef]
[PubMed]
389. Litjens, G.; Riviere, D.M.; van Geenen, E.J.M.; Radema, S.A.; Brosens, L.A.A.; Prokop, M.; van Laarhoven, C.; Hermans, J.J.
Diagnostic accuracy of contrast-enhanced diffusion-weighted MRI for liver metastases of pancreatic cancer: Towards adequate
staging and follow-up of pancreatic cancer—DIA-PANC study: Study protocol for an international, multicenter, diagnostic trial.
BMC Cancer
2020,
20,
8. [CrossRef]
390. Jhaveri, K.S.; Jandaghi, A.B.; Thipphavong, S.; Espin-Garcia, O.; Dodd, A.; Hutchinson, S.; Reichman, T.W.; Moulton, C.A.;
McGilvary, I.D.; Gallinger, S. Can preoperative liver MRI with gadoxetic acid help reduce open-close laparotomies for curative
intent pancreatic cancer surgery?
Cancer Imaging
2021,
21,
12. [CrossRef]
391. Riviere, D.M.; van Geenen, E.J.M.; van der Kolk, B.M.; Nagtegaal, I.D.; Radema, S.A.; van Laarhoven, C.; Hermans, J.J. Improving
preoperative detection of synchronous liver metastases in pancreatic cancer with combined contrast-enhanced and diffusion-
weighted MRI.
Abdom. Radiol.
2019,
44,
1756–1765. [CrossRef]
392. Yang, M.; Hopp, A.C.; Bekaii-Saab, T.S.; Collins, J.M. Sister mary joseph nodule in advanced pancreatic adenocarcinoma identified
on
18
F-FDG PET/MRI.
J. Nucl. Med. Technol.
2019,
47,
341–342. [CrossRef]
393. Sandrasegaran, K.; Nutakki, K.; Tahir, B.; Dhanabal, A.; Tann, M.; Cote, G.A. Use of diffusion-weighted MRI to differentiate
chronic pancreatitis from pancreatic cancer.
Am. J. Roentgenol.
2013,
201,
1002–1008. [CrossRef]
394. Kim, J.K.; Altun, E.; Elias, J.; Pamuklar, E.; Rivero, H.; Semelka, R.C. Focal pancreatic mass: Distinction of pancreatic cancer from
chronic pancreatitis using gadolinium-enhanced 3d-gradient-echo MRI.
J. Magn. Reson. Imaging
2007,
26,
313–322. [CrossRef]
[PubMed]
395. Liu, S.A.; Fu, W.W.; Liu, Z.J.; Liu, M.; Ren, R.M.; Zhai, H.X.; Li, C.L. MRI-guided celiac plexus neurolysis for pancreatic cancer
pain: Efficacy and safety.
J. Magn. Reson. Imaging
2016,
44,
923–928. [CrossRef] [PubMed]
396. Niwa, T.; Ueno, M.; Shinya, N.; Gotoh, T.; Kwee, T.C.; Takahara, T.; Yoshida, T.; Ohkawa, S.; Doiuchi, T.; Inoue, T. Dynamic
susceptibility contrast MRI in advanced pancreatic cancer: Semi-automated analysis to predict response to chemotherapy.
NMR
Biomed.
2010,
23,
347–352. [CrossRef] [PubMed]
397. Zhang, T.; Zhang, F.; Meng, Y.F.; Wang, H.; Le, T.; Wei, B.J.; Lee, D.; Willis, P.; Shen, B.Z.; Yang, X.M. Diffusion-weighted MRI
monitoring of pancreatic cancer response to radiofrequency heat-enhanced intratumor chemotherapy.
NMR Biomed.
2013,
26,
1762–1767. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0047.png
Int. J. Mol. Sci.
2022,
23,
1339
47 of 55
398. Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From
diagnosis to treatment.
Surg. Oncol.
2016,
25,
74–85. [CrossRef]
399. Wang, G.B.; Zhu, S.C.; Li, X.K. Comparison of values of CT and MRI imaging in the diagnosis of hepatocellular carcinoma and
analysis of prognostic factors.
Oncol. Lett.
2019,
17,
1184–1188. [CrossRef]
400. Kloeckner, R.; dos Santos, D.P.; Kreitner, K.F.; Leicher-Duber, A.; Weinmann, A.; Mittler, J.; Duber, C. Quantitative assessment of
washout in hepatocellular carcinoma using MRI.
BMC Cancer
2016,
16,
8. [CrossRef]
401. Sanghvi, T.; Boyum, J.; Spilseth, B.; Schat, R.; Estby, H.; Taylor, A. MRI for hepatocellular carcinoma: A primer for magnetic
resonance imaging interpretation.
Abdom. Radiol.
2018,
43,
1143–1151. [CrossRef]
402. Hectors, S.J.; Lewis, S.; Besa, C.; King, M.J.; Said, D.; Putra, J.; Ward, S.; Higashi, T.; Thung, S.; Yao, S.; et al. MRI radiomics
features predict immuno-oncological characteristics of hepatocellular carcinoma.
Eur. Radiol.
2020,
30,
3759–3769. [CrossRef]
403. Low, H.M.; Choi, J.Y.; Tan, C.H. Pathological variants of hepatocellular carcinoma on MRI: Emphasis on histopathologic
correlation.
Abdom. Radiol.
2019,
44,
493–508. [CrossRef]
404. Kim, Y.N.; Song, J.S.; Moon, W.S.; Hwang, H.P.; Kim, Y.K. Intra-individual comparison of hepatocellular carcinoma imaging
computed tomconstrast-enhancedtte computed tomography, gadopentetate dimeglumine-enhanced MRI, and gadoxetic acid-
enhanced MRI.
Acta Radiol.
2018,
59,
639–648. [CrossRef] [PubMed]
405. Gabr, A.E.; Mikhael, H.S.W.; El-Maadawy, S.M. Comparison between subtraction and dynamic MRI in assessing treatment
response following radiofrequency ablation in patients with hepatocellular carcinoma.
Egypt. J. Radiol. Nucl. Med.
2021,
52,
10.
[CrossRef]
406. Jha, R.C.; Zanello, P.A.; Nguyen, X.M.; Pehlivanova, M.; Johnson, L.B.; Fishbein, T.; Shetty, K. Small hepatocellular carcinoma:
MRI findings for predicting tumor growth rates.
Acad. Radiol.
2014,
21,
1455–1464. [PubMed]
407. Abdullah, S.S.; Pialat, J.B.; Wiart, M.; Duboeuf, F.; Mabrut, J.Y.; Bancel, B.; Rode, A.; Ducerf, C.; Baulieux, J.; Berthezene, Y.
Characterization of hepatocellular carcinoma and colorectal liver metastasis by means of perfusion MRI.
J. Magn. Reson. Imaging
2008,
28,
390–395. [CrossRef]
408. Gong, X.Q.; Tao, Y.Y.; Wu, Y.K.; Liu, N.; Yu, X.; Wang, R.; Zheng, J.; Liu, N.; Huang, X.H.; Li, J.D.; et al. Progress of MRI radiomics
in hepatocellular carcinoma.
Front. Oncol.
2021,
11,
13. [CrossRef]
409. Carbonell, G.; Kennedy, P.; Bane, O.; Kirmani, A.; El Homsi, M.; Stocker, D.; Said, D.; Mukherjee, P.; Gevaert, O.; Lewis, S.; et al.
Precision of MRI radiomics features in the liver and hepatocellular carcinoma.
Eur. Radiol.
2021,
1–11. [CrossRef]
410. Kim, H.; Park, M.S.; Choi, J.Y.; Park, Y.N.; Kim, M.J.; Kim, K.S.; Choi, J.S.; Han, K.H.; Kim, E.; Kim, K.W. Can microvessel invasion
of hepatocellular carcinoma be predicted by pre-operative MRI?
Eur. Radiol.
2009,
19,
1744–1751. [CrossRef]
411. Hennedige, T.; Venkatesh, S.K. Imaging of hepatocellular carcinoma: Diagnosis, staging and treatment monitoring.
Cancer Imaging
2013,
12,
530–547. [CrossRef]
412. Taneja, S.; Taneja, R.; Kashyap, V.; Jha, A.; Jena, A. Ga-68-psma uptake in hepatocellular carcinoma.
Clin. Nucl. Med.
2017,
42,
E69–E70. [CrossRef]
413. Dondi, F.; Albano, D.; Cerudelli, E.; Gazzilli, M.; Giubbini, R.; Treglia, G.; Bertagna, F. Radiolabelled psma PET/CT or PET/MRI
in hepatocellular carcinoma (HCC): A systematic review.
Clin. Transl. Imaging
2020,
8,
461–467. [CrossRef]
414. Qiu, Z.L.; Pan, Y.S.; Wei, J.; Wu, D.J.; Xia, Y.; Shen, D.G. Predicting symptoms from multiphasic MRI via multi-instance attention
learning for hepatocellular carcinoma grading. In Proceedings of the International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI), Strasbourg, France, 27 September–1 October 2021; Springer: Cham, Switzerland,
2021; pp. 439–448.
