Klima-, Energi- og Forsyningsudvalget 2022-23 (2. samling)
KEF Alm.del Bilag 190
Offentligt
2679287_0001.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Summary for Policymakers
IPCC AR6 SYR
SYNTHESIS REPORT
OF THE IPCC SIXTH ASSESSMENT REPORT (AR6)
Summary for Policymakers
Core Writing Team:
Hoesung Lee (Chair), Katherine Calvin (USA), Dipak Dasgupta (India/USA), Gerhard
Krinner (France/Germany), Aditi Mukherji (India), Peter Thorne (Ireland/United Kingdom), Christopher
Trisos (South Africa), José Romero (Switzerland), Paulina Aldunce (Chile), Ko Barrett (USA), Gabriel Blanco
(Argentina), William W. L. Cheung (Canada), Sarah L. Connors (France/United Kingdom), Fatima Denton
(The Gambia), Aïda Diongue-Niang (Senegal), David Dodman (Jamaica/United Kingdom/Netherlands),
Matthias Garschagen (Germany), Oliver Geden (Germany), Bronwyn Hayward (New Zealand), Christopher
Jones (United Kingdom), Frank Jotzo (Australia), Thelma Krug (Brazil), Rodel Lasco (Philippines), June-Yi
Lee (Republic of Korea), Valérie Masson-Delmotte (France), Malte Meinshausen (Australia/Germany), Katja
Mintenbeck (Germany), Abdalah Mokssit (Morocco), Friederike E. L. Otto (United Kingdom/Germany), Minal
Pathak (India), Anna Pirani (Italy), Elvira Poloczanska (UK/Australia), Hans-Otto Pörtner (Germany), Aromar
Revi (India), Debra C. Roberts (South Africa), Joyashree Roy (India/Thailand), Alex C. Ruane (USA), Jim Skea
(United Kingdom), Priyadarshi R. Shukla (India), Raphael Slade (United Kingdom), Aimée Slangen (The
Netherlands), Youba Sokona (Mali), Anna A. Sörensson (Argentina), Melinda Tignor (USA/Germany), Detlef
van Vuuren (The Netherlands), Yi-Ming Wei (China), Harald Winkler (South Africa), Panmao Zhai (China),
Zinta Zommers (Latvia)
Extended Writing Team:
Jean-Charles Hourcade (France), Francis X. Johnson (Thailand/Sweden), Shonali
Pachauri (Austria/India), Nicholas P. Simpson (South Africa/Zimbabwe), Chandni Singh (India), Adelle
Thomas (Bahamas), Edmond Totin (Benin)
Contributing Authors:
Andrés Alegría (Germany/Honduras), Kyle Armour (USA), Birgit Bednar-Friedl
(Austria), Kornelis Blok (The Netherlands) Guéladio Cissé (Switzerland/Mauritania/France), Frank Dentener
(EU/Netherlands), Siri Eriksen (Norway), Erich Fischer (Switzerland), Gregory Garner (USA), Céline Guivarch
(France), Marjolijn Haasnoot (The Netherlands), Gerrit Hansen (Germany), Matthias Hauser (Switzerland), Ed
Hawkins (UK), Tim Hermans (The Netherlands), Robert Kopp (USA), Noëmie Leprince-Ringuet (France),
Debora Ley (Mexico/Guatemala), Jared Lewis (Australia/New Zealand), Chloé Ludden (Germany/France),
Zebedee Nicholls (Australia), Leila Niamir (Iran/The Netherlands/Austria), Shreya Some (India/Thailand),
Sophie Szopa (France), Blair Trewin (Australia), Kaj-Ivar van der Wijst (The Netherlands), Gundula Winter
(The Netherlands/Germany), Maximilian Witting (Germany)
Review Editors:
Paola Arias (Colombia), Mercedes Bustamante (Brazil), Ismail Elgizouli (Sudan), Gregory
Flato (Canada), Mark Howden (Australia), Carlos Méndez (Venezuela), Joy Pereira (Malaysia), Ramón Pichs-
Madruga (Cuba), Steven K Rose (USA), Yamina Saheb (Algeria/France), Roberto Sánchez (Mexico), Diana
Ürge-Vorsatz (Hungary), Cunde Xiao (China), Noureddine Yassaa (Algeria)
Scientific Steering Committee:
Hoesung Lee (Chair, IPCC), Amjad Abdulla (Maldives), Edvin Aldrian
(Indonesia), Ko Barrett (United States of America), Eduardo Calvo (Peru), Carlo Carraro (Italy), Fatima
Driouech (Morocco), Andreas Fischlin (Switzerland), Jan Fuglestvedt (Norway), Diriba Korecha Dadi
(Ethiopia), Thelma Krug (Brazil), Nagmeldin G.E. Mahmoud (Sudan), Valérie Masson-Delmotte (France),
Carlos Méndez (Venezuela), Joy Jacqueline Pereira (Malaysia), Ramón Pichs-Madruga (Cuba), Hans-Otto
Pörtner (Germany), Andy Reisinger (New Zealand), Debra Roberts (South Africa), Sergey Semenov (Russian
Federation), Priyadarshi Shukla (India), Jim Skea (United Kingdom), Youba Sokona (Mali), Kiyoto Tanabe
(Japan), Muhammad Tariq (Pakistan), Diana Ürge-Vorsatz (Hungary), Carolina Vera (Argentina), Pius Yanda
(United Republic of Tanzania), Noureddine Yassaa (Algeria), Taha M. Zatari (Saudi Arabia), Panmao Zhai
(China)
Visual Conception and Information Design:
Arlene Birt (USA), Meeyoung Ha (Republic of Korea)
Date of Draft:
19 March 2023
Notes:
TSU Compiled Version
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.1
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0002.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Summary for Policymakers
IPCC AR6 SYR
Table of Contents
Introduction ..................................................................................................................................................... 3
A.
Current Status and Trends ..................................................................................................................... 4
Box SPM.1 Scenarios and pathways .............................................................................................................. 9
B.
C.
Future Climate Change, Risks, and Long-Term Responses.............................................................. 12
Responses in the Near Term ................................................................................................................. 25
Sources cited in this Summary for Policymakers (SPM)
References for material contained in this report are given in curly brackets {} at the end of each paragraph.
In the Summary for Policymakers, the references refer to the numbers of the Sections, figures, tables and
boxes in the underlying Longer Report of the Synthesis Report, or to other sections of the SPM itself (in
round brackets).
Other IPCC reports cited in this Synthesis Report:
AR5 Fifth Assessment Report
16
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.2
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0003.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Summary for Policymakers
IPCC AR6 SYR
Introduction
This Synthesis Report (SYR) of the IPCC Sixth Assessment Report (AR6) summarises the state of knowledge
of climate change, its widespread impacts and risks, and climate change mitigation and adaptation. It integrates
the main findings of the Sixth Assessment Report (AR6) based on contributions from the three Working
Groups
1
, and the three Special Reports
2
. The summary for Policymakers (SPM) is structured in three parts:
SPM.A Current Status and Trends, SPM.B
Future Climate Change, Risks, and Long-Term Responses,
and
SPM.C Responses in the Near Term
3
.
This report recognizes the interdependence of climate, ecosystems and biodiversity, and human societies; the
value of diverse forms of knowledge; and the close linkages between climate change adaptation, mitigation,
ecosystem health, human well-being and sustainable development, and reflects the increasing diversity of actors
involved in climate action.
Based on scientific understanding, key findings can be formulated as statements of fact or associated with an
assessed level of confidence using the IPCC calibrated language
4
.
1
The three Working Group contributions to AR6 are: AR6 Climate Change 2021: The Physical Science Basis; AR6 Climate Change
2022: Impacts, Adaptation and Vulnerability; and AR6 Climate Change 2022: Mitigation of Climate Change. Their assessments cover
scientific literature accepted for publication respectively by 31 January 2021, 1 September 2021 and 11 October 2021.
2
The three Special Reports are: Global Warming of 1.5°C (2018): an IPCC Special Report on the impacts of global warming of 1.5°C
above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to
the threat of climate change, sustainable development, and efforts to eradicate poverty (SR1.5); Climate Change and Land (2019): an
IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse
gas fluxes in terrestrial ecosystems (SRCCL); and The Ocean and Cryosphere in a Changing Climate (2019) (SROCC). The Special
Reports cover scientific literature accepted for publication respectively by 15 May 2018, 7 April 2019 and 15 May 2019.
3
In this report, the near term is defined as the period until 2040. The long term is defined as the period beyond 2040.
4
Each finding is grounded in an evaluation of underlying evidence and agreement. The IPCC calibrated language uses five qualifiers to
express a level of confidence: very low, low, medium, high and very high, and typeset in italics, for example,
medium confidence.
The
following terms are used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely
90–100%, likely 66–100%, more likely than not >50–100%, about as likely as not 33–66%, unlikely 0–33%, very unlikely 0–10%,
exceptionally unlikely 0–1%. Additional terms (extremely likely 95–100%; more likely than not >50–100%; and extremely unlikely 0–
5%) are also used when appropriate. Assessed likelihood is typeset in italics, e.g.,
very likely.
This is consistent with AR5 and the other
AR6 Reports.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.3
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0004.png
Approved
1
2
3
4
Summary for Policymakers
IPCC AR6 SYR
A. Current Status and Trends
Observed Warming and its Causes
A.1 Human activities, principally through emissions of greenhouse gases, have unequivocally caused
global warming, with global surface temperature reaching 1.1°C above 1850–1900 in 2011–2020. Global
greenhouse gas emissions have continued to increase, with unequal historical and ongoing contributions
arising from unsustainable energy use, land use and land-use change, lifestyles and patterns of
consumption and production across regions, between and within countries, and among individuals (high
confidence).
{2.1, Figure 2.1, Figure 2.2}
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
5
6
A.1.1
Global surface temperature was 1.09°C [0.95°C–1.20°C]
5
higher in 2011–2020 than 1850–1900
6
, with
larger increases over land (1.59°C [1.34°C–1.83°C]) than over the ocean (0.88°C [0.68°C–1.01°C]). Global
surface temperature in the first two decades of the 21
st
century (2001-2020) was 0.99 [0.84 to 1.10]°C higher
than 1850-1900. Global surface temperature has increased faster since 1970 than in any other 50-year period
over at least the last 2000 years (high
confidence).
{2.1.1, Figure 2.1}
A.1.2
The
likely
range of total human-caused global surface temperature increase from 1850–1900 to 2010–
2019
7
is 0.8°C–1.3°C, with a best estimate of 1.07°C. Over this period, it is
likely
that well-mixed greenhouse
gases (GHGs) contributed a warming of 1.0°C–2.0°C
8
, and other human drivers (principally aerosols)
contributed a cooling of 0.0°C–0.8°C, natural (solar and volcanic) drivers changed global surface temperature
by –0.1°C to +0.1°C, and internal variability changed it by –0.2°C to +0.2°C. {2.1.1, Figure 2.1}
A.1.3
Observed increases in well-mixed GHG concentrations since around 1750 are unequivocally caused by
GHG emissions from human activities over this period. Historical cumulative net CO
2
emissions from 1850 to
2019 were 2400±240 GtCO
2
of which more than half (58%) occurred between 1850 and 1989, and about 42%
occurred between 1990 and 2019 (high
confidence).
In 2019, atmospheric CO
2
concentrations (410 parts per
million) were higher than at any time in at least 2 million years (high
confidence),
and concentrations of methane
(1866 parts per billion) and nitrous oxide (332 parts per billion) were higher than at any time in at least 800,000
years (very
high confidence).
{2.1.1, Figure 2.1}
A.1.4
Global net anthropogenic GHG emissions have been estimated to be 59±6.6 GtCO
2
-eq
9
in 2019, about
12% (6.5 GtCO
2
-eq) higher than in 2010 and 54% (21 GtCO
2
-eq) higher than in 1990, with the largest share
and growth in gross GHG emissions occurring in CO
2
from fossil fuels combustion and industrial processes
(CO
2
-FFI) followed by methane, whereas the highest relative growth occurred in fluorinated gases (F-gases),
starting from low levels in 1990. Average annual GHG emissions during 2010-2019 were higher than in any
previous decade on record, while the rate of growth between 2010 and 2019 (1.3% year
-1
) was lower than that
between 2000 and 2009 (2.1% year
-1
). In 2019, approximately 79% of global GHG emissions came from the
sectors of energy, industry, transport and buildings together and 22%
10
from agriculture, forestry and other land
use (AFOLU). Emissions reductions in CO
2
-FFI due to improvements in energy intensity of GDP and carbon
intensity of energy, have been less than emissions increases from rising global activity levels in industry, energy
supply, transport, agriculture and buildings. (high
confidence)
{2.1.1}
Ranges given throughout the SPM represent
very likely
ranges (5–95% range) unless otherwise stated.
The estimated increase in global surface temperature since AR5 is principally due to further warming since 2003–2012 (+0.19°C
[0.16°C–0.22°C]). Additionally, methodological advances and new datasets have provided a more complete spatial representation of
changes in surface temperature, including in the Arctic. These and other improvements have also increased the estimate of global surface
temperature change by approximately 0.1°C, but this increase does not represent additional physical warming since AR5.
7
The period distinction with A.1.1 arises because the attribution studies consider this slightly earlier period. The observed warming to
2010–2019 is 1.06°C [0.88°C–1.21°C].
8
Contributions from emissions to the 2010-2019 warming relative to 1850-1900 assessed from radiative forcing studies are: CO 0.8
2
[0.5 to 1.2]°C; methane 0.5 [0.3 to 0.8]°C; nitrous oxide 0.1 [0.0 to 0.2]°C and fluorinated gases 0.1 [0.0 to 0.2]°C. {2.1.1}
9
GHG emission metrics are used to express emissions of different greenhouse gases in a common unit. Aggregated GHG emissions in
this report are stated in CO
2
-equivalents (CO
2
-eq) using the Global Warming Potential with a time horizon of 100 years (GWP100) with
values based on the contribution of Working Group I to the AR6. The AR6 WGI and WGIII reports contain updated emission metric
values, evaluations of different metrics with regard to mitigation objectives, and assess new approaches to aggregating gases. The choice
of metric depends on the purpose of the analysis and all GHG emission metrics have limitations and uncertainties, given that they
simplify the complexity of the physical climate system and its response to past and future GHG emissions. {2.1.1}
10
GHG emission levels are rounded to two significant digits; as a consequence, small differences in sums due to rounding may occur.