415. Saito, K.; Ledsam, J.; Sugimoto, K.; Sourbron, S.; Araki, Y.; Tokuuye, K. Dce-MRI for early prediction of response in hepatocellular
carcinoma after tace and sorafenib therapy: A pilot study.
J. Belg. Soc. Radiol.
2018,
102,
9. [CrossRef] [PubMed]
416. Fan, Y.F.; Yu, Y.X.; Wang, X.M.; Hu, M.J.; Du, M.Z.; Guo, L.C.A.; Sun, S.F.; Hu, C.H. Texture analysis based on gd-eob-dtpa-
enhanced MRI for identifying vessels encapsulating tumor clusters (vetc)-positive hepatocellular carcinoma.
J. Hepatocell.
Carcinoma
2021,
8,
349–359. [CrossRef] [PubMed]
417. Li, X.Q.; Wang, X.; Zhao, D.W.; Sun, J.; Liu, J.J.; Lin, D.D.; Yang, G.; Liu, H.; Xia, Z.Y.; Jia, C.Y.; et al. Application of gd-eob-
dtpa-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma.
World J. Surg. Oncol.
2020,
18,
219. [CrossRef]
[PubMed]
418. Hanna, R.F.; Kased, N.; Kwan, S.W.; Gamst, A.C.; Santosa, A.C.; Hassanein, T.; Sirlin, C.B. Double-contrast MRI for accurate
staging of hepatocellular carcinoma in patients with cirrhosis.
Am. J. Roentgenol.
2008,
190,
47–57. [CrossRef]
419. Wu, Y.N.; Huang, L.N.; Li, B.S.; Li, H.G. The diagnostic value of gd-eob-dtpa-enhanced MRI scans in small hepatocellular
carcinoma in patients with liver cirrhosis.
Int. J. Clin. Exp. Med.
2020,
13,
6909–6915.
420. Taouli, B.; Johnson, R.S.; Hajdu, C.H.; Oei, M.T.H.; Merad, M.; Yee, H.; Rusinek, H. Hepatocellular carcinoma: Perfusion
quantification with dynamic contrast-enhanced MRI.
Am. J. Roentgenol.
2013,
201,
795–800. [CrossRef]
421. Akhtar, S.; Hussain, M.; Ali, S.; Maqsood, S.; Akram, S.; Abbas, N. Comparison of positive predictive value of multiphasic
dynamic contrast enhanced MRI with dynamic contrast enhanced ct for the detection of hepatocellular carcinoma.
Pak. J. Med
Health Sci.
2020,
14,
562–564.
422. Gluskin, J.S.; Chegai, F.; Monti, S.; Squillaci, E.; Mannelli, L. Hepatocellular carcinoma and diffusion-weighted MRI: Detection
and evaluation of treatment response.
J. Cancer
2016,
7,
1565–1570. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0048.png
Int. J. Mol. Sci.
2022,
23,
1339
48 of 55
423. Chen, H.Y.; Hou, Y.L.; Ma, X.M.; Xie, H.Y.; Ye, M.; Bai, Y.R. Ct and MRI in target delineation in primary hepatocellular carcinoma.
Cancer Radiother.
2013,
17,
750–754. [CrossRef]
424. Zemour, J.; Marty, M.; Lapuyade, B.; Collet, D.; Chiche, L. Gallbladder tumor and pseudotumor: Diagnosis and management.
J.
Visc. Surg.
2014,
151,
289–300. [CrossRef]
425. Tseng, J.H.; Wan, Y.L.; Hung, C.F.; Ng, K.K.; Pan, K.T.; Chou, A.S.B.; Liu, N.J. Diagnosis and staging of gallbladder carcinoma—
Evaluation with dynamic MR imaging.
Clin. Imaging
2002,
26,
177–182. [CrossRef]
426. Vendrami, C.L.; Magnetta, M.J.; Mittal, P.K.; Moreno, C.C.; Miller, F.H. Gallbladder carcinoma and its differential diagnosis at
MRI: What radiologists should know.
Radiographics
2021,
41,
78–95. [CrossRef] [PubMed]
427. Wu, S.S.; Zou, X.L.; Wang, Q.X.; Hu, D.Y.; Li, Z.; Xu, C.O. Gallbladder carcinoma: An initial clinical experience of reduced
field-of-view diffusion-weighted MRI.
Cancer Imaging
2020,
20,
8. [CrossRef] [PubMed]
428. Kuipers, H.; Hoogwater, F.J.H.; Holtman, G.A.; van der Hoorn, A.; de Boer, M.T.; de Haas, R.J. Clinical value of diffusion-weighted
MRI for differentiation between benign and malignant gallbladder disease: A systematic review and meta-analysis.
Acta Radiol.
2021,
62,
987–996. [CrossRef]
429. Corgna, E.; Betti, M.; Gatta, G.; Roila, F.; De Mulder, P.H.M. Renal cancer.
Crit. Rev. Oncol./Hematol.
2007,
64,
247–261. [CrossRef]
430. Bensalah, K.; Albiges, L.; Bernhard, J.C.; Bigot, P.; Bodin, T.; Boissier, R.; Correas, J.M.; Gimel, P.; Hetet, J.F.; Long, J.A.; et al.
French ccafu guidelines—Update 2018–2020: Management of kidney cancer.
Prog. Urol.
2018,
28,
R5–R33. [CrossRef]
431. Couvidat, C.; Eiss, D.; Verkarre, V.; Merran, S.; Correas, J.M.; Mejean, A.; Helenon, O. Renal papillary carcinoma: CT and MRI
features.
Diagn. Interv. Imaging
2014,
95,
1055–1063. [CrossRef]
432. Shinagare, A.B.; Davenport, M.S.; Park, H.; Pedrosa, I.; Remer, E.M.; Chandarana, H.; Doshi, A.M.; Schieda, N.; Smith, A.D.;
Vikram, R.; et al. Lexicon for renal mass terms at CT and MRI: A consensus of the society of abdominal radiology disease-focused
panel on renal cell carcinoma.
Abdom. Radiol.
2021,
46,
703–722. [CrossRef]
433. Vannier, M.W.
Imaging Renal Carcinoma;
Demos Medical Publications: New York, NY, USA, 2011; Volume 2, pp. 37–56.
434. Chiarello, M.A.; Mali, R.D.; Kang, S.K. Diagnostic accuracy of MRI for detection of papillary renal cell carcinoma: A systematic
review and meta-analysis.
Am. J. Roentgenol.
2018,
211,
812–821. [CrossRef]
435. Wehrli, N.E.; Kim, M.J.; Matza, B.W.; Melamed, J.; Taneja, S.S.; Rosenkrantz, A.B. Utility of MRI features in differentiation of
central renal cell carcinoma and renal pelvic urothelial carcinoma.
Am. J. Roentgenol.
2013,
201,
1260–1267. [CrossRef]
436. Palmowski, M.; Schifferdecker, I.; Zwick, S.; Macher-Goeppinger, S.; Laue, H.; Haferkamp, A.; Kauczor, H.U.; Kiessling, F.;
Hallscheidt, P. Tumor perfusion assessed by dynamic contrast-enhanced MRI correlates to the grading of renal cell carcinoma:
Initial results.
Eur. J. Radiol.
2010,
74,
e177–e181. [CrossRef] [PubMed]
437. Lei, Y.; Wang, H.; Li, H.F.; Rao, Y.W.; Liu, J.H.; Tian, S.F.; Ju, Y.; Li, Y.; Chen, A.L.; Chen, L.H.; et al. Diagnostic significance of
diffusion-weighted MRI in renal cancer.
BioMed Res. Int.
2015,
2015,
172165. [CrossRef] [PubMed]
438. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016.
CA Cancer J. Clin.
2016,
66,
7–30. [CrossRef]
439. Saito, W.; Amanuma, M.; Tanaka, J.; Heshiki, A. Histopathological analysis of a bladder cancer stalk observed on MRI.
Magn.
Reson. Imaging
2000,
18,
411–415. [CrossRef]
440. Tillou, X.; Grardel, E.; Fourmarier, M.; Bernasconi, T.; Demailly, M.; Hakami, F.; Saint, F.; Petit, J. Can MRI be used to distinguish
between superficial and invasive transitional cell bladder cancer?
Prog. Urol.
2008,
18,
440–444. [CrossRef]
441. Dolz, J.; Xu, X.P.; Rony, J.; Yuan, J.; Liu, Y.; Granger, E.; Desrosiers, C.; Zhang, X.; Ben Ayed, I.; Lu, H.B. Multiregion segmentation
of bladder cancer structures in MRI with progressive dilated convolutional networks.
Med. Phys.
2018,
45,
5482–5493. [CrossRef]
[PubMed]
442. Barentsz, J.O.; Jager, G.J.; Witjes, J.A.; Ruijs, J.H.J. Primary staging of urinary bladder carcinoma: The role of MRI and a comparison
with ct.
Eur. Radiol.
1996,
6,
129–133. [CrossRef]
443. Mehraj, A.; Hameed, A.; Nanda, S.; Wazir, B.S.; Khan, M.A. Role of MRI in staging urinary bladder tumors.
Ann. Med. Health Sci.
Res.
2017,
7,
116–121.
444. Abouelkheir, R.T.; Abdelhamid, A.; Abou El-Ghar, M.; El-Diasty, T. Imaging of bladder cancer: Standard applications and future
trends.
Med. Lith.
2021,
57,
220. [CrossRef]
445. Wong, V.C.K.; Ganeshan, D.; Jensen, C.T.; Devine, C.E. Imaging and management of bladder cancer.
Cancers
2021,
13,
1396.
[CrossRef]
446. Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder
cancer: A systematic review and meta-analysis.
Eur. J. Radiol.
2017,
95,
46–55. [CrossRef] [PubMed]
447. Ghafoori, M.; Shakiba, M.; Ghiasi, A.; Asvadi, N.; Hosseini, K.; Alavi, M. Value of MRI in local staging of bladder cancer.
Urol. J.
2013,
10,
866–872.
448. Rosenkrantz, A.B.; Mussi, T.C.; Melamed, J.; Taneja, S.S.; Huang, W.C. Bladder cancer: Utility of MRI in detection of occult
muscle-invasive disease.
Acta Radiol.
2012,
53,
695–699. [CrossRef] [PubMed]
449. Badawy, M.; Farg, H.; Gadelhak, B.; ElGhar, M.A.; Sadeq, A.G.; Borg, M. Diagnostic performance of 3-tesla multiparametric MRI
for assessment of the bladder cancer t stage and histologic grade.
Egypt. J. Radiol. Nucl. Med.
2020,
51,
11. [CrossRef]
450. Juri, H.; Narumi, Y.; Panebianco, V.; Osuga, K. Staging of bladder cancer with multiparametric MRI.
Br. J. Radiol.
2020,
93,
7.
[CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0049.png
Int. J. Mol. Sci.
2022,
23,
1339
49 of 55
451. Naish, J.H.; McGrath, D.M.; Bains, L.J.; Passera, K.; Roberts, C.; Watson, Y.; Cheung, S.; Taylor, M.B.; Logue, J.P.; Buckley, D.L.;
et al. Comparison of dynamic contrast-enhanced MRI and dynamic contrast-enhanced CT biomarkers in bladder cancer.
Magn.
Reson. Med.
2011,
66,
219–226. [CrossRef]
452. Hijab, A.; Tocco, B.; Hanson, I.; Meijer, H.; Nyborg, C.J.; Bertelsen, A.S.; Smeenk, R.J.; Smith, G.; Michalski, J.; Baumann, B.C.; et al.
Mr-guided adaptive radiotherapy for bladder cancer.
Front. Oncol.
2021,
11,
12. [CrossRef]
453. Wollin, D.A.; Deng, F.M.; Huang, W.C.; Babb, J.S.; Rosenkrantz, A.B. Conventional and diffusion-weighted MRI features in
diagnosis of metastatic lymphadenopathy in bladder cancer.
Can. J. Urol.
2014,
21,
7454–7459.
454. Watanabe, H.; Kanematsu, M.; Kondo, H.; Goshima, S.; Tsuge, Y.; Onozuka, M.; Moriyama, N. Preoperative t staging of urinary
bladder cancer: Does diffusion-weighted MRI have supplementary value?
Am. J. Roentgenol.
2009,
192,
1361–1366. [CrossRef]
455. Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; et al.
Seer Cancer Statistics Review, 1975–2014,
April 2017 ed.; National Cancer Institute: Bethesda, MD, USA, 2017.
456. Sharma, S.K.; Nemieboka, B.; Sala, E.; Lewis, J.S.; Zeglis, B.M. Molecular imaging of ovarian cancer.
J. Nucl. Med.
2016,
57,
827–833. [CrossRef]
457. Engbersen, M.P.; van’ t Sant, I.; Lok, C.; Lambregts, D.M.J.; Sonke, G.S.; Beets-Tan, R.G.H.; van Driel, W.J.; Lahaye, M.J. MRI with
diffusion-weighted imaging to predict feasibility of complete cytoreduction with the peritoneal cancer index (PCI) in advanced
stage ovarian cancer patients.
Eur. J. Radiol.
2019,
114,
146–151. [CrossRef] [PubMed]
458. Michielsen, K.; Dresen, R.; Vanslembrouck, R.; De Keyzer, F.; Amant, F.; Mussen, E.; Leunen, K.; Berteloot, P.; Moerman, P.;
Vergote, I.; et al. Diagnostic value of whole body diffusion-weighted MRI compared to computed tomography for pre-operative
assessment of patients suspected for ovarian cancer.
Eur. J. Cancer
2017,
83,
88–98. [CrossRef] [PubMed]
459. Rockall, A.G. Diffusion weighted MRI in ovarian cancer.
Curr. Opin. Oncol.
2014,
26,
529–535. [CrossRef] [PubMed]
460. Carter, J.S.; Koopmeiners, J.S.; Kuehn-Hajder, J.E.; Metzger, G.J.; Lakkadi, N.; Downs, L.S.; Bolan, P.J. Quantitative multiparametric
MRI of ovarian cancer.
J. Magn. Reson. Imaging
2013,
38,
1501–1509. [CrossRef] [PubMed]
461. Mikkelsen, M.S.; Petersen, L.K.; Blaakaer, J.; Marinovskij, E.; Rosenkilde, M.; Andersen, G.; Bouchelouche, K.; Iversen, L.H.
Assessment of peritoneal metastases with DW-MRI, CT, and FDG PET/CT before cytoreductive surgery for advanced stage
epithelial ovarian cancer.
Eur. J. Surg. Oncol.
2021,
47,
2134–2141. [CrossRef]
462. Khiewvan, B.; Torigian, D.A.; Emamzadehfard, S.; Paydary, K.; Salavati, A.; Houshmand, S.; Werner, T.J.; Alavi, A. An update on
the role of PET/CT and PET/MRI in ovarian cancer.
Eur. J. Nucl. Med. Mol. Imaging
2017,
44,
1079–1091. [CrossRef] [PubMed]
463. Tsuyoshi, H.; Tsujikawa, T.; Yamada, S.; Okazawa, H.; Yoshida, Y. Diagnostic value of [
18
F]FDG PET/MRI for staging in patients
with ovarian cancer.
EJNMMI Res.
2020,
10,
117. [CrossRef]
464. Kim, C.K.; Park, B.K.; Choi, J.Y.; Kim, B.G.; Han, H. Detection of recurrent ovarian cancer at MRI: Comparison with integrated
PET/CT.
J. Comput. Assist. Tomogr.
2007,
31,
868–875. [CrossRef]
465. Schmidt, S.; Meuli, R.A.; Achtari, C.; Prior, J.O. Peritoneal carcinomatosis in primary ovarian cancer staging comparison between
mdct, MRI, and
18
F-FDG PET/CT.
Clin. Nucl. Med.
2015,
40,
371–377. [CrossRef]
466. Sanli, Y.; Turkmen, C.; Bakir, B.; Iyibozkurt, C.; Ozel, S.; Has, D.; Yilmaz, E.; Topuz, S.; Yavuz, E.; Unal, S.N.; et al. Diagnostic
value of PET/CT is similar to that of conventional MRI and even better for detecting small peritoneal implants in patients with
recurrent ovarian cancer.
Nucl. Med. Commun.
2012,
33,
509–515. [CrossRef]
467. Nam, E.J.; Yun, M.J.; Oh, Y.T.; Kim, J.W.; Kim, J.H.; Kim, S.; Jung, Y.W.; Kim, S.W.; Kim, Y.T. Diagnosis and staging of primary
ovarian cancer: Correlation between PET/CT, doppler us, and CT or MRI.
Gynecol. Oncol.
2010,
116,
389–394. [PubMed]
468. Reinhold, C.; Rockall, A.; Sadowski, E.A.; Siegelman, E.S.; Maturen, K.E.; Vargas, H.A.; Forstner, R.; Glanc, P.; Andreotti, R.F.;
Thomassin-Naggara, I. Ovarian-adnexal reporting lexicon for MRI: A white paper of the acr ovarian-adnexal reporting and data
systems MRI committee.
J. Am. Coll. Radiol.
2021,
18,
713–729. [CrossRef] [PubMed]
469. Murakami, N.; Ando, K.; Murata, M.; Murata, K.; Ohno, T.; Aoshika, T.; Kato, S.; Okonogi, N.; Saito, A.I.; Kim, J.Y.; et al. Why not
de-intensification for uterine cervical cancer?