{2.1.1}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.4
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0005.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
Summary for Policymakers
IPCC AR6 SYR
A.1.5
Historical contributions of CO
2
emissions vary substantially across regions in terms of total magnitude,
but also in terms of contributions to CO
2
-FFI and net CO
2
emissions from land use, land-use change and forestry
(CO
2
-LULUCF). In 2019, around 35% of the global population live in countries emitting more than 9 tCO
2
-eq
per capita
11
(excluding CO
2
-LULUCF) while 41% live in countries emitting less than 3 tCO
2
-eq per capita; of
the latter a substantial share lacks access to modern energy services. Least developed countries (LDCs) and
Small Island Developing States (SIDS) have much lower per capita emissions (1.7 tCO
2
-eq and 4.6 tCO
2
-eq,
respectively) than the global average (6.9 tCO
2
-eq), excluding CO
2
-LULUCF. The 10% of households with the
highest per capita emissions contribute 34–45% of global consumption-based household GHG emissions, while
the bottom 50% contribute 13–15%.
(high confidence)
{2.1.1, Figure 2.2}
Observed Changes and Impacts
A.2 Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have
occurred. Human-caused climate change is already affecting many weather and climate extremes in
every region across the globe. This has led to widespread adverse impacts and related losses and
damages to nature and people (high
confidence).
Vulnerable communities who have historically
contributed the least to current climate change are disproportionately affected (high
confidence).
{2.1,
Table 2.1, Figure 2.2 and 2.3} (Figure SPM.1)
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
A.2.1
It is unequivocal that human influence has warmed the atmosphere, ocean and land. Global mean sea
level increased by 0.20 [0.15–0.25] m between 1901 and 2018. The average rate of sea level rise was 1.3 [0.6
to 2.1]mm yr
-1
between 1901 and 1971, increasing to 1.9 [0.8 to 2.9] mm yr
-1
between 1971 and 2006, and
further increasing to 3.7 [3.2 to 4.2] mm yr
-1
between 2006 and 2018 (high
confidence).
Human influence was
very likely
the main driver of these increases since at least 1971. Evidence of observed changes in extremes such
as heatwaves, heavy precipitation, droughts, and tropical cyclones, and, in particular, their attribution to human
influence, has further strengthened since AR5. Human influence has
likely
increased the chance of compound
extreme events since the 1950s, including increases in the frequency of concurrent heatwaves and droughts
(high
confidence).
{2.1.2, Table 2.1, Figure 2.3, Figure 3.4} (Figure SPM.1)
A.2.2
Approximately 3.3–3.6 billion people live in contexts that are highly vulnerable to climate change. Human
and ecosystem vulnerability are interdependent. Regions and people with considerable development constraints
have high vulnerability to climatic hazards. Increasing weather and climate extreme events have exposed
millions of people to acute food insecurity
12
and reduced water security, with the largest adverse impacts
observed in many locations and/or communities in Africa, Asia, Central and South America, LDCs, Small
Islands and the Arctic, and globally for Indigenous Peoples, small-scale food producers and low-income
households. Between 2010 and 2020, human mortality from floods, droughts and storms was 15 times higher
in highly vulnerable regions, compared to regions with very low vulnerability. (high
confidence)
{2.1.2, 4.4}
(Figure SPM.1)
A.2.3
Climate change has caused substantial damages, and increasingly irreversible losses, in terrestrial,
freshwater, cryospheric, and coastal and open ocean ecosystems (high
confidence).
Hundreds of local losses of
species have been driven by increases in the magnitude of heat extremes (high
confidence)
with mass mortality
events recorded on land and in the ocean (very
high confidence).
Impacts on some ecosystems are approaching
irreversibility such as the impacts of hydrological changes resulting from the retreat of glaciers, or the changes
in some mountain (medium
confidence)
and Arctic ecosystems driven by permafrost thaw (high
confidence).
{2.1.2, Figure 2.3} (Figure SPM.1)
A.2.4
Climate change has reduced food security and affected water security, hindering efforts to meet
Sustainable Development Goals (high
confidence).
Although overall agricultural productivity has increased,
climate change has slowed this growth over the past 50 years globally (medium
confidence),
with related
negative impacts mainly in mid- and low latitude regions but positive impacts in some high latitude regions
(high
confidence).
Ocean warming and ocean acidification have adversely affected food production from
11
12
Territorial emissions.
Acute food insecurity can occur at any time with a severity that threatens lives, livelihoods or both, regardless of the causes, context
or duration, as a result of shocks risking determinants of food security and nutrition, and is used to assess the need for humanitarian
action {2.1}.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.5
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0006.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Summary for Policymakers
IPCC AR6 SYR
fisheries and shellfish aquaculture in some oceanic regions (high
confidence).
Roughly half of the world’s
population currently experience severe water scarcity for at least part of the year due to a combination of climatic
and non-climatic drivers (medium
confidence).
{2.1.2, Figure 2.3} (Figure SPM.1)
A.2.5
In all regions increases in extreme heat events have resulted in human mortality and morbidity (very
high
confidence).
The occurrence of climate-related food-borne and water-borne diseases (very
high confidence)
and
the incidence of vector-borne diseases (high
confidence)
have increased. In assessed regions, some mental health
challenges are associated with increasing temperatures (high
confidence),
trauma from extreme events (very
high confidence),
and loss of livelihoods and culture (high
confidence).
Climate and weather extremes are
increasingly driving displacement in Africa, Asia, North America (high
confidence),
and Central and South
America (medium
confidence),
with small island states in the Caribbean and South Pacific being
disproportionately affected relative to their small population size (high
confidence).
{2.1.2, Figure 2.3} (Figure
SPM.1)
A.2.6
Climate change has caused widespread adverse impacts and related losses and damages
13
to nature and
people that are unequally distributed across systems, regions and sectors. Economic damages from climate
change have been detected in climate-exposed sectors, such as agriculture, forestry, fishery, energy, and tourism.
Individual livelihoods have been affected through, for example, destruction of homes and infrastructure, and
loss of property and income, human health and food security, with adverse effects on gender and social equity.
(high
confidence)
{2.1.2} (Figure SPM.1)
A.2.7
In urban areas, observed climate change has caused adverse impacts on human health, livelihoods and
key infrastructure. Hot extremes have intensified in cities. Urban infrastructure, including transportation, water,
sanitation and energy systems have been compromised by extreme and slow-onset events
14
, with resulting
economic losses, disruptions of services and negative impacts to well-being. Observed adverse impacts are
concentrated amongst economically and socially marginalised urban residents. (high
confidence)
{2.1.2}
[START FIGURE SPM.1 HERE]
In this report, the term ‘losses and damages’ refer to adverse observed impacts and/or projected risks and can be economic and/or non-
economic. (See Annex I: Glossary)
14
Slow-onset events are described among the climatic-impact drivers of the WGI AR6 and refer to the risks and impacts associated with
e.g., increasing temperature means, desertification, decreasing precipitation, loss of biodiversity, land and forest degradation, glacial
retreat and related impacts, ocean acidification, sea level rise and salinization. {2.1.2}
13
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.6
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0007.png
Approved
Summary for Policymakers
IPCC AR6 SYR
1
2
3
4
5
6
7
8
Figure SPM.1:
(a)
Climate change has already caused widespread impacts and related losses and damages on
human systems and altered terrestrial, freshwater and ocean ecosystems worldwide. Physical water availability
includes balance of water available from various sources including ground water, water quality and demand for
water. Global mental health and displacement assessments reflect only assessed regions. Confidence levels
reflect the assessment of attribution of the observed impact to climate change.
(b)
Observed impacts are
connected to physical climate changes including many that have been attributed to human influence such as the
selected climatic impact-drivers shown. Confidence and likelihood levels reflect the assessment of attribution
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.7
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0008.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Summary for Policymakers
IPCC AR6 SYR
of the observed climatic impact-driver to human influence.
(c)
Observed (1900–2020) and projected (2021–
2100) changes in global surface temperature (relative to 1850–1900), which are linked to changes in climate
conditions and impacts, illustrate how the climate has already changed and will change along the lifespan of
three representative generations (born in 1950, 1980 and 2020). Future projections (2021–2100) of changes in
global surface temperature are shown for very low (SSP1-1.9), low (SSP1-2.6), intermediate (SSP2-4.5), high
(SSP3-7.0) and very high (SSP5-8.5) GHG emissions scenarios. Changes in annual global surface temperatures
are presented as ‘climate stripes’, with future projections showing the human-caused long-term trends and
continuing modulation by natural variability (represented here using observed levels of past natural variability).
Colours on the generational icons correspond to the global surface temperature stripes for each year, with
segments on future icons differentiating possible future experiences. {2.1, 2.1.2, Figure 2.1, Table 2.1, Figure
2.3, Cross-Section Box.2, 3.1, Figure 3.3, 4.1, 4.3} (Box SPM.1)
[END FIGURE SPM.1 HERE]
Current Progress in Adaptation and Gaps and Challenges
A.3 Adaptation planning and implementation has progressed across all sectors and regions, with
documented benefits and varying effectiveness. Despite progress, adaptation gaps exist, and will
continue to grow at current rates of implementation. Hard and soft limits to adaptation have been
reached in some ecosystems and regions. Maladaptation is happening in some sectors and regions.
Current global financial flows for adaptation are insufficient for, and constrain implementation of,
adaptation options, especially in developing countries (high
confidence).
{2.2, 2.3}
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
A.3.1
Progress in adaptation planning and implementation has been observed across all sectors and regions,
generating multiple benefits (very
high confidence).
Growing public and political awareness of climate impacts
and risks has resulted in at least 170 countries and many cities including adaptation in their climate policies and
planning processes (high
confidence).
{2.2.3}
A.3.2
Effectiveness
15
of adaptation in reducing climate risks
16
is documented for specific contexts, sectors and
regions (high
confidence).
Examples of effective adaptation options include: cultivar improvements, on-farm
water management and storage, soil moisture conservation, irrigation, agroforestry, community-based
adaptation, farm and landscape level diversification in agriculture, sustainable land management approaches,
use of agroecological principles and practices and other approaches that work with natural processes (high
confidence).
Ecosystem-based adaptation
17
approaches such as urban greening, restoration of wetlands and
upstream forest ecosystems have been effective in reducing flood risks and urban heat (high
confidence).
Combinations of non-structural measures like early warning systems and structural measures like levees have
reduced loss of lives in case of inland flooding (medium
confidence).
Adaptation options such as disaster risk
management, early warning systems, climate services and social safety nets have broad applicability across
multiple sectors (high
confidence).
{2.2.3}
A.3.3
Most observed adaptation responses are fragmented, incremental
18
, sector-specific and unequally
distributed across regions. Despite progress, adaptation gaps exist across sectors and regions, and will continue
to grow under current levels of implementation, with the largest adaptation gaps among lower income groups.
(high
confidence)
{2.3.2}
A.3.4
There is increased evidence of maladaptation in various sectors and regions (high
confidence).
Maladaptation especially affects marginalised and vulnerable groups adversely (high
confidence).
{2.3.2}
A.3.5
Soft limits to adaptation are currently being experienced by small-scale farmers and households along
some low-lying coastal areas (medium
confidence)
resulting from financial, governance, institutional and policy
constraints (high
confidence).
Some tropical, coastal, polar and mountain ecosystems have reached hard
15
16
Effectiveness refers here to the extent to which an adaptation option is anticipated or observed to reduce climate-related risk. {2.2.3}
See Annex I: Glossary {2.2.3}
17
Ecosystem based Adaptation (EbA) is recognized internationally under the Convention on Biological Diversity (CBD14/5). A related
concept is Nature-based Solutions (NbS), see Annex I: Glossary.
18
Incremental adaptations to change in climate are understood as extensions of actions and behaviours that already reduce the losses or
enhance the benefits of natural variations in extreme weather/climate events. {2.3.2}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.8
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0009.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
Summary for Policymakers
IPCC AR6 SYR
adaptation limits (high
confidence).
Adaptation does not prevent all losses and damages, even with effective
adaptation and before reaching soft and hard limits (high
confidence).
{2.3.2}
A.3.6
Key barriers to adaptation are limited resources, lack of private sector and citizen engagement, insufficient
mobilization of finance (including for research), low climate literacy, lack of political commitment, limited
research and/or slow and low uptake of adaptation science, and low sense of urgency. There are widening
disparities between the estimated costs of adaptation and the finance allocated to adaptation (high
confidence).
Adaptation finance has come predominantly from public sources, and a small proportion of global tracked
climate finance was targeted to adaptation and an overwhelming majority to mitigation (very
high confidence).
Although global tracked climate finance has shown an upward trend since AR5, current global financial flows
for adaptation, including from public and private finance sources, are insufficient and constrain implementation
of adaptation options, especially in developing countries (high
confidence).
Adverse climate impacts can reduce
the availability of financial resources by incurring losses and damages and through impeding national economic
growth, thereby further increasing financial constraints for adaptation, particularly for developing and least
developed countries (medium
confidence).
{2.3.2; 2.3.3}
[START BOX SPM.1 HERE]
Box SPM.1 The use of scenarios and modelled pathways in the AR6 Synthesis Report
Modelled scenarios and pathways
19
are used to explore future emissions, climate change, related impacts and
risks, and possible mitigation and adaptation strategies and are based on a range of assumptions, including socio-
economic variables and mitigation options. These are quantitative projections and are neither predictions nor
forecasts. Global modelled emission pathways, including those based on cost effective approaches contain
regionally differentiated assumptions and outcomes, and have to be assessed with the careful recognition of
these assumptions. Most do not make explicit assumptions about global equity, environmental justice or intra-
regional income distribution. IPCC is neutral with regard to the assumptions underlying the scenarios in the
literature assessed in this report, which do not cover all possible futures.