Gynecol. Oncol.
2021,
163,
105–109. [CrossRef] [PubMed]
470. Novellas, S.; Fournol, M.; Marcotte-Bloch, C.; Mondot, L.; Caramella, T.; Bongain, A.; Chevallier, P. Magnetic resonance staging of
uterine cervix carcinoma.
Feuill. Rad.
2008,
48,
147–154. [CrossRef]
471. Bourgioti, C.; Chatoupis, K.; Moulopoulos, L.A. Current imaging strategies for the evaluation of uterine cervical cancer.
World J.
Radiol.
2016,
8,
342–354. [CrossRef]
472. Theodore, C.; Levaillant, J.M.; Capmas, P.; Chabi, N.; Skalli, D.; Vienet-Legue, L.; Haddad, B.; Fernandez, H.; Touboul, C. MRI
and ultrasound fusion imaging for cervical cancer.
Anticancer Res.
2017,
37,
5079–5085.
473. Marzouk, F.; Jalaguier-Coudray, A.; Villard-Mahjoub, R. Uterine cervical cancer: The new figo classification.
Imaging Femme
2021,
31,
30–39.
474. Kasuya, G.; Toita, T.; Furutani, K.; Kodaira, T.; Ohno, T.; Kaneyasu, Y.; Yoshimura, R.; Uno, T.; Yogi, A.; Ishikura, S.; et al.
Distribution patterns of metastatic pelvic lymph nodes assessed by ct/MRI in patients with uterine cervical cancer.
Radiat. Oncol.
2013,
8,
6. [CrossRef]
475. Zhu, Y.X.; Shen, B.M.; Pei, X.; Liu, H.X.; Li, G.Y. Ct, MRI, and PET imaging features in cervical cancer staging and lymph node
metastasis.
Am. J. Transl. Res.
2021,
13,
10536–10544.
476. Grueneisen, J.; Schaarschmidt, B.M.; Heubner, M.; Aktas, B.; Kinner, S.; Forsting, M.; Lauenstein, T.; Ruhlmann, V.; Umutlu, L.
Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: Preliminary results.
Eur. J. Nucl. Med. Mol.
Imaging
2015,
42,
1814–1824. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0050.png
Int. J. Mol. Sci.
2022,
23,
1339
50 of 55
477. Monteil, J.; Maubon, A.; Leobon, S.; Roux, S.; Marin, B.; Renaudie, J.; Genet, D.; Fermeaux, V.; Aubard, Y.; Tubiana-Mathieu, N.
Lymph node assessment with
18
F-FDG-PET and MRI in uterine cervical cancer.
Anticancer Res.
2011,
31,
3865–3871. [PubMed]
478. de Boer, P.; Adam, J.A.; Buist, M.R.; van de Vijver, M.J.; Rasch, C.R.; Stoker, J.; Bipat, S.; Stalpers, L.J.A. Role of MRI in detecting
involvement of the uterine internal os in uterine cervical cancer: Systematic review of diagnostic test accuracy.
Eur. J. Radiol.
2013,
82,
E422–E428. [CrossRef] [PubMed]
479. Kitajima, K.; Suenaga, Y.; Ueno, Y.; Kanda, T.; Maeda, T.; Deguchi, M.; Ebina, Y.; Yamada, H.; Takahashi, S.; Sugimura, K. Fusion
of PET and MRI for staging of uterine cervical cancer: Comparison with contrast-enhanced
18
F-FDG PET/CT and pelvic MRI.
Clin. Imaging
2014,
38,
464–469. [CrossRef] [PubMed]
480. Balleyguier, C.; Fournet, C.; Ben Hassen, W.; Zareski, E.; Morice, P.; Haie-Meder, C.; Uzan, C.; Gouy, S.; Duvillard, P.; Lhomme, C.
Management of cervical cancer detected during pregnancy: Role of magnetic resonance imaging.
Clin. Imaging
2013,
37,
70–76.
[CrossRef]
481. Surov, A.; Meyer, H.J.; Schob, S.; Hohn, A.K.; Bremicker, K.; Exner, M.; Stumpp, P.; Purz, S. Parameters of simultaneous
18
F-FDG-
PET/MRI predict tumor stage and several histopathological features in uterine cervical cancer.
Oncotarget
2017,
8,
28285–28296.
[CrossRef]
482. Lee, J.; Kim, C.K.; Gu, K.W.; Park, W. Value of blood oxygenation level-dependent MRI for predicting clinical outcomes in uterine
cervical cancer treated with concurrent chemoradiotherapy.
Eur. Radiol.
2019,
29,
6256–6265. [CrossRef]
483. Saida, T.; Sakata, A.; Tanaka, Y.O.; Ochi, H.; Ishiguro, T.; Sakai, M.; Takahashi, H.; Satoh, T.; Minami, M. Clinical and MRI
characteristics of uterine cervical adenocarcinoma: Its variants and mimics.
Korean J. Radiol.
2019,
20,
14. [CrossRef]
484. Steiner, A.; Narva, S.; Rinta-Kiikka, I.; Hietanen, S.; Hynninen, J.; Virtanen, J. Diagnostic efficiency of whole-body
18
F-FDG
PET/MRI, MRI alone, and suv and adc values in staging of primary uterine cervical cancer.
Cancer Imaging
2021,
21,
11. [CrossRef]
485. Ran, C.; Sun, J.; Qu, Y.H.; Long, N. Clinical value of MRI, serum scca, and ca125 levels in the diagnosis of lymph node metastasis
and para-uterine infiltration in cervical cancer.
World J. Surg. Oncol.
2021,
19,
11. [CrossRef]
486. Park, B.K.; Kim, T.J. Useful MRI findings for minimally invasive surgery for early cervical cancer.
Cancers
2021,
13,
4078.
[CrossRef]
487. Hauge, A.; Wegner, C.S.; Gaustad, J.V.; Simonsen, T.G.; Andersen, L.M.K.; Rofstad, E.K. Diffusion-weighted MRI-derived adc
values reflect collagen i content in pdx models of uterine cervical cancer.
Oncotarget
2017,
8,
105682–105691. [CrossRef] [PubMed]
488. Liu, Y.; Ye, Z.X.; Sun, H.R.; Bai, R.J. Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical
cancer.
Int. J. Gynecol. Cancer
2015,
25,
1073–1078. [CrossRef] [PubMed]
489. Liu, Y.; Liu, H.D.; Bai, X.; Ye, Z.X.; Sun, H.R.; Bai, R.J.; Wang, D.H. Differentiation of metastatic from non-metastatic lymph nodes
in patients with uterine cervical cancer using diffusion-weighted imaging.
Gynecol. Oncol.
2011,
122,
19–24. [CrossRef] [PubMed]
490. Liu, Y.; Bai, R.J.; Sun, H.R.; Liu, H.D.; Wang, D.H. Diffusion-weighted magnetic resonance imaging of uterine cervical cancer.
J.
Comput. Assist. Tomogr.
2009,
33,
858–862.
491. Hallac, R.R.; Ding, Y.; Yuan, Q.; McColl, R.W.; Lea, J.; Sims, R.D.; Weatherall, P.T.; Mason, R.P. Oxygenation in cervical cancer
and normal uterine cervix assessed using blood oxygenation level-dependent (bold) MRI at 3t.
Nmr Biomed.
2012,
25,
1321–1330.
[CrossRef]
492. Ryan, A.J.; Susil, B.; Jobling, T.W.; Oehler, M.K. Endometrial cancer.
Cell Tissue Res.
2005,
322,
53–61. [CrossRef]
493. Soneji, N.D.; Bharwani, N.; Ferri, A.; Stewart, V.; Rockall, A. Pre-operative MRI staging of endometrial cancer in a multicentre
cancer network: Can we match single centre study results?
Eur. Radiol.
2018,
28,
4725–4734. [CrossRef]
494. Taieb, S.; Rocourt, N.; Narducci, F.; Ceugnart, L. Endometrial cancer imaging.
Bull. Cancer
2012,
99,
13–20.
495. Nougaret, S.; Horta, M.; Sala, E.; Lakhman, Y.; Thomassin-Naggara, I.; Kido, A.; Masselli, G.; Bharwani, N.; Sadowski, E.; Ertmer,
A.; et al. Endometrial cancer MRI staging: Updated guidelines of the european society of urogenital radiology.
Eur. Radiol.
2019,
29,
792–805. [CrossRef]
496. Meissnitzer, M.; Forstner, R. MRI of endometrium cancer—How we do it.
Cancer Imaging
2016,
16,
9. [CrossRef]
497. Ortoft, G.; Dueholm, M.; Mathiesen, O.; Hansen, E.S.; Lundorf, E.; Moller, C.; Marinovskij, E.; Petersen, L.K. Preoperative staging
of endometrial cancer using tvs, MRI, and hysteroscopy.
Acta Obstet. Gynecol. Scand.
2013,
92,
536–545. [CrossRef] [PubMed]
498. Sadowski, E.A.; Robbins, J.B.; Guite, K.; Patel-Lippmann, K.; del Rio, A.M.; Kushner, D.M.; Al-Niaimi, A. Preoperative pelvic MRI
and serum cancer antigen-125: Selecting women with grade 1 endometrial cancer for lymphadenectomy.
Am. J. Roentgenol.
2015,
205,
W556–W564. [CrossRef] [PubMed]
499. Tanaka, T.; Terai, Y.; Ono, Y.J.; Fujiwara, S.; Tanaka, Y.; Sasaki, H.; Tsunetoh, S.; Kanemura, M.; Yamamoto, K.; Yamada, T.; et al.
Preoperative MRI and intraoperative frozen section diagnosis of myometrial invasion in patients with endometrial cancer.
Int. J.
Gynecol. Cancer
2015,
25,
879–883. [CrossRef] [PubMed]
500. Abu Freij, M.; Saleh, H.; Rawlins, H.; Duncan, T.; Nieto, J. The use of MRI for selecting patients with endometrial cancer and
significant co-morbidities for vaginal hysterectomy.
Arch. Gynecol. Obstet.
2011,
283,
1097–1101. [CrossRef] [PubMed]
501. Ben-Shachar, I.; Vitellas, K.M.; Cohn, D.E. The role of MRI in the conservative management of endometrial cancer.
Gynecol. Oncol.
2004,
93,
233–237. [CrossRef]
502. Bakir, B.; Sanli, S.; Bakir, V.L.; Ayas, S.; Yildiz, S.O.; Iyibozkurt, A.C.; Kartal, M.G.; Yavuz, E. Role of diffusion weighted MRI in
the differential diagnosis of endometrial cancer, polyp, hyperplasia, and physiological thickening.
Clin. Imaging
2017,
41,
86–94.
[CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0051.png
Int. J. Mol. Sci.
2022,
23,
1339
51 of 55
503. Zhou, Y.; Jiang, L.; Nuerlan, T. Application of diffusion-weighted MRI for endometrial cancer diagnosis.
Eur. J. Gynaecol. Oncol.
2018,
39,
655–658.
504. Ma, Q.L.; Wang, H.Y.; Tao, C.; Duan, F.; Li, X.L. Evaluation of 3.0t multimodal MRI in patients with endometrial cancer.
Acta Med.
Mediterr.
2021,
37,
1887–1892.
505. Chen, J.Y.; Gu, H.L.; Fan, W.M.; Wang, Y.H.; Chen, S.; Chen, X.; Wang, Z.Q. MRI-based radiomic model for preoperative risk
stratification in stage I endometrial cancer.
J. Cancer
2021,
12,
726–734. [CrossRef]
506. Fasmer, K.E.; Hodneland, E.; Dybvik, J.A.; Wagner-Larsen, K.; Trovik, J.; Salvesen, O.; Krakstad, C.; Haldorsen, I.H.S. Whole-
volume tumor MRI radiomics for prognostic modeling in endometrial cancer.
J. Magn. Reson. Imaging
2021,
53,
928–937.
[CrossRef]
507. Keles, D.K.; Evrimler, S.; Merd, N.; Erdemoglu, E. Endometrial cancer: The role of MRI quantitative assessment in preoperative
staging and risk stratification.
Acta Radiol
2021.
[CrossRef] [PubMed]
508. Chen, J.Y.; Fan, W.M.; Gu, H.L.; Zhang, W.; Liu, Y.T.; Wang, Y.J.; Pan, Z.C.; Wang, Z.Q. Preoperative MRI and immunohistochemical
examination for the prediction of high-risk endometrial cancer.
Gland Surg.
2021,
10,
2180–2191. [CrossRef] [PubMed]
509. Kim, H.J.; Cho, A.; Yun, M.; Kim, Y.T.; Kang, W. Comparison of FDG PET/CT and MRI in lymph node staging of endometrial
cancer.
Ann. Nucl. Med.
2016,
30,
104–113. [CrossRef] [PubMed]
510. Tsuyoshi, H.; Tsujikawa, T.; Yamada, S.; Okazawa, H.; Yoshida, Y. Diagnostic value of
18
F-FDG PET/MRI for staging in patients
with endometrial cancer.
Cancer Imaging
2020,
20,
9. [CrossRef] [PubMed]
511. Bezzi, C.; Zambella, E.; Ghezzo, S.; Fallanca, F.; Samanes Gajate, A.M.; Franchini, A.; Ironi, G.; Bergamini, A.; Monaco, L.;
Evangelista, L.; et al.
18
F-FDG PET/MRI in endometrial cancer: Systematic review and meta-analysis.
Clin. Transl. Imaging
2021,
1–14. [CrossRef]
512. Kitajima, K.; Suenaga, Y.; Ueno, Y.; Kanda, T.; Maeda, T.; Takahashi, S.; Ebina, Y.; Miyahara, Y.; Yamada, H.; Sugimura, K. Value of
fusion of PET and MRI for staging of endometrial cancer: Comparison with
18
F-FDG contrast-enhanced PET/CT and dynamic
contrast-enhanced pelvic MRI.
Eur. J. Radiol.
2013,
82,
1672–1676. [CrossRef]
513. Bian, L.H.; Wang, M.; Gong, J.; Liu, H.H.; Wang, N.; Wen, N.; Fan, W.S.; Xu, B.X.; Wang, M.Y.; Ye, M.X.; et al. Comparison of
integrated PET/MRI with PET/ct in evaluation of endometrial cancer: A retrospective analysis of 81 cases.
PeerJ
2019,
7,
10.
[CrossRef]
514. Hama, Y.; Tate, E. Palliative MRI-guided intensity modulated radiation therapy (imrt) for locally recurrent endometrial cancer.
Aktualni Gynekol. Porod.
2020,
12,
70–74.
515. Whitaker, H.; Tam, J.O.; Connor, M.J.; Grey, A. Prostate cancer biology & genomics.
Transl. Androl. Urol.
2020,
9,
1481–1491.
516. Shukla-Dave, A.; Hricak, H. Role of MRI in prostate cancer detection.
NMR Biomed.
2014,
27,
16–24. [CrossRef]
517. Hotker, A.M.; Dappa, E.; Mazaheri, Y.; Ehdaie, B.; Zheng, J.T.; Capanu, M.; Hricak, H.; Akin, O. The influence of background
signal intensity changes on cancer detection in prostate MRI.
Am. J. Roentgenol.
2019,
212,
823–829. [CrossRef] [PubMed]
518. Ventrella, E.; Eusebi, L.; Carpagnano, F.A.; Bartelli, F.; Cormio, L.; Guglielmi, G. Multiparametric MRI of prostate cancer: Recent
advances.
Curr. Radiol. Rep.
2020,
8,
14. [CrossRef]
519. Sun, Y.; Reynolds, H.M.; Parameswaran, B.; Wraith, D.; Finnegan, M.E.; Williams, S.; Haworth, A. Multiparametric MRI and
radiomics in prostate cancer: A review.
Australas. Phys. Eng. Sci. Med.
2019,
42,
3–25. [CrossRef] [PubMed]
520. Kumar, V.; Bora, G.S.; Kumar, R.; Jagannathan, N.R. Multiparametric (MP) MRI of prostate cancer.
Prog. Nucl. Magn. Reson.
Spectrosc.
2018,
105,
23–40. [CrossRef] [PubMed]
521. Ghai, S.; Haider, M.A. Multiparametric-MRI in diagnosis of prostate cancer.
Indian J. Urol.
2015,
31,
194–201. [CrossRef]
522. Wu, R.C.; Lebastchi, A.H.; Hadaschik, B.A.; Emberton, M.; Moore, C.; Laguna, P.; Futterer, J.J.; George, A.K. Role of MRI for the
detection of prostate cancer.
World J. Urol.
2021,
39,
637–649. [CrossRef]
523. Piert, M.; El Naqa, I.; Davenport, M.S.; Incerti, E.; Mapelli, P.; Picchio, M. Pet/MRI and prostate cancer.
Clin. Transl. Imaging
2016,
4,
473–485. [CrossRef]
524. Park, H.; Wood, D.; Hussain, H.; Meyer, C.R.; Shah, R.B.; Johnson, T.D.; Chenevert, T.; Piert, M. Introducing parametric fusion
PET/MRI of primary prostate cancer.
J. Nucl. Med.
2012,
53,
546–551. [CrossRef]
525. Lindenberg, L.; Ahlman, M.; Turkbey, B.; Mena, E.; Choyke, P. Evaluation of prostate cancer with PET/MRI.
J. Nucl. Med.
2016,
57,
111S–116S. [CrossRef]
526. Kreydin, E.I.; Barrisford, G.W.; Feldman, A.S.; Preston, M.A. Testicular cancer: What the radiologist needs to know.