20
{Cross-Section Box.2}
WGI assessed the climate response to five illustrative scenarios based on Shared Socio-economic Pathways
(SSPs)
21
that cover the range of possible future development of anthropogenic drivers of climate change found
in the literature. High and very high GHG emissions scenarios (SSP3-7.0 and SSP5-8.5
22
) have CO
2
emissions
that roughly double from current levels by 2100 and 2050, respectively. The intermediate GHG emissions
scenario (SSP2-4.5) has CO
2
emissions remaining around current levels until the middle of the century. The
very low and low GHG emissions scenarios (SSP1-1.9 and SSP1-2.6) have CO
2
emissions declining to net zero
around 2050 and 2070, respectively, followed by varying levels of net negative CO
2
emissions. In addition,
Representative Concentration Pathways (RCPs)
23
were used by WGI and WGII to assess regional climate
changes, impacts and risks. In WGIII, a large number of global modelled emissions pathways were assessed, of
which 1202 pathways were categorised based on their assessed global warming over the 21st century; categories
range from pathways that limit warming to 1.5°C with more than 50% likelihood (noted >50% in this report)
with no or limited overshoot (C1) to pathways that exceed 4°C (C8). (Box SPM.1, Table 1). {Cross-Section
Box.2}
19
In the literature, the terms pathways and scenarios are used interchangeably, with the former more frequently used in relation to climate
goals. WGI primarily used the term scenarios and WGIII mostly used the term modelled emission and mitigation pathways. The SYR
primarily uses scenarios when referring to WGI and modelled emission and mitigation pathways when referring to WGIII.
20
Around half of all modelled global emission pathways assume cost-effective approaches that rely on least-cost mitigation/abatement
options globally. The other half looks at existing policies and regionally and sectorally differentiated actions.
21
SSP-based scenarios are referred to as SSPx-y, where ‘SSPx’ refers to the Shared Socioeconomic Pathway describing the
socioeconomic trends underlying the scenarios, and ‘y’ refers to the level of radiative forcing (in watts per square metre, or Wm
-2
)
resulting from the scenario in the year 2100. {Cross-Section Box.2}
22
Very high emissions scenarios have become less likely but cannot be ruled out. Warming levels >4°C may result from very high
emissions scenarios, but can also occur from lower emission scenarios if climate sensitivity or carbon cycle feedbacks are higher than
the best estimate. {3.1.1}
23
RCP-based scenarios are referred to as RCPy, where ‘y’ refers to the level of radiative forcing (in watts per square metre, or Wm
-2
)
resulting from the scenario in the year 2100.
The SSP scenarios cover a broader range of greenhouse gas and air pollutant futures than
the RCPs. They are similar but not identical, with differences in concentration trajectories. The overall effective radiative forcing tends
to be higher for the SSPs compared to the RCPs with the same label (medium
confidence).
{Cross-Section Box.2}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.9
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0010.png
Approved
1
2
3
4
5
6
7
8
Summary for Policymakers
IPCC AR6 SYR
Global warming levels (GWLs) relative to 1850–1900 are used to integrate the assessment of climate change
and related impacts and risks since patterns of changes for many variables at a given GWL are common to all
scenarios considered and independent of timing when that level is reached. {Cross-Section Box.2}
[START BOX SPM.1, TABLE 1 HERE]
Box SPM.1, Table 1:
Description and relationship of scenarios and modelled pathways considered across AR6
Working Group reports. {Cross-Section Box.2, Figure 1}
9
10
11
12
13
14
15
16
17
18
19
20
21
* See footnote 27 for the SSPx-y terminology.
** See footnote 28 for the RCPy terminology.
*** Limited overshoot refers to exceeding 1.5°C global warming by up to about 0.1°C, high overshoot by 0.1°C-0.3°C, in both cases
for up to several decades.
[END BOX SPM.1, TABLE 1 HERE]
[END BOX SPM.1 HERE]
Current Mitigation Progress, Gaps and Challenges
A.4 Policies and laws addressing mitigation have consistently expanded since AR5. Global GHG
emissions in 2030 implied by nationally determined contributions (NDCs) announced by October 2021
make it
likely
that warming will exceed 1.5°C during the 21st century and make it harder to limit
warming below 2°C. There are gaps between projected emissions from implemented policies and those
from NDCs and finance flows fall short of the levels needed to meet climate goals across all sectors and
regions. (high
confidence)
{2.2, 2.3, Figure 2.5, Table 2.2}
22
23
24
25
26
27
28
29
30
31
32
33
34
A.4.1
The UNFCCC, Kyoto Protocol, and the Paris Agreement are supporting rising levels of national ambition.
The Paris Agreement, adopted under the UNFCCC, with near universal participation, has led to policy
development and target-setting at national and sub-national levels, in particular in relation to mitigation, as well
as enhanced transparency of climate action and support (medium
confidence).
Many regulatory and economic
instruments have already been deployed successfully (high
confidence).
In many countries, policies have
enhanced energy efficiency, reduced rates of deforestation and accelerated technology deployment, leading to
avoided and in some cases reduced or removed emissions (high
confidence).
Multiple lines of evidence suggest
that mitigation policies have led to several
24
Gt CO
2
-eq yr
-1
of avoided global emissions
(medium confidence).
At least 18 countries have sustained absolute production-based GHG and consumption-based CO
2
reductions
25
for longer than 10 years. These reductions have only partly offset global emissions growth (high
confidence).
{2.2.1, 2.2.2}
At least 1.8 GtCO
2
-eq yr
–1
can be accounted for by aggregating separate estimates for the effects of economic and regulatory
instruments. Growing numbers of laws and executive orders have impacted global emissions and were estimated to result in 5.9 GtCO
2
-
eq yr
–1
less emissions in 2016 than they otherwise would have been. (medium
confidence)
{2.2.2}
25
Reductions were linked to energy supply decarbonisation, energy efficiency gains, and energy demand reduction, which resulted from
both policies and changes in economic structure (high
confidence).
{2.2.2}
24
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.10
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0011.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Summary for Policymakers
IPCC AR6 SYR
A.4.2
Several mitigation options, notably solar energy, wind energy, electrification of urban systems, urban
green infrastructure, energy efficiency, demand-side management, improved forest- and crop/grassland
management, and reduced food waste and loss, are technically viable, are becoming increasingly cost effective
and are generally supported by the public. From 2010– 2019 there have been sustained decreases in the unit
costs of solar energy (85%), wind energy (55%), and lithium ion batteries (85%), and large increases in their
deployment, e.g., >10x for solar and >100x for electric vehicles (EVs), varying widely across regions. The mix
of policy instruments that reduced costs and stimulated adoption includes public R&D, funding for
demonstration and pilot projects, and demand pull instruments such as deployment subsidies to attain scale.
Maintaining emission-intensive systems may, in some regions and sectors, be more expensive than transitioning
to low emission systems. (high
confidence)
{2.2.2, Figure 2.4}
A.4.3
A substantial ‘emissions gap’ exists between global GHG emissions in 2030 associated with the
implementation of NDCs announced prior to COP26
26
and those associated with modelled mitigation pathways
that limit warming to 1.5°C (>50%) with no or limited overshoot or limit warming to 2°C (>67%) assuming
immediate action (high
confidence).
This would make it
likely
that warming will exceed 1.5°C during the 21st
century (high
confidence).
Global modelled mitigation pathways that limit warming to 1.5°C (>50%) with no
or limited overshoot or limit warming to 2°C (>67%) assuming immediate action imply deep global GHG
emissions reductions this decade (high
confidence)
(see SPM Box 1, Table 1, B.6)
27
. Modelled pathways that
are consistent with NDCs announced prior to COP26 until 2030 and assume no increase in ambition thereafter
have higher emissions, leading to a median global warming of 2.8 [2.1–3.4]°C by 2100 (medium
confidence).
Many countries have signalled an intention to achieve net-zero GHG or net-zero CO
2
by around mid-century
but pledges differ across countries in terms of scope and specificity, and limited policies are to date in place to
deliver on them. {2.3.1, Table 2.2, Figure 2.5; Table 3.1; 4.1}
A.4.4
Policy coverage is uneven across sectors (high
confidence).
Policies implemented by the end of 2020 are
projected to result in higher global GHG emissions in 2030 than emissions implied by NDCs, indicating an
‘implementation gap’ (high
confidence).
Without a strengthening of policies, global warming of 3.2 [2.2–3.5]°C
is projected by 2100 (medium
confidence).
{2.2.2, 2.3.1, 3.1.1, Figure 2.5} (Box SPM.1, Figure SPM.5)
A.4.5
The adoption of low-emission technologies lags in most developing countries, particularly least developed
ones, due in part to limited finance, technology development and transfer, and capacity (medium
confidence).
The magnitude of climate finance flows has increased over the last decade and financing channels have
broadened but growth has slowed since 2018
(high confidence).
Financial flows have developed
heterogeneously across regions and sectors (high
confidence).
Public and private finance flows for fossil fuels
are still greater than those for climate adaptation and mitigation (high
confidence).
The overwhelming majority
of tracked climate finance is directed towards mitigation, but nevertheless falls short of the levels needed to
limit warming to below 2°C or to 1.5°C across all sectors and regions (see C7.2) (very
high confidence).
In
2018, public and publicly mobilised private climate finance flows from developed to developing countries were
below the collective goal under the UNFCCC and Paris Agreement to mobilise USD100 billion per year by
2020 in the context of meaningful mitigation action and transparency on implementation (medium
confidence).
{2.2.2, 2.3.1, 2.3.3}
26
Due to the literature cutoff date of WGIII, the additional NDCs submitted after 11 October 2021 are not assessed here. {Footnote 32
in Longer Report}
27
Projected 2030 GHG emissions are 50 (47–55) GtCO -eq if all conditional NDC elements are taken into account. Without conditional
2
elements, the global emissions are projected to be approximately similar to modelled 2019 levels at 53 (50–57) GtCO
2
-eq. {2.3.1, Table
2.2}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.11
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0012.png
Approved
1
2
3
4
Summary for Policymakers
IPCC AR6 SYR
B.
Future Climate Change, Risks, and Long-Term Responses
Future Climate Change
B.1 Continued greenhouse gas emissions will lead to increasing global warming, with the best estimate
of reaching 1.5°C in the near term in considered scenarios and modelled pathways. Every increment of
global warming will intensify multiple and concurrent hazards (high
confidence).
Deep, rapid, and
sustained reductions in greenhouse gas emissions would lead to a discernible slowdown in global
warming within around two decades, and also to discernible changes in atmospheric composition within
a few years (high
confidence).
{Cross-Section Boxes 1 and 2, 3.1, 3.3, Table 3.1, Figure 3.1, 4.3} (Figure
SPM.2, Box SPM.1)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
B.1.1
Global warming
28
will continue to increase in the near term (2021-2040) mainly due to increased
cumulative CO
2
emissions in nearly all considered scenarios and modelled pathways. In the near term, global
warming is
more likely than not
to reach 1.5°C even under the very low GHG emission scenario (SSP1-1.9) and
likely
or
very likely
to exceed 1.5°C under higher emissions scenarios. In the considered scenarios and modelled
pathways, the best estimates of the time when the level of global warming of 1.5°C is reached lie in the near
term
29
. Global warming declines back to below 1.5°C by the end of the 21st century in some scenarios and
modelled pathways (see B.7). The assessed climate response to GHG emissions scenarios results in a best
estimate of warming for 2081–2100 that spans a range from 1.4°C for a very low GHG emissions scenario
(SSP1-1.9) to 2.7°C for an intermediate GHG emissions scenario (SSP2-4.5) and 4.4°C for a very high GHG
emissions scenario (SSP5-8.5)
30
, with narrower uncertainty ranges
31
than for corresponding scenarios in AR5.
{Cross-Section Boxes 1 and 2, 3.1.1, 3.3.4, Table 3.1, 4.3} (Box SPM.1)
B.1.2
Discernible differences in trends of global surface temperature between contrasting GHG emissions
scenarios (SSP1-1.9 and SSP1-2.6 vs. SSP3-7.0 and SSP5-8.5) would begin to emerge from natural variability
32
within around 20 years. Under these contrasting scenarios, discernible effects would emerge within years for
GHG concentrations, and sooner for air quality improvements, due to the combined targeted air pollution
controls and strong and sustained methane emissions reductions. Targeted reductions of air pollutant emissions
lead to more rapid improvements in air quality within years compared to reductions in GHG emissions only,
but in the long term, further improvements are projected in scenarios that combine efforts to reduce air pollutants
as well as GHG emissions
33
. (high
confidence)
{3.1.1} (Box SPM.1)
B.1.3
Continued emissions will further affect all major climate system components. With every additional
increment of global warming, changes in extremes continue to become larger. Continued global warming is
projected to further intensify the global water cycle, including its variability, global monsoon precipitation, and
very wet and very dry weather and climate events and seasons (high
confidence).
In scenarios with increasing
CO
2
emissions, natural land and ocean carbon sinks are projected to take up a decreasing proportion of these
emissions (high
confidence).
Other projected changes include further reduced extents and/or volumes of almost
28
Global warming (see Annex I: Glossary) is here reported as running 20-year averages, unless stated otherwise, relative to 1850–1900.
Global surface temperature in any single year can vary above or below the long-term human-caused trend, due to natural variability. The
internal variability of global surface temperature in a single year is estimated to be about ±0.25°C (5–95% range,
high confidence).
The
occurrence of individual years with global surface temperature change above a certain level does not imply that this global warming
level has been reached. {4.3, Cross-Section Box.2}
29
Median five-year interval at which a 1.5°C global warming level is reached (50% probability) in categories of modelled pathways
considered in WGIII is 2030-2035. By 2030, global surface temperature in any individual year could exceed 1.5°C relative to 1850-1900
with a probability between 40% and 60%, across the five scenarios assessed in WGI (medium
confidence).
In all scenarios considered
in WGI except the very high emissions scenario (SSP5-8.5), the midpoint of the first 20-year running average period during which the
assessed average global surface temperature change reaches 1.5°C lies in the first half of the 2030s. In the very high GHG emissions
scenario, the midpoint is in the late 2020s. {3.1.1, 3.3.1, 4.3} (Box SPM.1)
30
The best estimates [and
very likely
ranges] for the different scenarios are: 1.4°C [1.0°C–1.8°C] (SSP1-1.9); 1.8°C [1.3°C–2.4°C]
(SSP1-2.6); 2.7°C [2.1°C–3.5°C] (SSP2-4.5)); 3.6°C [2.8°C–4.6°C] (SSP3-7.0); and 4.4°C [3.3°C–5.7°C] (SSP5-8.5). {3.1.1} (Box
SPM.1)
31
Assessed future changes in global surface temperature have been constructed, for the first time, by combining multi-model projections
with observational constraints and the assessed equilibrium climate sensitivity and transient climate response. The uncertainty range is
narrower than in the AR5 thanks to improved knowledge of climate processes, paleoclimate evidence and model-based emergent
constraints. {3.1.1}
32
See Annex I: Glossary. Natural variability includes natural drivers and internal variability. The main internal variability phenomena
include El Niño-Southern Oscillation, Pacific Decadal Variability and Atlantic Multi-decadal Variability. {4.3}
33
Based on additional scenarios.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.12
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0013.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Summary for Policymakers
IPCC AR6 SYR
all cryospheric elements
34
(high
confidence),
further global mean sea level rise (virtually
certain),
and increased
ocean acidification (virtually
certain)
and deoxygenation (high
confidence).