Am. J.
Roentgenol.
2013,
200,
1215–1225. [CrossRef]
527. Nestler, T.; Baunacke, M.; Drager, D.; von Landenberg, N.; Groeben, C.; Huber, J. Testicular cancer guideline adherence and
patterns of care in germany: A nationwide survey.
Eur. J. Cancer Care
2019,
28,
9. [CrossRef] [PubMed]
528. Hale, G.R.; Teplitsky, S.; Truong, H.; Gold, S.A.; Bloom, J.B.; Agarwal, P.K. Lymph node imaging in testicular cancer.
Transl.
Androl. Urol.
2018,
7,
864–874. [CrossRef] [PubMed]
529. Dulal, M.; Lei, J.; Dou, S.W.; Zhu, S.C. Role of imaging in testicular cancer.
Curr. Med. Imaging Rev.
2017,
13,
38–49. [CrossRef]
530. Rud, E.; Langberg, C.W.; Baco, E.; Lauritzen, P.; Sandbaek, G. MRI in the follow-up of testicular cancer: Less is more.
Anticancer
Res.
2019,
39,
2963–2968. [CrossRef] [PubMed]
531. Tsili, A.C.; Sofikitis, N.; Stiliara, E.; Argyropoulou, M.I. MRI of testicular malignancies.
Abdom. Radiol.
2019,
44,
1070–1082.
[CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0052.png
Int. J. Mol. Sci.
2022,
23,
1339
52 of 55
532. Larsen, S.K.A.; Agerbaek, M.; Jurik, A.G.; Pedersen, E.M. Ten years of experience with MRI follow-up of testicular cancer stage i:
A retrospective study and an MRI protocol with dwi.
Acta Oncol.
2020,
59,
1374–1381. [CrossRef]
533. Manganaro, L.; Saldari, M.; Pozza, C.; Vinci, V.; Gianfrilli, D.; Greco, E.; Franco, G.; Sergi, M.E.; Scialpi, M.; Catalano, C.; et al.
Dynamic contrast-enhanced and diffusion-weighted mr imaging in the characterisation of small, non-palpable solid testicular
tumours.
Eur. Radiol.
2018,
28,
554–564. [CrossRef] [PubMed]
534. Laukka, M.; Mannisto, S.; Beule, A.; Kouri, M.; Blomqvist, C. Comparison between ct and MRI in detection of metastasis of the
retroperitoneum in testicular germ cell tumors: A prospective trial.
Acta Oncol.
2020,
59,
660–665. [CrossRef] [PubMed]
535. Reinges, M.H.T.; Kaiser, W.A.; Miersch, W.D.; Vogel, J.; Reiser, M. Dynamic MRI of benign and malignant testicular lesions—
Preliminary-observations.
Eur. Radiol.
1995,
5,
615–622. [CrossRef]
536. Rocher, L.; Ksouri, A.; Maxwell, F.; Bresson, B.; Hindawi, G.; Balasa, C.; Bellin, M.F.; Albiges, L. Testicular tumors: A diagnostic
challenge of imaging.
Bull. Cancer
2019,
106,
875–886. [CrossRef]
537. Khanna, M.; Abualruz, A.R.; Yadav, S.K.; Mafraji, M.; Al-Rumaihi, K.; Al-Bozom, I.; Kumar, D.; Tsili, A.C.; Schieda, N. Diagnostic
performance of multi-parametric MRI to differentiate benign sex cord stromal tumors from malignant (non-stromal and stromal)
testicular neoplasms.
Abdom. Radiol.
2021,
46,
319–330. [CrossRef] [PubMed]
538. Sohaib, S.A.; Koh, D.M.; Barbachano, Y.; Parikh, J.; Husband, J.E.S.; Dearnaley, D.P.; Horwich, A.; Huddart, R. Prospective
assessment of MRI for imaging retroperitoneal metastases from testicular germ cell tumours.
Clin. Radiol.
2009,
64,
362–367.
[CrossRef] [PubMed]
539. Ortiz, A.F.H.; Beaujon, L.J.F.; Villamizar, S.Y.G.; Lopez, F.F.F. Magnetic resonance versus computed tomography for the detection
of retroperitoneal lymph node metastasis due to testicular cancer: A systematic literature review.
Eur. J. Radiol. Open
2021,
8,
7.
540. Kubik-Huch, R.A.; Hailemariam, S.; Hamm, B. Ct and MRI of the male genital tract: Radiologic-pathologic correlation.
Eur.
Radiol.
1999,
9,
16–28. [CrossRef] [PubMed]
541. Bleiberg, H. Colorectal cancer: The challenge.
Eur. J. Cancer
1996,
32A,
S2–S6. [CrossRef]
542. de Souza, G.D.; Souza, L.R.Q.; Cuenca, R.M.; Vilela, V.M.; Santos, B.; de Aguiar, F.S. Pre- and postoperative imaging methods in
colorectal cancer.
ABCD-Arq. Bras. Cir. Dig.-Braz. Arch. Dig. Surg.
2018,
31,
5. [CrossRef]
543. Georgiou, P.A.; Tekkis, P.P.; Constantinides, V.A.; Patel, U.; Goldin, R.D.; Darzi, A.W.; Nicholls, R.J.; Brown, G. Diagnostic accuracy
and value of magnetic resonance imaging (MRI) in planning exenterative pelvic surgery for advanced colorectal cancer.
Eur. J.
Cancer
2013,
49,
72–81. [CrossRef]
544. Annemans, L.; Lencioni, R.; Warie, H.; Bartolozzi, C.; Ciceri, M.; Muller, U. Health economic evaluation of ferucarbotran-enhanced
MRI in the diagnosis of liver metastases in colorectal cancer patients.
Int. J. Colorectal Dis.
2008,
23,
77–83. [CrossRef]
545. Engbersen, M.P.; Rijsemus, C.J.V.; Nederend, J.; Aalbers, A.G.J.; de Hingh, I.; Retel, V.; Lambregts, D.M.J.; Van der Hoeven, E.;
Boerma, D.; Wiezer, M.J.; et al. Dedicated MRI staging versus surgical staging of peritoneal metastases in colorectal cancer
patients considered for crs-hipec; the disco randomized multicenter trial.
BMC Cancer
2021,
21,
8. [CrossRef]
546. Westberg, K.; Othman, B.; Suzuki, C.; Blomqvist, L.; Martling, A.; Iversen, H. Magnetic resonance imaging as a predictor of
surgical outcome in patients with local pelvic recurrence of colorectal cancer.
Eur. J. Surg. Oncol.
2021,
47,
2119–2124. [CrossRef]
547. Nasseri, Y.; Langenfeld, S.J. Imaging for colorectal cancer.
Surg. Clin.
2017,
97,
503–513. [CrossRef] [PubMed]
548. Dresen, R.C.; De Vuysere, S.; De Keyzer, F.; Van Cutsem, E.; Prenen, H.; Vanslembrouck, R.; De Hertogh, G.; Wolthuis, A.;
D’Hoore, A.; Vandecaveye, V. Whole-body diffusion-weighted MRI for operability assessment in patients with colorectal cancer
and peritoneal metastases.
Cancer Imaging
2019,
19,
10. [CrossRef] [PubMed]
549. Sabry, M.S.; Rady, A.E.E.; Niazi, G.E.M.; Ali, S.A. Role of diffusion-weighted MRI in diagnosis and post therapeutic follow-up of
colorectal cancer.
Egypt. J. Radiol. Nucl. Med.
2021,
52,
11. [CrossRef]
550. Ono, K.; Ochiai, R.; Yoshida, T.; Kitagawa, M.; Omagari, J.; Kobayashi, H.; Yamashita, Y. Comparison of diffusion-weighted MRI
and 2- fluorine-18 -fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer
and regional lymph node metastases.
J. Magn. Reson. Imaging
2009,
29,
336–340. [CrossRef] [PubMed]
551. Kim, T.H.; Woo, S.; Han, S.; Suh, C.H.; Vargas, H.A. The diagnostic performance of MRI for detection of extramural venous
invasion in colorectal cancer: A systematic review and meta-analysis of the literature.
Am. J. Roentgenol.
2019,
213,
575–585.
[CrossRef] [PubMed]
552. Smith, N.J.; Shihab, O.; Arnaout, A.; Swift, R.I.; Brown, G. MRI for detection of extramural vascular invasion in rectal cancer.
Am.
J. Roentgenol.
2008,
191,
1517–1522. [CrossRef]
553. Soomro, M.H.; De Cola, G.; Conforto, S.; Schmid, M.; Giunta, G.; Guidi, E.; Neri, E.; Caruso, D.; Ciolina, M.; Laghi, A.; et al.