{3.1.1, 3.3.1, Figure 3.4} (Figure
SPM.2)
B.1.4
With further warming, every region is projected to increasingly experience concurrent and multiple
changes in climatic impact-drivers.
Compound heatwaves and droughts are projected to become more frequent,
including concurrent events across multiple locations (high
confidence).
Due to relative sea level rise, current
1-in-100 year extreme sea level events
are projected to occur at least annually in more than half of all tide gauge
locations by 2100 under all considered scenarios (high
confidence).
Other projected regional changes include
intensification of tropical cyclones and/or extratropical storms (medium
confidence),
and increases in aridity
and fire weather (medium to
high confidence)
{3.1.1, 3.1.3}
B.1.5
Natural variability will continue to modulate human-caused climate changes, either attenuating or
amplifying projected changes, with little effect on centennial-scale global warming (high
confidence).
These
modulations are important to consider in adaptation planning, especially at the regional scale and in the near
term. If a large explosive volcanic eruption were to occur
35
, it would
temporarily and partially mask human-
caused climate change by
reducing global surface temperature and precipitation for one to three years (medium
confidence).
{4.3}
[START FIGURE SPM.2 HERE]
34
35
Permafrost, seasonal snow cover, glaciers, the Greenland and Antarctic Ice Sheets, and Arctic Sea ice.
Based on 2500-year reconstructions, eruptions with a radiative forcing more negative than -1 Wm-2, related to the radiative effect of
volcanic stratospheric aerosols in the literature assessed in this report, occur on average twice per century. {4.3}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.13
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0014.png
Approved
Summary for Policymakers
IPCC AR6 SYR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Figure SPM.2:
Projected changes of annual maximum daily maximum temperature, annual mean total column soil
moisture and annual maximum 1-day precipitation at global warming levels of 1.5°C, 2°C, 3°C, and 4°C relative to
1850–1900.
Projected
(a)
annual maximum daily temperature change (°C),
(b)
annual mean total column soil moisture
(standard deviation),
(c)
annual maximum 1-day precipitation change (%). The panels show CMIP6 multi-model median
changes. In panels (b) and (c), large positive relative changes in dry regions may correspond to small absolute changes. In
panel (b), the unit is the standard deviation of interannual variability in soil moisture during 1850–1900. Standard deviation
is a widely used metric in characterising drought severity. A projected reduction in mean soil moisture by one standard
deviation corresponds to soil moisture conditions typical of droughts that occurred about once every six years during 1850–
1900. The WGI Interactive Atlas (https://interactive-atlas.ipcc.ch/ ) can be used to explore additional changes in the climate
system across the range of global warming levels presented in this figure. {Figure 3.1, Cross-Section Box.2}
[END FIGURE SPM.2 HERE]
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.14
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0015.png
Approved
1
2
Summary for Policymakers
IPCC AR6 SYR
Climate Change Impacts and Climate-Related Risks
B.2
For any given future warming level, many climate-related risks are higher than assessed in AR5,
and projected long-term impacts are up to multiple times higher than currently observed (high
confidence).
Risks and projected adverse impacts and related losses and damages from climate change
escalate with every increment of global warming (very
high confidence).
Climatic and non-climatic risks
will increasingly interact, creating compound and cascading risks that are more complex and difficult
to manage (high
confidence).
{Cross-Section Box.2, 3.1, 4.3, Figure 3.3, Figure 4.3} (Figure SPM.3,
Figure SPM.4)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
B.2.1
In the near term, every region in the world is projected to face further increases in climate hazards (medium
to high confidence,
depending on region and hazard), increasing multiple risks to ecosystems and humans (very
high confidence).
Hazards and associated risks expected in the near-term include an increase in heat-related
human mortality and morbidity (high
confidence),
food-borne, water-borne, and vector-borne diseases (high
confidence),
and mental health challenges
36
(very
high confidence),
flooding in coastal and other low-lying cities
and regions (high
confidence),
biodiversity loss in land, freshwater and ocean ecosystems (medium
to very high
confidence,
depending on ecosystem), and a decrease in food production in some regions (high
confidence).
Cryosphere-related changes in floods, landslides, and water availability have the potential to lead to severe
consequences for people, infrastructure and the economy in most mountain regions (high
confidence).
The
projected increase in frequency and intensity of heavy precipitation (high
confidence)
will increase rain-
generated local flooding (medium
confidence).
{Figure 3.2, Figure 3.3, 4.3, Figure 4.3} (Figure SPM.3, Figure
SPM.4)
B.2.2
Risks and projected adverse impacts and related losses and damages from climate change will escalate
with every increment of global warming (very
high confidence).
They are higher for global warming of 1.5°C
than at present, and even higher at 2°C (high
confidence).
Compared to the AR5, global aggregated risk levels
37
(Reasons for Concern
38
) are assessed to become high to very high at lower levels of global warming due to
recent evidence of observed impacts, improved process understanding, and new knowledge on exposure and
vulnerability of human and natural systems, including limits to adaptation (high
confidence).
Due to unavoidable
sea level rise (see also B.3), risks for coastal ecosystems, people and infrastructure will continue to increase
beyond 2100 (high
confidence).
{3.1.2, 3.1.3, Figure 3.4, Figure 4.3} (Figures SPM.3, Figure SPM.4)
B.2.3
With further warming, climate change risks will become increasingly complex and more difficult to
manage. Multiple climatic and non-climatic risk drivers will interact, resulting in compounding overall risk and
risks cascading across sectors and regions. Climate-driven food insecurity and supply instability, for example,
are projected to increase with increasing global warming, interacting with non-climatic risk drivers such as
competition for land between urban expansion and food production, pandemics and conflict. (high
confidence)
{3.1.2, 4.3, Figure 4.3}
B.2.4
For any given warming level, the level of risk will also depend on trends in vulnerability and exposure of
humans and ecosystems. Future exposure to climatic hazards is increasing globally due to socio-economic
development trends including migration, growing inequality and urbanisation. Human vulnerability will
concentrate in informal settlements and rapidly growing smaller settlements. In rural areas vulnerability will be
heightened by high reliance on climate-sensitive livelihoods. Vulnerability of ecosystems will be strongly
influenced by past, present, and future patterns of unsustainable consumption and production, increasing
36
37
In all assessed regions.
Undetectable risk level indicates no associated impacts are detectable and attributable to climate change; moderate risk indicates
associated impacts are both detectable and attributable to climate change with at least
medium confidence,
also accounting for the other
specific criteria for key risks; high risk indicates severe and widespread impacts that are judged to be high on one or more criteria for
assessing key risks; and very high risk level indicates very high risk of severe impacts and the presence of significant irreversibility or
the persistence of climate-related hazards, combined with limited ability to adapt due to the nature of the hazard or impacts/risks. {3.1.2}
38
The Reasons for Concern (RFC) framework communicates scientific understanding about accrual of risk for five broad categories.
RFC1: Unique and threatened systems: ecological and human systems that have restricted geographic ranges constrained by climate-
related conditions and have high endemism or other distinctive properties. RFC2: Extreme weather events: risks/impacts to human
health, livelihoods, assets and ecosystems from extreme weather events. RFC3: Distribution of impacts: risks/impacts that
disproportionately affect particular groups due to uneven distribution of physical climate change hazards, exposure or vulnerability.
RFC4: Global aggregate impacts: impacts to socio-ecological systems that can be aggregated globally into a single metric. RFC5: Large-
scale singular events: relatively large, abrupt and sometimes irreversible changes in systems caused by global warming. See also Annex
I: Glossary. {3.1.2, Cross-Section Box.2}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.15
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0016.png
Approved
1
2
3
4
5
6
7
Summary for Policymakers
IPCC AR6 SYR
demographic pressures, and persistent unsustainable use and management of land, ocean, and water. Loss of
ecosystems and their services has cascading and long-term impacts on people globally, especially for Indigenous
Peoples and local communities who are directly dependent on ecosystems, to meet basic needs. (high
confidence)
{Cross-Section Box.2, Figure 1c, 3.1.2, 4.3}
[START FIGURE SPM.3 HERE]
8
9
10
11
12
13
Figure SPM.3:
Projected risks and impacts of climate change on natural and human systems at different global warming
levels (GWLs) relative to 1850-1900 levels. Projected risks and impacts shown on the maps are based on outputs from
different subsets of Earth system and impact models that were used to project each impact indicator without additional
adaptation. WGII provides further assessment of the impacts on human and natural systems using these projections and
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.16
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0017.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Summary for Policymakers
IPCC AR6 SYR
additional lines of evidence.
(a)
Risks of species losses as indicated by the percentage of assessed species exposed to
potentially dangerous temperature conditions, as defined by conditions beyond the estimated historical (1850-2005)
maximum mean annual temperature experienced by each species, at GWLs of 1.5
o
C, 2
o
C,3
o
C and 4
o
C. Underpinning
projections of temperature are from 21 Earth system models and do not consider extreme events impacting ecosystems
such as the Arctic.
(b)
Risks to human health as indicated by the days per year of population exposure to hyperthermic
conditions that pose a risk of mortality from surface air temperature and humidity conditions for historical period (1991-
2005) and at GWLs of 1.7°C–2.3°C (mean = 1.9°C; 13 climate models), 2.4°C–3.1°C (2.7°C; 16 climate models) and
4.2°C–5.4°C (4.7°C; 15 climate models). Interquartile ranges of GWLs by 2081–2100 under RCP2.6, RCP4.5 and RCP8.5.
The presented index is consistent with common features found in many indices included within WGI and WGII assessments
(c)
Impacts on food production: (c1) Changes in maize yield by 2080–2099 relative to 1986–2005 at projected GWLs of
1.6°C–2.4
o
C (2.0°C), 3.3°C–4.8
o
C (4.1°C) and 3.9°C–6.0
o
C (4.9°C). Median yield changes from an ensemble of 12 crop
models, each driven by bias-adjusted outputs from 5 Earth system models, from the Agricultural Model Intercomparison
and Improvement Project (AgMIP) and the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). Maps depict
2080–2099 compared to 1986–2005 for current growing regions (>10 ha), with the corresponding range of future global
warming levels shown under SSP1-2.6, SSP3-7.0 and SSP5-8.5, respectively. Hatching indicates areas where <70% of the
climate-crop model combinations agree on the sign of impact. (c2) Change in maximum fisheries catch potential by 2081–
2099 relative to 1986–2005 at projected GWLs of 0.9°C–2.0°C (1.5°C) and 3.4°C–5.2°C (4.3°C). GWLs by 2081–2100
under RCP2.6 and RCP8.5. Hatching indicates where the two climate-fisheries models disagree in the direction of change.
Large relative changes in low yielding regions may correspond to small absolute changes. Biodiversity and fisheries in
Antarctica were not analysed due to data limitations. Food security is also affected by crop and fishery failures not presented
here.{3.1.2, Figure 3.2,
Cross-Section Box.2}
(Box SPM.1)
[END FIGURE SPM.3 HERE]
[START FIGURE SPM.4 HERE]
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.17
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0018.png
Approved
Summary for Policymakers
IPCC AR6 SYR
1
2
3
4
5
6
7
8
9
10
11
Figure SPM.4: Subset of assessed climate outcomes and associated global and regional climate risks.
The burning
embers result from a literature based expert elicitation.
Panel (a): Left
– Global surface temperature changes in °C relative
to 1850–1900. These changes were obtained by combining CMIP6 model simulations with observational constraints based
on past simulated warming, as well as an updated assessment of equilibrium climate sensitivity.
Very likely
ranges are
shown for the low and high GHG emissions scenarios (SSP1-2.6 and SSP3-7.0) (Cross-Section Box 2);
Right
– Global
Reasons for Concern (RFC), comparing AR6 (thick embers) and AR5 (thin embers) assessments. Risk transitions have
generally shifted towards lower temperatures with updated scientific understanding. Diagrams are shown for each RFC,
assuming low to no adaptation. Lines connect the midpoints of the transitions from moderate to high risk across AR5 and
AR6.
Panel (b):
Selected global risks for land and ocean ecosystems, illustrating general increase of risk with global
warming levels with low to no adaptation.
Panel (c): Left
- Global mean sea level change in centimetres, relative to 1900.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.18
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0019.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Summary for Policymakers
IPCC AR6 SYR
The historical changes (black) are observed by tide gauges before 1992 and altimeters afterwards. The future changes to
2100 (coloured lines and shading) are assessed consistently with observational constraints based on emulation of CMIP,
ice-sheet, and glacier models, and
likely
ranges are shown for SSP1-2.6 and SSP3-7.0.
Right
- Assessment of the combined
risk of coastal flooding, erosion and salinization for four illustrative coastal geographies in 2100, due to changing mean
and extreme sea levels, under two response scenarios, with respect to the SROCC baseline period (1986-2005). The
assessment does not account for changes in extreme sea level beyond those directly induced by mean sea level rise; risk
levels could increase if other changes in extreme sea levels were considered (e.g., due to changes in cyclone intensity).
“No-to-moderate response” describes efforts as of today (i.e. no further significant action or new types of actions).
“Maximum potential response” represent a combination of responses implemented to their full extent and thus significant
additional efforts compared to today, assuming minimal financial, social and political barriers. (In this context, ‘today’
refers to 2019.) The assessment criteria include exposure and vulnerability, coastal hazards, in-situ responses and planned
relocation. Planned relocation refers to managed retreat or resettlements. The term response is used here instead of
adaptation because some responses, such as retreat, may or may not be considered to be adaptation.
Panel (d):
Selected
risks under different socio-economic pathways, illustrating how development strategies and challenges to adaptation
influence risk.
Left
- Heat-sensitive human health outcomes under three scenarios of adaptation effectiveness. The
diagrams are truncated at the nearest whole ºC within the range of temperature change in 2100 under three SSP scenarios.