Automatic segmentation of colorectal cancer in 3D MRI by combining deep learning and 3D level-set algorithm-a preliminary
study. In Proceedings of the 2018 IEEE 4th Middle East Conference on Biomedical Engineering (MECBME), Tunis, Tunisia, 28–30
March 2018; pp. 198–203.
554. Ogawa, M.; Ichiba, N.; Watanabe, M.; Yanaga, K. The usefulness of diffusion MRI in detection of lymph node metastases of
colorectal cancer.
Anticancer Res.
2016,
36,
815–819.
555. Ichikawa, T.; Erturk, S.M.; Motosugi, U.; Sou, H.; Iino, H.; Araki, T.; Fujii, H. High-b-value diffusion-weighted MRI in colorectal
cancer.
Am. J. Roentgenol.
2006,
187,
181–184. [CrossRef]
556. García-Figueiras, R.; Baleato-González, S.; Canedo-Antelo, M.; Alcalá, L.; Marhuenda, A. Imaging advances on ct and MRI in
colorectal cancer.
Curr. Colorectal Cancer Rep.
2021,
17,
113–130. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0053.png
Int. J. Mol. Sci.
2022,
23,
1339
53 of 55
557. Kijima, S.; Sasaki, T.; Nagata, K.; Utano, K.; Lefor, A.T.; Sugimoto, H. Preoperative evaluation of colorectal cancer using ct
colonography, MRI, and PET/CT.
World J. Gastroenterol.
2014,
20,
16964–16975. [CrossRef]
558. Kulemann, V.; Schima, W.; Tamandl, D.; Kaczirek, K.; Gruenberger, T.; Wrba, F.; Weber, M.; Ba-Ssalamah, A. Preoperative detection
of colorectal liver metastases in fatty liver: MDCT or MRI?
Eur. J. Radiol.
2011,
79,
E1–E6. [CrossRef] [PubMed]
559. Kang, B.; Lee, J.M.; Song, Y.S.; Woo, S.; Hur, B.Y.; Jeon, J.H.; Paeng, J.C. Added value of integrated whole-body PET/MRI for
evaluation of colorectal cancer: Comparison with contrast-enhanced mdct.
Am. J. Roentgenol.
2016,
206,
W10–W20. [CrossRef]
[PubMed]
560. Schmidt, G. Importance of whole body MRI for staging of colorectal cancer.
Radiologe
2012,
52,
537–544. [CrossRef] [PubMed]
561. Datta, N.R.; Krishnan, S.; Speiser, D.E.; Neufeld, E.; Kuster, N.; Bodis, S.; Hofmann, H. Magnetic nanoparticle-induced hyperther-
mia with appropriate payloads: Paul ehrlich’s "magic (nano)bullet" for cancer theranostics?
Cancer Treat. Rev.
2016,
50,
217–227.
[CrossRef] [PubMed]
562. Douziech-Eyrolles, L.; Marchais, H.; Herve, K.; Munnier, E.; Souce, M.; Linassier, C.; Dubois, P.; Chourpa, I. Nanovectors for
anticancer agents based on superparamagnetic iron oxide nanoparticles.
Int. J. Nanomed.
2007,
2,
541–550.
563. Balaita, L.; Popa, M. Polymer magnetic particles in biomedical applications.
Rev. Roum. Chim.
2009,
54,
185–199.
564. Rotariu, O.; Udrea, L.E.; Strachan, N.J.C.; Badescu, V. The guidance of magnetic colloids in simulated tissues for targeted drug
delivery.
J. Optoelectron. Adv. Mater.
2007,
9,
942–945.
565. Alexiou, C.; Arnold, W.; Klein, R.J.; Parak, F.G.; Hulin, P.; Bergemann, C.; Erhardt, W.; Wagenpfeil, S.; Lubbe, A.S. Locoregional
cancer treatment with magnetic drug targeting.
Cancer Res.
2000,
60,
6641–6648.
566. Wahajuddin; Arora, S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers.
Int. J. Nanomed.
2012,
7,
3445–3471. [CrossRef]
567. Mansouri, M.; Nazarpak, M.H.; Solouk, A.; Akbari, S.; Hasani-Sadrabadi, M.M. Magnetic responsive of paclitaxel delivery system
based on spion and palmitoyl chitosan.
J. Magn. Magn. Mater.
2017,
421,
316–325. [CrossRef]
568. Yang, Y.; Guo, Q.F.; Peng, J.R.; Su, J.; Lu, X.L.; Zhao, Y.X.; Qian, Z.Y. Doxorubicin-conjugated heparin-coated superparamagnetic
iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging.
J. Biomed. Nanotechnol.
2016,
12,
1963–1974. [CrossRef] [PubMed]
569. Mattingly, S.J.; O’Toole, M.G.; James, K.T.; Clark, G.J.; Nantz, M.H. Magnetic nanoparticle-supported lipid bilayers for drug
delivery.
Langmuir
2015,
31,
3326–3332. [CrossRef] [PubMed]
570. Ghorbani, M.; Hamishehkar, H.; Arsalani, N.; Entezami, A.A. Preparation of thermo and ph-responsive polymer@au/fe3o4
core/shell nanoparticles as a carrier for delivery of anticancer agent.
J. Nanopart. Res.
2015,
17,
13. [CrossRef]
571. Song, W.X.; Muthana, M.; Mukherjee, J.; Falconer, R.J.; Biggs, C.A.; Zhao, X.B. Magnetic-silk core-shell nanoparticles as potential
carriers for targeted delivery of curcumin into human breast cancer cells.
ACS Biomater. Sci. Eng.
2017,
3,
1027–1038. [CrossRef]
572. Rotariu, O.; Udrea, L.E.; Strachan, N.J.C.; Badescu, V. Targeting magnetic carrier particles in tumour microvasculature—A
numerical study.
J. Optoelectron. Adv. Mater.
2005,
7,
3209–3218.
573. Norris, M.D.; Seidel, K.; Kirschning, A. Externally induced drug release systems with magnetic nanoparticle carriers: An emerging
field in nanomedicine.
Adv. Ther.
2019,
2,
1800092. [CrossRef]
574. Ahmad, R.S.; Ali, Z.S.; Mou, X.B.; Wang, J.H.; Yi, H.; He, N.Y. Recent advances in magnetic nanoparticle design for cancer therapy.
J. Nanosci. Nanotechnol.
2016,
16,
9393–9403. [CrossRef]
575. Ramazanov, M.; Karimova, A.; Shirinova, H. Magnetism for drug delivery, MRI and hyperthermia applications: A review.
Biointerface Res. Appl. Chem.
2021,
11,
8654–8668.
576. Yang, H.Y.; Li, Y.; Lee, D.S. Multifunctional and stimuli-responsive magnetic nanoparticle-based delivery systems for biomedical
applications.
Adv. Ther.
2018,
1,
1800011. [CrossRef]
577. Schneider-Futschik, E.K.; Reyes-Ortega, F. Advantages and disadvantages of using magnetic nanoparticles for the treatment of
complicated ocular disorders.
Pharmaceutics
2021,
13,
1157. [CrossRef] [PubMed]
578. Zamay, T.N.; Prokopenko, V.S.; Zamay, S.S.; Lukyanenko, K.A.; Kolovskaya, O.S.; Orlov, V.A.; Zamay, G.S.; Galeev, R.G.; Narodov,
A.A.; Kichkailo, A.S. Magnetic nanodiscs-a new promising tool for microsurgery of malignant neoplasms.
Nanomaterials
2021,
11,
1459. [CrossRef]
579. Golovin, Y.I.; Golovin, D.Y.; Vlasova, K.Y.; Veselov, M.M.; Usvaliev, A.D.; Kabanov, A.V.; Klyachko, N.L. Non-heating alternating
magnetic field nanomechanical stimulation of biomolecule structures via magnetic nanoparticles as the basis for future low-toxic
biomedical applications.
Nanomaterials
2021,
11,
2255. [CrossRef]
580. Chen, M.W.; Wu, J.J.; Ning, P.; Wang, J.J.; Ma, Z.; Huang, L.Q.; Plaza, G.R.; Shen, Y.J.; Xu, C.; Han, Y.; et al. Remote control of
mechanical forces via mitochondrial-targeted magnetic nanospinners for efficient cancer treatment.
Small
2020,
16,
14. [CrossRef]
[PubMed]
581. Alsharif, N.A.; Aleisa, F.A.; Liu, G.Y.; Ooi, B.S.; Patel, N.; Ravasi, T.; Merzaban, J.S.; Kosel, J. Functionalization of magnetic
nanowires for active targeting and enhanced cell-killing efficacy.
ACS Appl. Bio Mater.
2020,
3,
4789–4797. [CrossRef]
582. Chen, Y.; Han, P.; Wu, Y.; Zhang, Z.F.; Yue, Y.; Li, W.H.; Chu, M.Q. Hedgehog-like gold-coated magnetic microspheres that
strongly inhibit tumor growth through magnetomechanical force and photothermal effects.
Small
2018,
14,
13. [CrossRef]
583. Goiriena-Goikoetxea, M.; Munoz, D.; Orue, I.; Fernandez-Gubieda, M.L.; Bokor, J.; Muela, A.; Garcia-Arribas, A. Disk-shaped
magnetic particles for cancer therapy.
Appl. Phys. Rev.
2020,
7,
15. [CrossRef]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0054.png
Int. J. Mol. Sci.
2022,
23,
1339
54 of 55
584. Rahban, D.; Doostan, M.; Salimi, A. Cancer therapy; prospects for application of nanoparticles for magnetic-based hyperthermia.
Cancer Investig.
2020,
38,
507–521. [CrossRef]
585. Kok, H.P.; Cressman, E.N.K.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grull, H.; ter Haar, G.; Wust, P.; Crezee, J. Heating technology for
malignant tumors: A review.
Int. J. Hyperth.
2020,
37,
711–741. [CrossRef]
586. Liu, X.; Zhang, Y.; Wang, Y.; Zhu, W.; Li, G.; Ma, X.; Zhang, Y.; Chen, S.; Tiwari, S.; Shi, K.; et al. Comprehensive understanding of
magnetic hyperthermia for improving antitumor therapeutic efficacy.
Theranostics
2020,
10,
3793–3815. [CrossRef]
587. Chang, D.; Lim, M.; Goos, J.; Qiao, R.; Ng, Y.Y.; Mansfeld, F.M.; Jackson, M.; Davis, T.P.; Kavallaris, M. Biologically targeted
magnetic hyperthermia: Potential and limitations.
Front. Pharm.
2018,
9,
831. [CrossRef]
588. Frazier, N.; Ghandehari, H. Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors.
Biotechnol. Bioeng.
2015,
112,
1967–1983. [CrossRef] [PubMed]
589. Lee, Y.K.; Lee, S.B.; Kim, Y.U.; Kim, K.N.; Choi, S.Y.; Lee, K.H.; Shim, I.B.; Kim, C.S. Effect of ferrite thermoseeds on destruction of
carcinoma cells under alternating magnetic field.
J. Mater. Sci.
2003,
38,
4221–4233. [CrossRef]
590. Shido, Y.; Nishida, Y.; Suzuki, Y.; Kobayashi, T.; Ishiguro, N. Targeted hyperthermia using magnetite cationic liposomes and an
alternating magnetic field in a mouse osteosarcoma model.
J. Bone Jt. Surg. Br. Vol.
2010,
92B,
580–585. [CrossRef]
591. Manohar, A.; Vijayakanth, V.; Pallavolu, M.R.; Kim, K.H. Effects of Ni—Substitution on structural, magnetic hyperthermia,
photocatalytic and cytotoxicity study of MgFe
2
O
4
nanoparticles.
J. Alloys Compd.
2021,
879,
160515. [CrossRef]
592. Chen, S.Z.; Han, F.S.; Huang, D.D.; Meng, J.Q.; Chu, J.P.; Wang, M.; Wang, P.J. Fe
3
O
4
magnetic nanoparticle-enhanced radiotherapy
for lung adenocarcinoma via delivery of siBIRC5 and AS-ODN.
J. Transl. Med.
2021,
19,
1–14. [CrossRef]
593. Jiang, K.Y.; Zhang, Q.B.; Hinojosa, D.T.; Zhang, L.L.; Xiao, Z.; Yin, Y.; Tong, S.; Colvin, V.L.; Bao, G. Controlled oxidation and
surface modification increase heating capacity of magnetic iron oxide nanoparticles.
Appl. Phys. Rev.
2021,
8,
031407. [CrossRef]
594. Simeonidis, K.; Kaprara, E.; Rivera-Gil, P.; Xu, R.X.; Teran, F.J.; Kokkinos, E.; Mitropoulos, A.; Maniotis, N.; Balcells, L. Hydrotalcite-
embedded magnetite nanoparticles for hyperthermia-triggered chemotherapy.
Nanomaterials
2021,
11,
1796. [CrossRef]
595. Kawashita, M.; Domi, S.; Saito, Y.; Aoki, M.; Ebisawa, Y.; Kokubo, T.; Saito, T.; Takano, M.; Araki, N.; Hiraoka, M. In vitro heat
generation by ferrimagnetic maghemite microspheres for hyperthermic treatment of cancer under an alternating magnetic field.
J.
Mater. Sci. Mater. Med.
2008,
19,
1897–1903. [CrossRef]
596. Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pottler, M.; Durr, S.; Alexiou, C. Magnetic nanoparticle-
based drug delivery for cancer therapy.
Biochem. Biophys. Res. Commun.
2015,
468,
463–470. [CrossRef]
597. Zhi, D.F.; Yang, T.; Yang, J.; Fu, S.; Zhang, S.B. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer
therapy.
Acta Biomater.
2020,
102,
13–34. [CrossRef]
598. Uskokovic, V.; Drofenik, M. Gold-embellished mixed-valence manganite as a smart, self-regulating magnetoplasmonic nanomate-
rial.
Mater. Chem. Phys.
2021,
271,
124870. [CrossRef]
599. Rodrigues, H.F.; Capistrano, G.; Bakuzis, A.F. In vivo magnetic nanoparticle hyperthermia: A review on preclinical studies,
low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning.
Int. J. Hyperth.
2020,
37,
76–99. [CrossRef] [PubMed]
600. Rotariu, O.; Iacob, G.; Strachan, N.J.C.; Chiriac, H. Simulating the embolization of blood vessels using magnetic microparticles
and acupuncture needle in a magnetic field.
Biotechnol. Prog.
2004,
20,
299–305. [CrossRef] [PubMed]
601. Anani, T.; Rahmati, S.; Sultana, N.; David, A.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment.
Theranostics
2021,
11,
579–601. [CrossRef]
602. Kozissnik, B.; Bohorquez, A.C.; Dobson, J.; Rinaldi, C. Magnetic fluid hyperthermia: Advances, challenges, and opportunity.
Int.
J. Hyperth.
2013,
29,
706–714. [CrossRef]
603. Xie, J.; Yan, C.; Yan, Y.; Chen, L.; Song, L.; Zang, F.; An, Y.; Teng, G.; Gu, N.; Zhang, Y. Multi-modal mn–zn ferrite nanocrystals for
magnetically-induced cancer targeted hyperthermia: A comparison of passive and active targeting effects.
Nanoscale
2016,
8,
16902–16915. [CrossRef]
604. Angelakeris, M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics.
Biochim. Biophys. Acta Gen. Subj.
2017,
1861,
1642–1651. [CrossRef] [PubMed]
605. Cheng, H.W.; Tsao, H.Y.; Chiang, C.S.; Chen, S.Y. Advances in magnetic nanoparticle-mediated cancer immune-theranostics.
Adv.
Healthc. Mater.
2021,
10,
2001451. [CrossRef]
606. Rajan, A.; Sahu, N.K. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy.
J. Nanopart. Res.
2020,
22,
1–25. [CrossRef]
607. Soetaert, F.; Korangath, P.; Serantes, D.; Fiering, S.; Ivkov, R. Cancer therapy with iron oxide nanoparticles: Agents of thermal and
immune therapies.
Adv. Drug Deliv. Rev.
2020,
163,
65–83. [CrossRef]
608. Li, X.X.; Li, W.Y.; Wang, M.N.; Liao, Z.H. Magnetic nanoparticles for cancer theranostics: Advances and prospects.
J. Control.
Release
2021,
335,
437–448. [CrossRef] [PubMed]
609. Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic nanoparticles for environmental and biomedical applications: A
review.
Particuology
2017,
30,
1–14. [CrossRef]
610. Li, Y.H.; Wang, N.; Huang, X.M.; Li, F.Y.; Davis, T.P.; Qiao, R.R.; Ling, D.S. Polymer-assisted magnetic nanoparticle assemblies for
biomedical applications.
ACS Appl. Bio Mater.
2020,
3,
121–142. [CrossRef] [PubMed]
KEF, Alm.del - 2022-23 (2. samling) - Bilag 228: Henvendelse af 12/4-23 fra Maia Bjørka Hansen, Svaneke, om WHO og Sundhedsstyrelsens anbefalinger vedr. nye højspændingsanlæg ifm. Energiø Bornholm
2691895_0055.png
Int. J. Mol. Sci.
2022,
23,
1339
55 of 55
611. Pooam, M.; Jourdan, N.; El Esawi, M.; Sherrard, R.M.; Ahmad, M. Hek293 cell response to static magnetic fields via the radical
pair mechanism may explain therapeutic effects of pulsed electromagnetic fields.
PLoS ONE
2020,
15,
e0243038. [CrossRef]
612. Chatterjee, R.; Chatterjee, J. Ros and oncogenesis with special reference to emt and stemness.
Eur. J. Cell Biol.
2020,
99,
8.
[CrossRef]