Right
- Risks associated with food security due to climate change and patterns of socio-economic development. Risks to
food security include availability and access to food, including population at risk of hunger, food price increases and
increases in disability adjusted life years attributable to childhood underweight. Risks are assessed for two contrasted socio-
economic pathways (SSP1 and SSP3) excluding the effects of targeted mitigation and adaptation policies. {Figure 3.3}
(Box SPM.1)
[END FIGURE SPM.4 HERE]
Likelihood and Risks of Unavoidable, Irreversible or Abrupt Changes
B.3 Some future changes are unavoidable and/or irreversible but can be limited by deep, rapid and
sustained global greenhouse gas emissions reduction. The likelihood of abrupt and/or irreversible
changes increases with higher global warming levels. Similarly, the probability of low-likelihood
outcomes associated with potentially very large adverse impacts increases with higher global warming
levels. (high
confidence)
{3.1}
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
B.3.1
Limiting global surface temperature does not prevent continued changes in climate system components
that have multi-decadal or longer timescales of response (high
confidence).
Sea level rise is unavoidable for
centuries to millennia due to continuing deep ocean warming and ice sheet melt, and sea levels will remain
elevated for thousands of years (high
confidence).
However, deep, rapid and sustained GHG emissions
reductions would limit further sea level rise acceleration and projected long-term sea level rise commitment.
Relative to 1995–2014, the
likely
global mean sea level rise under the SSP1-1.9 GHG emissions scenario is
0.15–0.23 m by 2050 and 0.28–0.55 m by 2100; while for the SSP5-8.5 GHG emissions scenario it is 0.20–0.29
m by 2050 and 0.63–1.01 m by 2100 (medium
confidence).
Over the next 2000 years, global mean sea level will
rise by about 2–3 m if warming is limited to 1.5°C and 2–6 m if limited to 2°C (low
confidence).
{3.1.3, Figure
3.4} (Box SPM.1)
B.3.2
The likelihood and impacts of abrupt and/or irreversible changes in the climate system, including changes
triggered when tipping points are reached, increase with further global warming (high
confidence).
As warming
levels increase, so do the risks of species extinction or irreversible loss of biodiversity in ecosystems including
forests (medium
confidence),
coral reefs (very
high confidence)
and in Arctic regions (high
confidence).
At
sustained warming levels between 2°C and 3°C, the Greenland and West Antarctic ice sheets will be lost almost
completely and irreversibly over multiple millennia, causing several metres of sea level rise (limited
evidence).
The probability and rate of ice mass loss increase with higher global surface temperatures (high
confidence).
{3.1.2, 3.1.3}
B.3.3
The probability of low-likelihood outcomes associated with potentially very large impacts increases with
higher global warming levels (high
confidence).
Due to deep uncertainty linked to ice-sheet processes, global
mean sea level rise above the
likely
range – approaching 2 m by 2100 and in excess of 15 m by 2300 under the
very high GHG emissions scenario (SSP5-8.5) (low
confidence)
– cannot be excluded. There is
medium
confidence
that the Atlantic Meridional Overturning Circulation will not collapse abruptly before 2100, but if it
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.19
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0020.png
Approved
1
2
3
4
5
6
Summary for Policymakers
IPCC AR6 SYR
were to occur, it would
very likely
cause abrupt shifts in regional weather patterns, and large impacts on
ecosystems and human activities. {3.1.3} (Box SPM.1)
Adaptation Options and their Limits in a Warmer World
B.4 Adaptation options that are feasible and effective today will become constrained and less effective
with increasing global warming. With increasing global warming, losses and damages will increase
and additional human and natural systems will reach adaptation limits. Maladaptation can be
avoided by flexible, multi-sectoral, inclusive, long-term planning and implementation of adaptation
actions, with co-benefits to many sectors and systems. (high
confidence)
{3.2, 4.1, 4.2, 4.3}
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
B.4.1
The effectiveness of adaptation, including ecosystem-based and most water-related options, will decrease
with increasing warming. The feasibility and effectiveness of options increase with integrated, multi-sectoral
solutions that differentiate responses based on climate risk, cut across systems and address social inequities. As
adaptation options often have long implementation times, long-term planning increases their efficiency. (high
confidence)
{3.2, Figure 3.4, 4.1, 4.2}
B.4.2
With additional global warming, limits to adaptation and losses and damages, strongly concentrated
among vulnerable populations, will become increasingly difficult to avoid (high
confidence).
Above 1.5°C of
global warming, limited freshwater resources pose potential hard adaptation limits for small islands and for
regions dependent on glacier and snow melt (medium
confidence).
Above that level, ecosystems such as some
warm-water coral reefs, coastal wetlands, rainforests, and polar and mountain ecosystems will have reached or
surpassed hard adaptation limits and as a consequence, some Ecosystem-based Adaptation measures will also
lose their effectiveness (high
confidence).
{2.3.2, 3.2, 4.3}
B.4.3
Actions that focus on sectors and risks in isolation and on short-term gains often lead to maladaptation
over the long-term, creating lock-ins of vulnerability, exposure and risks that are difficult to change. For
example, seawalls effectively reduce impacts to people and assets in the short-term but can also result in lock-
ins and increase exposure to climate risks in the long-term unless they are integrated into a long-term adaptive
plan. Maladaptive responses can worsen existing inequities especially for Indigenous Peoples and marginalised
groups and decrease ecosystem and biodiversity resilience. Maladaptation can be avoided by flexible, multi-
sectoral, inclusive, long-term planning and implementation of adaptation actions, with co-benefits to many
sectors and systems. (high
confidence)
{2.3.2, 3.2}
Carbon Budgets and Net Zero Emissions
B.5 Limiting human-caused global warming requires net zero CO
2
emissions. Cumulative carbon
emissions until the time of reaching net-zero CO
2
emissions and the level of greenhouse gas emission
reductions this decade largely determine whether warming can be limited to 1.5°C or 2°C (high
confidence).
Projected CO
2
emissions from existing fossil fuel infrastructure without additional
abatement would exceed the remaining carbon budget for 1.5°C (50%) (high
confidence).
{2.3, 3.1,
3.3, Table 3.1}
34
35
36
37
38
39
40
41
42
43
44
B.5.1
From a physical science perspective, limiting human-caused global warming to a specific level requires
limiting cumulative CO
2
emissions, reaching at least net zero CO
2
emissions, along with strong reductions in
other greenhouse gas emissions. Reaching net zero GHG emissions primarily requires deep reductions in CO
2
,
methane, and other GHG emissions, and implies net-negative CO
2
emissions
39
. Carbon dioxide removal (CDR)
will be necessary to achieve net-negative CO2 emissions (see B.6). Net zero GHG emissions, if sustained, are
projected to result in a gradual decline in global surface temperatures after an earlier peak. (high
confidence)
{3.1.1, 3.3.1, 3.3.2, 3.3.3, Table 3.1, Cross-Section Box 1}
B.5.2
For every 1000 GtCO
2
emitted by human activity, global surface temperature rises by 0.45°C (best
estimate, with a
likely
range from 0.27 to 0.63°C). The best estimates of the remaining carbon budgetsfrom the
39
Net zero GHG emissions defined by the 100-year global warming potential. See footnote 9.
IPCC-LVIII/Doc. 4, p.20
Do Not Cite, Quote or Distribute
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0021.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Summary for Policymakers
IPCC AR6 SYR
beginning of 2020 are 500 GtCO
2
for a 50% likelihood of limiting global warming to 1.5°C and 1150 GtCO
2
for a 67% likelihood of limiting warming to 2°C
40
. The stronger the reductions in non-CO
2
emissions the lower
the resulting temperatures are for a given remaining carbon budget or the larger remaining carbon budget for
the same level of temperature change
41
. {3.3.1}
B.5.3
If the annual CO
2
emissions between 2020–2030 stayed, on average, at the same level as 2019, the
resulting cumulative emissions would almost exhaust the remaining carbon budget for 1.5°C (50%), and deplete
more than a third of the remaining carbon budget for 2°C (67%). Estimates of future CO
2
emissions from
existing fossil fuel infrastructures without additional abatement
42
already exceed the remaining carbon budget
for limiting warming to 1.5°C (50%) (high
confidence).
Projected cumulative future CO
2
emissions over the
lifetime of existing and planned fossil fuel infrastructure, if historical operating patterns are maintained and
without additional abatement
43
, are approximately equal to the remaining carbon budget for limiting warming
to 2°C with a likelihood of 83%
44
(high
confidence).
{2.3.1, 3.3.1, Figure 3.5}
B.5.4
Based on central estimates only, historical cumulative net CO
2
emissions between 1850 and 2019 amount
to about four-fifths
45
of the total carbon budget for a 50% probability of limiting global warming to 1.5°C
(central estimate about 2900 GtCO
2
), and to about two thirds
46
of the total carbon budget for a 67% probability
to limit global warming to 2°C (central estimate about 3550 GtCO
2
). {3.3.1, Figure 3.5}
Mitigation Pathways
B.6 All global modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot,
and those that limit warming to 2°C (>67%), involve rapid and deep and, in most cases, immediate
greenhouse gas emissions reductions in all sectors this decade. Global net zero CO
2
emissions are
reached for these pathway categories, in the early 2050s and around the early 2070s, respectively.
(high
confidence)
{3.3, 3.4, 4.1, 4.5, Table 3.1} (Figure SPM.5, Box SPM.1)
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
B.6.1
Global modelled pathways provide information on limiting warming to different levels; these pathways,
particularly their sectoral and regional aspects, depend on the assumptions described in Box SPM.1. Global
modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot or limit warming to 2°C
(>67%) are characterized by deep, rapid and, in most cases, immediate GHG emissions reductions. Pathways
that limit warming to 1.5C (>50%) with no or limited overshoot reach net zero CO
2
in the early 2050s, followed
by net negative CO
2
emissions. Those pathways that reach net zero GHG emissions do so around the 2070s.
Pathways that limit warming to 2C (>67%) reach net zero CO2 emissions in the early 2070s. Global GHG
emissions are projected to peak between 2020 and at the latest before 2025 in global modelled pathways that
limit warming to 1.5°C (>50%) with no or limited overshoot and in those that limit warming to 2°C (>67%) and
assume immediate action. (high
confidence)
{3.3.2, 3.3.4, 4.1, Table 3.1, Figure 3.6} (Table XX)
[START TABLE XX]
40
Global databases make different choices about which emissions and removals occurring on land are considered anthropogenic. Most
countries report their anthropogenic land CO
2
fluxes including fluxes due to human-caused environmental change (e.g., CO
2
fertilisation)
on ‘managed’ land in their national GHG inventories. Using emissions estimates based on these inventories, the remaining carbon
budgets must be correspondingly reduced. {3.3.1}
41
For example, remaining carbon budgets could be 300 or 600 GtCO for 1.5°C (50%), respectively for high and low non-CO emissions,
2
2
compared to 500 GtCO
2
in the central case. {3.3.1}
42
Abatement here refers to human interventions that reduce the amount of greenhouse gases that are released from fossil fuel
infrastructure to the atmosphere.
43
Ibid.
44
WGI provides carbon budgets that are in line with limiting global warming to temperature limits with different likelihoods, such as
50%, 67% or 83%. {3.3.1}
45
Uncertainties for total carbon budgets have not been assessed and could affect the specific calculated fractions.
46
Ibid.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.21
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0022.png
Approved
1
2
Summary for Policymakers
IPCC AR6 SYR
Table XX:
Greenhouse gas and CO
2
emission reductions from 2019, median and 5-95 percentiles {3.3.1; 4.1;
Table 3.1; Figure 2.5; Box SPM1}
Reductions from 2019 emission levels (%)
2030
2035
2040
GHG 43 [34-60]
60 [49-77]
69 [58-90]
CO
2
48 [36-69]
65 [50-96]
80 [61-109]
GHG 21 [1-42]
35 [22-55]
46 [34-63]
CO
2
22 [1-44]
37 [21-59]
51 [36-70]
2050
84 [73-98]
99 [79-119]
64 [53-77]
73 [55-90]
Limit warming to1.5°C (>50%) with no or
limited overshoot
Limit warming to 2°C (>67%)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
[END TABLE XX]
B.6.2
Reaching net zero CO
2
or GHG emissions primarily requires deep and rapid reductions in gross emissions
of CO
2
, as well as substantial reductions of non-CO
2
GHG emissions (high
confidence).
For example, in
modelled pathways that limit warming to 1.5°C (>50%) with no or limited overshoot, global methane emissions
are reduced by 34 [21–57]% by 2030 relative to 2019. However, some hard-to-abate residual GHG emissions
(e.g., some emissions from agriculture, aviation, shipping, and industrial processes) remain and would need to
be counterbalanced by deployment of carbon dioxide removal (CDR) methods to achieve net zero CO
2
or GHG
emissions (high
confidence).
As a result, net zero CO
2
is reached earlier than net zero GHGs (high
confidence).
{3.3.2, 3.3.3, Table 3.1, Figure 3.5} (Figure SPM.5)
B.6.3
Global modelled mitigation pathways reaching net zero CO
2
and GHG emissions include transitioning
from fossil fuels without carbon capture and storage (CCS) to very low- or zero-carbon energy sources, such as
renewables or fossil fuels with CCS, demand-side measures and improving efficiency, reducing non-CO
2
GHG
emissions, and CDR
47
. In most global modelled pathways, land-use change and forestry (via reforestation and
reduced deforestation) and the energy supply sector reach net zero CO
2
emissions earlier than the buildings,
industry and transport sectors. (high
confidence)
{3.3.3, 4.1, 4.5, Figure 4.1} (Figure SPM.5, Box SPM.1)
B.6.4
Mitigation options often have synergies with other aspects of sustainable development, but some options
can also have trade-offs. There are potential synergies between sustainable development and, for instance,
energy efficiency and renewable energy. Similarly, depending on the context
48
, biological CDR methods like
reforestation, improved forest management, soil carbon sequestration, peatland restoration and coastal blue
carbon management can enhance biodiversity and ecosystem functions, employment and local livelihoods.
However, afforestation or production of biomass crops can have adverse socio-economic and environmental
impacts, including on biodiversity, food and water security, local livelihoods and the rights of Indigenous
Peoples, especially if implemented at large scales and where land tenure is insecure. Modelled pathways that
assume using resources more efficiently or that shift global development towards sustainability include fewer
challenges, such as less dependence on CDR and pressure on land and biodiversity. (high
confidence)
{3.4.1}
[START FIGURE SPM.5 HERE]
47
CCS is an option to reduce emissions from large-scale fossil-based energy and industry sources provided geological storage is
available. When CO
2
is captured directly from the atmosphere (DACCS), or from biomass (BECCS), CCS provides the storage
component of these CDR methods. CO
2
capture and subsurface injection is a mature technology for gas processing and enhanced oil
recovery. In contrast to the oil and gas sector, CCS is less mature in the power sector, as well as in cement and chemicals production,
where it is a critical mitigation option. The technical geological storage capacity is estimated to be on the order of 1000 GtCO
2
, which
is more than the CO
2
storage requirements through 2100 to limit global warming to 1.5°C, although the regional availability of geological
storage could be a limiting factor. If the geological storage site is appropriately selected and managed, it is estimated that the CO
2
can
be permanently isolated from the atmosphere. Implementation of CCS currently faces technological, economic, institutional, ecological-
environmental and socio-cultural barriers. Currently, global rates of CCS deployment are far below those in modelled pathways limiting
global warming to 1.5°C to 2°C. Enabling conditions such as policy instruments, greater public support and technological innovation
could reduce these barriers. (high
confidence)
{3.3.3}
48
The impacts, risks, and co-benefits of CDR deployment for ecosystems, biodiversity and people will be highly variable depending on
the method, site-specific context, implementation and scale (high
confidence).
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.22
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0023.png
Approved
Summary for Policymakers
IPCC AR6 SYR
1
2
3
4
5
6
7
8
Figure SPM.5: Global emissions pathways consistent with implemented policies and mitigation strategies. Panel (a),
(b)
and
(c)
show the development of global GHG, CO
2
and methane emissions in modelled pathways, while
panel (d)
shows the associated timing of when GHG and CO
2
emissions reach net zero. Coloured ranges denote the 5th to 95th
percentile across the global modelled pathways falling within a given category as described in Box SPM.1. The red ranges
depict emissions pathways assuming policies that were implemented by the end of 2020. Ranges of modelled pathways
that limit warming to 1.5°C (>50%) with no or limited overshoot are shown in light blue (category C1) and pathways that
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.23
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0024.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Summary for Policymakers
IPCC AR6 SYR
limit warming to 2°C (>67%) are shown in green (category C3). Global emission pathways that would limit warming to
1.5°C (>50%) with no or limited overshoot and also reach net zero GHG in the second half of the century do so between
2070-2075.
Panel (e)
shows the sectoral contributions of CO
2
and non-CO
2
emissions sources and sinks at the time when
net zero CO
2
emissions are reached in illustrative mitigation pathways (IMPs) consistent with limiting warming to 1.5°C
with a high reliance on net negative emissions (IMP-Neg) (“high overshoot”), high resource efficiency (IMP-LD), a focus
on sustainable development (IMP-SP), renewables (IMP-Ren) and limiting warming to 2°C with less rapid mitigation
initially followed by a gradual strengthening (IMP-GS). Positive and negative emissions for different IMPs are compared
to GHG emissions from the year 2019. Energy supply (including electricity) includes bioenergy with carbon dioxide
capture and storage and direct air carbon dioxide capture and storage. CO
2
emissions from land-use change and forestry
can only be shown as a net number as many models do not report emissions and sinks of this category separately. {Figure
3.6, 4.1} (Box SPM.1)
[END FIGURE SPM.5 HERE]
Overshoot: Exceeding a Warming Level and Returning
B.7 If warming exceeds a specified level such as 1.5°C, it could gradually be reduced again by
achieving and sustaining net negative global CO
2
emissions. This would require additional
deployment of carbon dioxide removal, compared to pathways without overshoot, leading to greater
feasibility and sustainability concerns. Overshoot entails adverse impacts, some irreversible, and
additional risks for human and natural systems, all growing with the magnitude and duration of
overshoot. (high
confidence)
{3.1, 3.3, 3.4, Table 3.1, Figure 3.6}
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
B.7.1
Only a small number of the most ambitious global modelled pathways limit global warming to 1.5°C
(>50%) by 2100 without exceeding this level temporarily. Achieving and sustaining net negative global CO
2
emissions, with annual rates of CDR greater than residual CO
2
emissions, would gradually reduce the warming
level again (high
confidence).
Adverse impacts that occur during this period of overshoot and cause additional
warming via feedback mechanisms, such as increased wildfires, mass mortality of trees, drying of peatlands,
and permafrost thawing, weakening natural land carbon sinks and increasing releases of GHGs would make the
return more challenging (medium
confidence).
{3.3.2, 3.3.4, Table 3.1, Figure 3.6} (Box SPM.1)
B.7.2
The higher the magnitude and the longer the duration of overshoot, the more ecosystems and societies are
exposed to greater and more widespread changes in climatic impact-drivers, increasing risks for many natural
and human systems. Compared to pathways without overshoot, societies would face higher risks to
infrastructure, low-lying coastal settlements, and associated livelihoods. Overshooting 1.5°C will result in
irreversible adverse impacts on certain ecosystems with low resilience, such as polar, mountain, and coastal
ecosystems, impacted by ice-sheet, glacier melt, or by accelerating and higher committed sea level rise. (high
confidence)
{3.1.2, 3.3.4}
B.7.3
The larger the overshoot, the more net negative CO
2
emissions would be needed to return to 1.5°C by
2100. Transitioning towards net zero CO
2
emissions faster and reducing non-CO
2
emissions such as methane
more rapidly would limit peak warming levels and reduce the requirement for net negative CO
2
emissions,
thereby reducing feasibility and sustainability concerns, and social and environmental risks associated with
CDR deployment at large scales. (high
confidence)
{3.3.3, 3.3.4, 3.4.1, Table 3.1}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.24
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0025.png
Approved
1
2
3
4
Summary for Policymakers
IPCC AR6 SYR
C.
Responses in the Near Term
Urgency of Near-Term Integrated Climate Action
C.1 Climate change is a threat to human well-being and planetary health (very
high confidence).
There
is a rapidly closing window of opportunity to secure a liveable and sustainable future for all (very
high
confidence).
Climate resilient development integrates adaptation and mitigation to advance sustainable
development for all, and is enabled by increased international cooperation including improved access to
adequate financial resources, particularly for vulnerable regions, sectors and groups, and inclusive
governance and coordinated policies (high
confidence).
The choices and actions implemented in this
decade will have impacts now and for thousands of years (high
confidence).
{3.1, 3.3, 4.1, 4.2, 4.3, 4.4,
4.7, 4.8, 4.9, Figure 3.1, Figure 3.3, Figure 4.2} (Figure SPM.1; Figure SPM.6)
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C.1.1
Evidence of observed adverse impacts and related losses and damages, projected risks, levels and trends
in vulnerability and adaptation limits, demonstrate that worldwide climate resilient development action is more
urgent than previously assessed in AR5. Climate resilient development integrates adaptation and GHG
mitigation to advance sustainable development for all. Climate resilient development pathways have been
constrained by past development, emissions and climate change and are progressively constrained by every
increment of warming, in particular beyond 1.5°C. (very
high confidence)
{3.4; 3.4.2; 4.1}
C.1.2
Government actions at sub-national, national and international levels, with civil society and the private
sector, play a crucial role in enabling and accelerating shifts in development pathways towards sustainability
and climate resilient development (very
high confidence).
Climate resilient development is enabled when
governments, civil society and the private sector make inclusive development choices that prioritize risk
reduction, equity and justice, and when decision-making processes, finance and actions are integrated across
governance levels, sectors, and timeframes (very
high confidence).
Enabling conditions are differentiated by
national, regional and local circumstances and geographies, according to capabilities, and include: political
commitment and follow-through, coordinated policies, social and international cooperation, ecosystem
stewardship, inclusive governance, knowledge diversity, technological innovation, monitoring and evaluation,
and improved access to adequate financial resources, especially for vulnerable regions, sectors and communities
(high
confidence).
{3.4; 4.2, 4.4, 4.5, 4.7, 4.8} (Figure SPM.6)
C.1.3
Continued emissions will further affect all major climate system components, and many changes will be
irreversible on centennial to millennial time scales and become larger with increasing global warming. Without
urgent, effective, and equitable mitigation and adaptation actions, climate change increasingly threatens
ecosystems, biodiversity, and the livelihoods, health and wellbeing of current and future generations. (high
confidence)
{3.1.3; 3.3.3; 3.4.1, Figure 3.4; 4.1, 4.2, 4.3, 4.4} (Figure SPM.1, Figure SPM.6).
[START FIGURE SPM.6 HERE]
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.25
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0026.png
Approved
Summary for Policymakers
IPCC AR6 SYR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Figure SPM.6:
The illustrative development pathways (red to green) and associated outcomes (right panel) show that there
is a rapidly narrowing window of opportunity to secure a liveable and sustainable future for all. Climate resilient
development is the process of implementing greenhouse gas mitigation and adaptation measures to support sustainable
development. Diverging pathways illustrate that interacting choices and actions made by diverse government, private sector
and civil society actors can advance climate resilient development, shift pathways towards sustainability, and enable lower
emissions and adaptation. Diverse knowledge and values include cultural values, Indigenous Knowledge, local knowledge,
and scientific knowledge. Climatic and non-climatic events, such as droughts, floods or pandemics, pose more severe
shocks to pathways with lower climate resilient development (red to yellow) than to pathways with higher climate resilient
development (green). There are limits to adaptation and adaptive capacity for some human and natural systems at global
warming of 1.5°C, and with every increment of warming, losses and damages will increase. The development pathways
taken by countries at all stages of economic development impact GHG emissions and mitigation challenges and
opportunities, which vary across countries and regions. Pathways and opportunities for action are shaped by previous
actions (or inactions and opportunities missed; dashed pathway) and enabling and constraining conditions (left panel), and
take place in the context of climate risks, adaptation limits and development gaps. The longer emissions reductions are
delayed, the fewer effective adaptation options. {Figure 4.2; 3.1; 3.2; 3.4; 4.2; 4.4; 4.5; 4.6; 4.9}
[END FIGURE SPM.6 HERE]
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.26
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0027.png
Approved
1
2
Summary for Policymakers
IPCC AR6 SYR
The Benefits of Near-Term Action
C.2 Deep, rapid and sustained mitigation and accelerated implementation of adaptation actions in
this decade would reduce projected losses and damages for humans and ecosystems (very
high
confidence),
and deliver many co-benefits, especially for air quality and health (high
confidence).
Delayed mitigation and adaptation action would lock-in high-emissions infrastructure, raise risks of
stranded assets and cost-escalation, reduce feasibility, and increase losses and damages (high
confidence).
Near-term actions involve high up-front investments and potentially disruptive changes
that can be lessened by a range of enabling policies (high
confidence).
{2.1, 2.2, 3.1, 3.2, 3.3, 3.4, 4.1,
4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8}
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
C.2.1
Deep, rapid, and sustained mitigation and accelerated implementation of adaptation actions in this decade
would reduce future losses and damages related to climate change for humans and ecosystems (very
high
confidence).
As adaptation options often have long implementation times, accelerated implementation of
adaptation in this decade is important to close adaptation gaps (high
confidence).
Comprehensive, effective, and
innovative responses integrating adaptation and mitigation can harness synergies and reduce trade-offs between
adaptation and mitigation (high
confidence).
{4.1, 4.2, 4.3}.
C.2.2
Delayed mitigation action will further increase global warming and losses and damages will rise and
additional human and natural systems will reach adaptation limits (high
confidence).
Challenges from delayed
adaptation and mitigation actions include the risk of cost escalation, lock-in of infrastructure, stranded assets,
and reduced feasibility and effectiveness of adaptation and mitigation options (high
confidence).
Without rapid,
deep and sustained mitigation and accelerated adaptation actions, losses and damages will continue to increase,
including projected adverse impacts in Africa, LDCs, SIDS, Central and South America
49
, Asia and the Arctic,
and will disproportionately affect the most vulnerable populations (high
confidence).
{2.1.2; 3.1.2, 3.2, 3.3.1,
3.3.3; 4.1, 4.2, 4.3} (Figure SPM.3, Figure SPM.4)
C.2.3
Accelerated climate action can also provide co-benefits (see also C.4). Many mitigation actions would
have benefits for health through lower air pollution, active mobility (e.g., walking, cycling), and shifts to
sustainable healthy diets. Strong, rapid and sustained reductions in methane emissions can limit near-term
warming and improve air quality by reducing global surface ozone. (high
confidence)
Adaptation can generate
multiple additional benefits such as improving agricultural productivity, innovation, health and wellbeing, food
security, livelihood, and biodiversity conservation (very
high confidence).
{4.2, 4.5.4, 4.5.5, 4.6}
C.2.4
Cost-benefit analysis remains limited in its ability to represent all avoided damages from climate change
(high
confidence).
The economic benefits for human health from air quality improvement arising from
mitigation action can be of the same order of magnitude as mitigation costs, and potentially even larger (medium
confidence).
Even without accounting for all the benefits of avoiding potential damages the global economic
and social benefit of limiting global warming to 2°C exceeds the cost of mitigation in most of the assessed
literature (medium
confidence).
50
More rapid climate change mitigation, with emissions peaking earlier,
increases co-benefits and reduces feasibility risks and costs in the long-term, but requires higher up-front
investments (high
confidence).
{3.4.1, 4.2}
C.2.5
Ambitious mitigation pathways imply large and sometimes disruptive changes in existing economic
structures, with significant distributional consequences within and between countries. To accelerate climate
action, the adverse consequences of these changes can be moderated by fiscal, financial, institutional and
regulatory reforms and by integrating climate actions with macroeconomic policies through (i) economy-wide
packages, consistent with national circumstances, supporting sustainable low-emission growth paths;
(ii)
climate resilient safety nets and social protection; and (iii) improved access to finance for low-emissions
infrastructure and technologies, especially in developing countries.
(high
confidence)
{4.2, 4.4, 4.7, 4.8.1}
49
The southern part of Mexico is included in the climactic subregion South Central America (SCA) for WGI. Mexico is assessed as part
of North America for WGII. The climate change literature for the SCA region occasionally includes Mexico, and in those cases WGII
assessment makes reference to Latin America. Mexico is considered part of Latin America and the Caribbean for WGIII.
50
The evidence is too limited to make a similar robust conclusion for limiting warming to 1.5°C. Limiting global warming to 1.5°C
instead of 2°C would increase the costs of mitigation, but also increase the benefits in terms of reduced impacts and related risks, and
reduced adaptation needs (high
confidence).
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.27
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0028.png
Approved
1
2
3
Summary for Policymakers
IPCC AR6 SYR
[START FIGURE SPM.7 HERE]
4
5
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.28
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0029.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Summary for Policymakers
IPCC AR6 SYR
Figure SPM.7: Multiple Opportunities for scaling up climate action.
Panel (a)
presents selected mitigation and
adaptation options across different systems. The left hand side of panel a shows climate responses and adaptation options
assessed for their multidimensional feasibility at global scale, in the near term and up to 1.5°C global warming. As literature
above 1.5°C is limited, feasibility at higher levels of warming may change, which is currently not possible to assess
robustly. The term response is used here in addition to adaptation because some responses, such as migration, relocation
and resettlement may or may not be considered to be adaptation. Forest based adaptation includes sustainable forest
management, forest conservation and restoration, reforestation and afforestation. WASH refers to water, sanitation and
hygiene. Six feasibility dimensions (economic, technological, institutional, social, environmental and geophysical) were
used to calculate the potential feasibility of climate responses and adaptation options, along with their synergies with
mitigation. For potential feasibility and feasibility dimensions, the figure shows high, medium, or low feasibility. Synergies
with mitigation are identified as high, medium, and low.
The right hand side of Panel a provides an overview of selected mitigation options and their estimated costs and potentials
in 2030. Costs are net lifetime discounted monetary costs of avoided GHG emissions calculated relative to a reference
technology. Relative potentials and costs will vary by place, context and time and in the longer term compared to 2030.
The potential (horizontal axis) is the net GHG emission reduction (sum of reduced emissions and/or enhanced sinks) broken
down into cost categories (coloured bar segments) relative to an emission baseline consisting of current policy (around
2019) reference scenarios from the AR6 scenarios database. The potentials are assessed independently for each option and
are not additive. Health system mitigation options are included mostly in settlement and infrastructure (e.g., efficient
healthcare buildings) and cannot be identified separately. Fuel switching in industry refers to switching to electricity,
hydrogen, bioenergy and natural gas. Gradual colour transitions indicate uncertain breakdown into cost categories due to
uncertainty or heavy context dependency. The uncertainty in the total potential is typically 25–50%.
Panel (b)
displays the indicative potential of demand-side mitigation options for 2050. Potentials are estimated based on
approximately 500 bottom-up studies representing all global regions. The baseline (white bar) is provided by the sectoral
mean GHG emissions in 2050 of the two scenarios (IEA-STEPS and IP_ModAct) consistent with policies announced by
national governments until 2020. The green arrow represents the demand-side emissions reductions potentials. The range
in potential is shown by a line connecting dots displaying the highest and the lowest potentials reported in the literature.
Food shows demand-side potential of socio-cultural factors and infrastructure use, and changes in land-use patterns enabled
by change in food demand. Demand-side measures and new ways of end-use service provision can reduce global GHG
emissions in end-use sectors (buildings, land transport, food) by 40–70% by 2050 compared to baseline scenarios, while
some regions and socioeconomic groups require additional energy and resources. The last row shows how demand-side
mitigation options in other sectors can influence overall electricity demand. The dark grey bar shows the projected increase
in electricity demand above the 2050 baseline due to increasing electrification in the other sectors. Based on a bottom-up
assessment, this projected increase in electricity demand can be avoided through demand-side mitigation options in the
domains of infrastructure use and socio-cultural factors that influence electricity usage in industry, land transport, and
buildings (green arrow). {Figure 4.4}
[END FIGURE SPM.7 HERE]
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.29
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0030.png
Approved
1
2
Summary for Policymakers
IPCC AR6 SYR
Mitigation and Adaptation Options across Systems
C.3 Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep
and sustained emissions reductions and secure a liveable and sustainable future for all. These system
transitions involve a significant upscaling of a wide portfolio of mitigation and adaptation options.
Feasible, effective, and low-cost options for mitigation and adaptation are already available, with
differences across systems and regions. (high
confidence)
{4.1, 4.5, 4.6} (Figure SPM.7)
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
C.3.1
The systemic change required to achieve rapid and deep emissions reductions and transformative
adaptation to climate change is unprecedented in terms of scale, but not necessarily in terms of speed (medium
confidence).
Systems transitions include: deployment of low- or zero-emission technologies; reducing and
changing demand through infrastructure design and access, socio-cultural and behavioural changes, and
increased technological efficiency and adoption; social protection, climate services or other services; and
protecting and restoring ecosystems (high
confidence).
Feasible, effective, and low-cost options for mitigation
and adaptation are already available (high
confidence).
The availability, feasibility and potential of mitigation
and adaptation options in the near-term differs across systems and regions (very
high confidence).
{4.1, 4.5.1–
4.5.6}(Figure SPM.7)
Energy Systems
C.3.2
Net zero CO
2
energy systems entail: a substantial reduction in overall fossil fuel use, minimal use of
unabated fossil fuels
51
, and use of carbon capture and storage in the remaining fossil fuel systems; electricity
systems that emit no net CO
2
; widespread electrification; alternative energy carriers in applications less
amenable to electrification; energy conservation and efficiency; and greater integration across the energy system
(high
confidence).
Large contributions to emissions reductions with costs less than USD 20 tCO
2
-eq
-1
come
from solar and wind energy, energy efficiency improvements, and methane emissions reductions (coal mining,
oil and gas, waste) (medium
confidence).
There are feasible adaptation options that support infrastructure
resilience, reliable power systems and efficient water use for existing and new energy generation systems (very
high confidence).
Energy generation diversification (e.g., via wind, solar, small scale hydropower) and demand
side management (e.g., storage and energy efficiency improvements) can increase energy reliability and reduce
vulnerabilities to climate change (high
confidence).
Climate responsive energy markets, updated design
standards on energy assets according to current and projected climate change, smart-grid technologies, robust
transmission systems and improved capacity to respond to supply deficits have high feasibility in the medium-
to long-term, with mitigation co-benefits (very
high confidence).
{4.5.1} (Figure SPM.7)
Industry and Transport
C.3.3
Reducing industry GHG emissions entails coordinated action throughout value chains to promote all
mitigation options, including demand management, energy and materials efficiency, circular material flows, as
well as abatement technologies and transformational changes in production processes (high
confidence).
In
transport, sustainable biofuels, low-emissions hydrogen, and derivatives (including ammonia and synthetic
fuels) can support mitigation of CO
2
emissions from shipping, aviation, and heavy-duty land transport but
require production process improvements and cost reductions (medium
confidence).
Sustainable biofuels can
offer additional mitigation benefits in land-based transport in the short and medium term (medium
confidence).
Electric vehicles powered by low-GHG emissions electricity have large potential to reduce land-based transport
GHG emissions, on a life cycle basis (high
confidence).
Advances in battery technologies could facilitate the
electrification of heavy-duty trucks and compliment conventional electric rail systems (medium
confidence).
The environmental footprint of battery production and growing concerns about critical minerals can be
addressed by material and supply diversification strategies, energy and material efficiency improvements, and
circular material flows (medium
confidence).
4.5.2, 4.5.3} (Figure SPM.7)
In this context, ‘unabated fossil fuels’ refers to fossil fuels produced and used without interventions that substantially reduce the
amount of GHG emitted throughout the life cycle; for example, capturing 90% or more CO2 from power plants, or 50–80% of fugitive
methane emissions from energy supply.
51
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.30
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0031.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
Summary for Policymakers
IPCC AR6 SYR
Cities, Settlements and Infrastructure
C.3.4
Urban systems are critical for achieving deep emissions reductions and advancing climate resilient
development (high
confidence).
Key adaptation and mitigation elements in cities include considering climate
change impacts and risks (e.g. through climate services) in the design and planning of settlements and
infrastructure; land use planning to achieve compact urban form, co-location of jobs and housing; supporting
public transport and active mobility (e.g., walking and cycling); the efficient design, construction, retrofit, and
use of buildings; reducing and changing energy and material consumption; sufficiency
52
; material substitution;
and electrification in combination with low emissions sources (high
confidence).
Urban transitions that offer
benefits for mitigation, adaptation, human health and well-being, ecosystem services, and vulnerability
reduction for low-income communities are fostered by inclusive long-term planning that takes an integrated
approach to physical, natural and social infrastructure (high
confidence).
Green/natural and blue infrastructure
supports carbon uptake and storage and either singly or when combined with grey infrastructure can reduce
energy use and risk from extreme events such as heatwaves, flooding, heavy precipitation and droughts, while
generating co-benefits for health, well-being and livelihoods (medium
confidence).
{4.5.3}
Land, Ocean, Food, and Water
C.3.5
Many agriculture, forestry, and other land use (AFOLU) options provide adaptation and mitigation
benefits that could be upscaled in the near-term across most regions. Conservation, improved management, and
restoration of forests and other ecosystems offer the largest share of economic mitigation potential, with reduced
deforestation in tropical regions having the highest total mitigation potential. Ecosystem restoration,
reforestation, and afforestation can lead to trade-offs due to competing demands on land. Minimizing trade-offs
requires integrated approaches to meet multiple objectives including food security. Demand-side measures
(shifting to sustainable healthy diets
53
and reducing food loss/waste) and sustainable agricultural intensification
can reduce ecosystem conversion, and methane and nitrous oxide emissions, and free up land for reforestation
and ecosystem restoration. Sustainably sourced agricultural and forest products, including long-lived wood
products, can be used instead of more GHG-intensive products in other sectors. Effective adaptation options
include cultivar improvements, agroforestry, community-based adaptation, farm and landscape diversification,
and urban agriculture. These AFOLU response options require integration of biophysical, socioeconomic and
other enabling factors. Some options, such as conservation of high-carbon ecosystems (e.g., peatlands, wetlands,
rangelands, mangroves and forests), deliver immediate benefits, while others, such as restoration of high-carbon
ecosystems, take decades to deliver measurable results. {4.5.4} (Figure SPM.7)
C.3.6
Maintaining the resilience of biodiversity and ecosystem services at a global scale depends on effective
and equitable conservation of approximately 30% to 50% of Earth’s land, freshwater and ocean areas, including
currently near-natural ecosystems (high
confidence).
Conservation, protection and restoration of terrestrial,
freshwater, coastal and ocean ecosystems, together with targeted management to adapt to unavoidable impacts
of climate change reduces the vulnerability of biodiversity and ecosystem services to climate change (high
confidence),
reduces coastal erosion and flooding (high
confidence),
and could increase carbon uptake and
storage if global warming is limited (medium
confidence).
Rebuilding overexploited or depleted fisheries
reduces negative climate change impacts on fisheries (medium
confidence)
and supports food security,
biodiversity, human health and well-being (high
confidence).
Land restoration contributes to climate change
mitigation and adaptation with synergies via enhanced ecosystem services and with economically positive
returns and co-benefits for poverty reduction and improved livelihoods (high
confidence).
Cooperation, and
inclusive decision making, with Indigenous Peoples and local communities, as well as recognition of inherent
rights of Indigenous Peoples, is integral to successful adaptation and mitigation across forests and other
ecosystems (high
confidence).
{4.5.4, 4.6} (Figure SPM.7)
52
A set of measures and daily practices that avoid demand for energy, materials, land, and water while delivering human well-being for
all within planetary boundaries {4.5.3}
53
‘Sustainable healthy diets’ promote all dimensions of individuals’ health and well-being; have low environmental pressure and impact;
are accessible, affordable, safe and equitable; and are culturally acceptable, as described in FAO and WHO. The related concept of
‘balanced diets’ refers to diets that feature plant-based foods, such as those based on coarse grains, legumes, fruits and vegetables, nuts
and seeds, and animal-sourced food produced in resilient, sustainable and low-GHG emission systems, as described in SRCCL.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.31
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0032.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Summary for Policymakers
IPCC AR6 SYR
Health and Nutrition
C.3.7
Human health will benefit from integrated mitigation and adaptation options that mainstream health into
food, infrastructure, social protection, and water policies (very
high confidence).
Effective adaptation options
exist to help protect human health and wellbeing, including: strengthening public health programs related to
climate-sensitive diseases, increasing health systems resilience, improving ecosystem health, improving access
to potable water, reducing exposure of water and sanitation systems to flooding, improving surveillance and
early warning systems, vaccine development (very
high confidence),
improving access to mental healthcare,
and Heat Health Action Plans that include early warning and response systems (high
confidence).
Adaptation
strategies which reduce food loss and waste or support balanced, sustainable healthy diets contribute to nutrition,
health, biodiversity and other environmental benefits (high
confidence).
{4.5.5} (Figure SPM.7)
Society, Livelihoods, and Economies
C.3.8
Policy mixes that include weather and health insurance, social protection and adaptive social safety nets,
contingent finance and reserve funds, and universal access to early warning systems combined with effective
contingency plans, can reduce vulnerability and exposure of human systems. Disaster risk management, early
warning systems, climate services and risk spreading and sharing approaches have broad applicability across
sectors. Increasing education including capacity building, climate literacy, and information provided through
climate services and community approaches can facilitate heightened risk perception and accelerate behavioural
changes and planning. (high
confidence)
{4.5.6}
Synergies and Trade-Offs with Sustainable Development
C.4 Accelerated and equitable action in mitigating and adapting to climate change impacts is critical
to sustainable development.
Mitigation and adaptation actions have more synergies than trade-offs
with Sustainable Development Goals. Synergies and trade-offs depend on context and scale of
implementation. (high
confidence)
{3.4, 4.2, 4.4, 4.5, 4.6, 4.9, Figure 4.5}
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
C.4.1
Mitigation efforts embedded within the wider development context can increase the pace, depth and
breadth of emission reductions (medium
confidence).
Countries at all stages of economic development seek to
improve the well-being of people, and their development priorities reflect different starting points and contexts.
Different contexts include but are not limited to social, economic, environmental, cultural, political
circumstances, resource endowment, capabilities, international environment, and prior development (high
confidence).
In regions with high dependency on fossil fuels for, among other things, revenue and employment
generation, mitigating risk for sustainable development requires policies that promote economic and energy
sector diversification and considerations of just transitions principles, processes and practices (high
confidence).
Eradicating extreme poverty, energy poverty, and providing decent living standards in low-emitting countries /
regions in the context of achieving sustainable development objectives, in the near term, can be achieved without
significant global emissions growth (high
confidence).
{4.4, 4.6, Annex I: Glossary}
C.4.2
Many mitigation and adaptation actions have multiple synergies with Sustainable Development Goals
(SDGs) and sustainable development generally, but some actions can also have trade-offs. Potential synergies
with SDGs exceed potential trade-offs; synergies and trade-offs depend on the pace and magnitude of change
and the development context including inequalities with consideration of climate justice. Trade-offs can be
evaluated and minimised by giving emphasis to capacity building, finance, governance, technology transfer,
investments, development, context specific gender-based and other social equity considerations with
meaningful participation of Indigenous Peoples, local communities and vulnerable populations. (high
confidence)
{3.4.1, 4.6, Figure 4.5, 4.9}
C.4.3
Implementing both mitigation and adaptation actions together and taking trade-offs into account supports
co-benefits and synergies for human health and well-being. For example, improved access to clean energy
sources and technologies generate health benefits especially for women and children; electrification combined
with low-GHG energy, and shifts to active mobility and public transport can enhance air quality, health,
employment, and can elicit energy security and deliver equity. (high
confidence)
{4.2, 4.5.3, 4.5.5, 4.6, 4.9}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.32
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0033.png
Approved
1
2
3
Summary for Policymakers
IPCC AR6 SYR
Equity and Inclusion
C.5
Prioritising equity, climate justice, social justice, inclusion and just transition processes can
enable adaptation and ambitious mitigation actions and climate resilient development. Adaptation
outcomes are enhanced by increased support to regions and people with the highest vulnerability to
climatic hazards. Integrating climate adaptation into social protection programs improves resilience.
Many options are available for reducing emission-intensive consumption, including through
behavioural and lifestyle changes, with co-benefits for societal well-being. (high
confidence)
{4.4, 4.5}
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
C.5.1
Equity remains a central element in the UN climate regime, notwithstanding shifts in differentiation
between states over time and challenges in assessing fair shares. Ambitious mitigation pathways imply large
and sometimes disruptive changes in economic structure, with significant distributional consequences, within
and between countries. Distributional consequences within and between countries include shifting of income
and employment during the transition from high- to low-emissions activities. (high
confidence)
{4.4}
C.5.2
Adaptation and mitigation actions, that prioritise equity, social justice, climate justice, rights-based
approaches, and inclusivity, lead to more sustainable outcomes, reduce trade-offs, support transformative
change and advance climate resilient development. Redistributive policies across sectors and regions that shield
the poor and vulnerable, social safety nets, equity, inclusion and just transitions, at all scales can enable deeper
societal ambitions and resolve trade-offs with sustainable development goals. Attention to equity and broad and
meaningful participation of all relevant actors in decision making at all scales can build social trust which builds
on equitable sharing of benefits and burdens of mitigation that deepen and widen support for transformative
changes. (high
confidence)
{4.4}
C.5.3
Regions and people (3.3 to 3.6 billion in number) with considerable development constraints have high
vulnerability to climatic hazards (see A.2.2).
Adaptation outcomes for the most vulnerable within and across
countries and regions are enhanced through approaches focusing on equity, inclusivity and rights-based
approaches. Vulnerability is exacerbated
by inequity and marginalisation linked to e.g., gender, ethnicity, low
incomes, informal settlements, disability, age, and historical and ongoing patterns of inequity such as
colonialism, especially for many Indigenous Peoples and local communities. Integrating climate adaptation into
social protection programs, including cash transfers and public works programs, is highly feasible and increases
resilience to climate change, especially when supported by basic services and infrastructure. The greatest gains
in well-being in urban areas can be achieved by prioritising access to finance to reduce climate risk for low-
income and marginalised communities including people living in informal settlements. (high
confidence).
{4.4,
4.5.3, 4.5.5, 4.5.6}
C.5.4
The design of regulatory instruments and economic instruments and consumption-based approaches, can
advance equity. Individuals with high socio-economic status contribute disproportionately to emissions, and
have the highest potential for emissions reductions. Many options are available for reducing emission-intensive
consumption while improving societal well-being. Socio-cultural options, behaviour and lifestyle changes
supported by policies, infrastructure, and technology can help end-users shift to low-emissions-intensive
consumption, with multiple co-benefits. A substantial share of the population in low-emitting countries lack
access to modern energy services. Technology development, transfer, capacity building and financing can
support developing countries/ regions leapfrogging or transitioning to low-emissions transport systems thereby
providing multiple co-benefits. Climate resilient development is advanced when actors work in equitable, just
and inclusive ways to reconcile divergent interests, values and worldviews, toward equitable and just outcomes.
(high
confidence)
{2.1, 4.4}
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.33
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0034.png
Approved
1
2
3
4
Summary for Policymakers
IPCC AR6 SYR
Governance and Policies
C.6 Effective climate action is enabled by political commitment, well-aligned multilevel governance,
institutional frameworks, laws, policies and strategies and enhanced access to finance and technology.
Clear goals, coordination across multiple policy domains, and inclusive governance processes
facilitate effective climate action. Regulatory and economic instruments can support deep emissions
reductions and climate resilience if scaled up and applied widely. Climate resilient development
benefits from drawing on diverse knowledge. (high
confidence)
{2.2, 4.4, 4.5, 4.7}
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
C.6.1
Effective climate governance enables mitigation and adaptation. Effective governance provides overall
direction on setting targets and priorities and mainstreaming climate action across policy domains and levels,
based on national circumstances and in the context of international cooperation. It enhances monitoring and
evaluation and regulatory certainty, prioritising inclusive, transparent and equitable decision-making, and
improves access to finance and technology (see C.7). (high
confidence)
{2.2.2, 4.7}
C.6.2
Effective local, municipal, national and subnational institutions build consensus for climate action among
diverse interests, enable coordination and inform strategy setting but require adequate institutional capacity.
Policy support is influenced by actors in civil society, including businesses, youth, women, labour, media,
Indigenous Peoples, and local communities. Effectiveness is enhanced by political commitment and
partnerships between different groups in society. (high
confidence)
{2.2; 4.7}
C.6.3
Effective multilevel governance for mitigation, adaptation, risk management, and climate resilient
development is enabled by inclusive decision processes that prioritise equity and justice in planning and
implementation, allocation of appropriate resources, institutional review, and monitoring and evaluation.
Vulnerabilities and climate risks are often reduced through carefully designed and implemented laws, policies,
participatory processes, and interventions that address context specific inequities such as those based on gender,
ethnicity, disability, age, location and income. (high
confidence)
{4.4, 4.7}
C.6.4
Regulatory and economic instruments could support deep emissions reductions if scaled up and applied
more widely (high
confidence).
Scaling up and enhancing the use of regulatory instruments can improve
mitigation outcomes in sectoral applications, consistent with national circumstances (high
confidence).
Where
implemented, carbon pricing instruments have incentivized low-cost emissions reduction measures but have
been less effective, on their own and at prevailing prices during the assessment period, to promote higher-cost
measures necessary for further reductions (medium
confidence).
Equity and distributional impacts of such
carbon pricing instruments, e.g., carbon taxes and emissions trading, can be addressed by using revenue to
support low-income households, among other approaches. Removing fossil fuel subsidies would reduce
emissions
54
and yield benefits such as improved public revenue, macroeconomic and sustainability
performance; subsidy removal can have adverse distributional impacts, especially on the most economically
vulnerable groups which, in some cases can be mitigated by measures such as redistributing revenue saved, all
of which depend on national circumstances (high
confidence).
Economy-wide policy packages, such as public
spending commitments, pricing reforms, can meet short-term economic goals while reducing emissions and
shifting development pathways towards sustainability (medium
confidence).
Effective policy packages would
be comprehensive, consistent, balanced across objectives, and tailored to national circumstances
(high
confidence).
{2.2.2, 4.7}
C.6.5
Drawing on diverse knowledges and cultural values, meaningful participation and inclusive engagement
processes—including Indigenous Knowledge, local knowledge, and scientific knowledge—facilitates climate
resilient development, builds capacity and allows locally appropriate and socially acceptable solutions. (high
confidence)
{4.4, 4.5.6, 4.7}
54
Fossil fuel subsidy removal is projected by various studies to reduce global CO
2
emission by 1-4%, and GHG emissions by up to 10%
by 2030, varying across regions (medium
confidence).
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.34
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0035.png
Approved
1
2
3
4
Summary for Policymakers
IPCC AR6 SYR
Finance, Technology and International Cooperation
C.7 Finance, technology and international cooperation are critical enablers for accelerated climate
action. If climate goals are to be achieved, both adaptation and mitigation financing would need to
increase many-fold. There is sufficient global capital to close the global investment gaps but there are
barriers to redirect capital to climate action. Enhancing technology innovation systems is key to
accelerate the widespread adoption of technologies and practices. Enhancing international
cooperation is possible through multiple channels.
(high confidence)
{2.3, 4.8}
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
C.7.1
Improved availability of and access to finance
55
would enable accelerated climate action (very
high
confidence).
Addressing needs and gaps and broadening equitable access to domestic and international finance,
when combined with other supportive actions, can act as a catalyst for accelerating adaptation and mitigation,
and enabling climate resilient development
(high confidence).
If climate goals are to be achieved, and to address
rising risks and accelerate investments in emissions reductions, both adaptation and mitigation finance would
need to increase many-fold (high
confidence).
{4.8.1}
C.7.2
Increased access to finance can build capacity and address soft limits to adaptation and avert rising risks,
especially for developing countries, vulnerable groups, regions and sectors (high
confidence).
Public finance is
an important enabler of adaptation and mitigation, and can also leverage private finance
(high confidence).
Average annual modelled mitigation investment requirements for 2020 to 2030 in scenarios that limit warming
to 2°C or 1.5°C are a factor of three to six greater than current levels
56
, and total mitigation investments (public,
private, domestic and international) would need to increase across all sectors and regions (medium
confidence).
Even if extensive global mitigation efforts are implemented, there will be a need for financial, technical, and
human resources for adaptation
(high confidence).
{4.3, 4.8.1}
C.7.3
There is sufficient global capital and liquidity to close global investment gaps, given the size of the global
financial system, but there are barriers to redirect capital to climate action both within and outside the global
financial sector and in the context of economic vulnerabilities and indebtedness facing developing countries.
Reducing financing barriers for scaling up financial flows would require clear signalling and support by
governments, including a stronger alignment of public finances in order to lower real and perceived regulatory,
cost and market barriers and risks and improving the risk-return profile of investments. At the same time,
depending on national contexts, financial actors, including investors, financial intermediaries, central banks and
financial regulators can shift the systemic underpricing of climate-related risks, and reduce sectoral and regional
mismatches between available capital and investment needs. (high
confidence)
{4.8.1}
C.7.4
Tracked financial flows fall short of the levels needed for adaptation and to achieve mitigation goals
across all sectors and regions. These gaps create many opportunities and the challenge of closing gaps is largest
in developing countries. Accelerated financial support for developing countries from developed countries and
other sources is a critical enabler to enhance adaptation and mitigation actions and address inequities in access
to finance, including its costs, terms and conditions, and economic vulnerability to climate change for
developing countries. Scaled-up public grants for mitigation and adaptation funding for vulnerable regions,
especially in Sub-Saharan Africa, would be cost-effective and have high social returns in terms of access to
basic energy. Options for scaling up mitigation in developing countries include: increased levels of public
finance and publicly mobilised private finance flows from developed to developing countries in the context of
the USD 100 billion-a-year goal; increased use of public guarantees to reduce risks and leverage private flows
at lower cost; local capital markets development; and building greater trust in international cooperation
processes. A coordinated effort to make the post-pandemic recovery sustainable over the longer-term can
accelerate climate action, including in developing regions and countries facing high debt costs, debt distress and
macroeconomic uncertainty. (high
confidence)
{4.8.1}
55
Finance originates from diverse sources: public or private, local, national or international, bilateral or multilateral, and alternative
sources. It can take the form of grants, technical assistance, loans (concessional and non-concessional), bonds, equity, risk insurance and
financial guarantees (of different types).
56
These estimates rely on scenario assumptions.
Do Not Cite, Quote or Distribute
IPCC-LVIII/Doc. 4, p.35
KEF, Alm.del - 2022-23 (2. samling) - Bilag 190: FN’s Klimapanels (IPCC) synteserapport 2023 og nyhed fra DMI
2679287_0036.png
Approved
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Summary for Policymakers
IPCC AR6 SYR
C.7.5
Enhancing technology innovation systems can provide opportunities to lower emissions growth, create
social and environmental co-benefits, and achieve other SDGs. Policy packages tailored to national contexts
and technological characteristics have been effective in supporting low-emission innovation and technology
diffusion. Public policies can support training and R&D, complemented by both regulatory and market-based
instruments that create incentives and market opportunities. Technological innovation can have trade-offs such
as new and greater environmental impacts, social inequalities, overdependence on foreign knowledge and
providers, distributional impacts and rebound effects
57
, requiring appropriate governance and policies to
enhance potential and reduce trade-offs. Innovation and adoption of low-emission technologies lags in most
developing countries, particularly least developed ones, due in part to weaker enabling conditions, including
limited finance, technology development and transfer, and capacity building. (high
confidence)
{4.8.3}
C.7.6
International cooperation is a critical enabler for achieving ambitious climate change mitigation,
adaptation, and climate resilient development (high
confidence).
Climate resilient development is enabled by
increased international cooperation including mobilising and enhancing access to finance, particularly for
developing countries, vulnerable regions, sectors and groups and aligning finance flows for climate action to be
consistent with ambition levels and funding needs (high
confidence).
Enhancing international cooperation on
finance, technology and capacity building can enable greater ambition and can act as a catalyst for accelerating
mitigation and adaptation, and shifting development pathways towards sustainability (high
confidence).
This
includes support to NDCs and accelerating technology development and deployment (high
confidence).
Transnational partnerships can stimulate policy development, technology diffusion, adaptation and mitigation,
though uncertainties remain over their costs, feasibility and effectiveness (medium
confidence).
International
environmental and sectoral agreements, institutions and initiatives are helping, and in some cases may help, to
stimulate low GHG emissions investments and reduce emissions (medium
confidence).
{2.2.2, 4.8.2}
57
Leading to lower net emission reductions or even emission increases.
IPCC-LVIII/Doc. 4, p.36
Do Not Cite, Quote or Distribute