Klima-, Energi- og Forsyningsudvalget 2022-23 (2. samling)
KEF Alm.del Bilag 130
Offentligt
2665695_0001.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
ASSESSMENT OF THE MARKET
�½CCCCC FOR CO2
POTENTIAL CCCCC
STORAGE IN DENMARK
<
ENERGISTYRELSEN
MAY 2021
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
CONTENTS
1.
2.
3.
4.
4.1
4.2
4.3
5.
5.1
5.2
5.3
5.4
5.5
6.
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.
7.1
7.2
7.3
7.4
BACKGROUND AND INTRODUCTION
DANISH ABSTRACT
EXECUTIVE SUMMARY
CCS MARKET POTENTIAL
KEY CONCLUSIONS ON THE CCS POTENTIAL IN NORTHERN
EUROPE
COUNTRY DEEP-DIVES
ASSUMPTIONS UNDERLYING ESTIMATION OF CAPTURABLE CO2
OVERVIEW AND EVALUATION OF POTENTIAL SET-UPS FOR
TRANSPORT AND STORAGE OF CO2 IN DENMARK
KEY CONCLUSIONS ON THE POTENTIAL SET-UPS FOR TRANSPORT
AND STORAGE OF CO2 IN DENMARK
MAPPING OF NORTH EUROPEAN CO2 STREAMS RELEVANT FOR
DANISH STORAGE
POSSIBLE SET-UPS FOR TRANSPORT AND STORAGE OF CO2 IN
DENMARK
ASSESSMENT OF DANISH COMPETITIVENESS FOR CO2 STORAGE
INSTITUTIONAL CONSIDERATIONS
PROFITABILITY ASSESSMENT OF CO2 STORAGE IN
DENMARK
INTRODUCTION TO BUSINESS CASES
OVERVIEW OF ANALYSED BUSINESS MODELS
BUSINESS CASE ASSUMPTIONS
KEY CONCLUSIONS ON THE PROFITABILITY OF THE CO2 STORAGE
IN DENMARK
BUSINESS CASE DEEP-DIVES
BUSINESS CASE PREREQUISITES
PRO’S AND CON’S FOR THE
ASSESSED BUSINESS CASES
APPENDIX
GRAPHICAL OVERVIEW OF BUSINESS MODEL SET-UPS
GRAPHICAL OVERVIEW OF BUSINESS CASES
OVERVIEW OF COSTS AND ASSUMPTIONS PER BUSINESS MODEL
SET-UP
OVERVIEW OF ESTIMATED CCS SHARE BY COUNTRY
4
6
11
16
16
18
65
69
69
70
73
83
84
93
93
95
96
98
102
106
108
109
109
113
116
147
2
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0003.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
ABBREVIATONS
Abbreviation
AC
BECCS
CAPEX
CCC
CCS
CCU
CCUS
CfD
CO2
CPH
DK
EE
FSU
GHG
HFO
IPCC
IRR
km
LNG
LT
LULUCF
LV
MSW
Mt
MtCO2/y
MtCO2e
NL
NO
NPV
OPEX
PL
Pre-FID
SDE++
T&S
UK
Explanation
Active current
Bio-energy carbon capture
Captial expenditures
Climate change committee (UK)
Carbon capture and storage
Carbon capture and utilisation
Carbon capture utilisation and storage
Contract for difference
Carbon dioxide
Co-generator of power and heat
Denmark
Estonia
Floating storage unit
Greenhouse gas
Heavy fuel oil
International panel of climate change
Internal rate of return
kilometre
Liquid natural gas
Lithuania
Land-use, land-use change and forestry
Latvia
Municipal solid waste
Megaton (1,000 ton)
Megaton carbon dioxide per year
Megaton carbon dioxide equivalent
The Netherlands
Norway
Net present value
Operational expenditures
Poland
Pre-finale investment decision
Stimulation of sustainable energy production
Transport and storage
United Kingdom
3
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
1.
BACKGROUND AND INTRODUCTION
Ramboll has been commissioned by The Danish Energy Agency to conduct market study of
transport and storage of CO2 in Northern Europe, which will impact the extent to which CCS-
capacity will be planned and developed in Denmark. The report assesses whether and to what
extent there is market potential for storing CO2 exports from Northern European countries in
Denmark as well as Denmark's competitiveness in being a potential European CO2 storage
provider. Possible set-ups for transporting and storing CO2 in Denmark from countries deemed to
have highest potential to export CO2 to Denmark are mapped to identify a selection of market-
based (i.e. relevant and competitive; hereunder, cost-effective and convenient transport and
storage solution for emitters) business case set-ups. An important distinction is made between
business case set-ups and business models. Business case set-ups bring forth the most relevant
market-based cases for which the profitability and break-even is calculated, whereas business
models incorporate the organisational aspects; In this case, pivotal institutional considerations
necessary to develop transport and storage infrastructure and operate it. Institutional
considerations are discussed to highlight the need for state- and Government's involvement, as
without it, the development of CCS solutions will not be likely since private players are not
incentivised at present to establish CCS themselves. The report culminates in the presentation of
selected competitive business case set-ups, including their expected profitability and a discussion
of their underlying prerequisites, e.g., the necessary institutional prerequisites to achieve the
estimated business case results and the advantages and disadvantages of each case.
Background
The Intergovernmental Panel on Climate Change (IPCC) has stated that carbon removal
technologies will be needed to reach the climate goals set in the Paris agreement, limiting global
warming to 1.5C by 2100. Carbon capture and storage (CCS) has been highlighted as an essential
means to remove CO2
1
.
Although there is a significant potential for CCS technologies, a well-established market does not
yet exist in Northern Europe. The most advanced CO2 storage developments are not expected
until the end of 2024.
In Denmark, both GEUS and The Danish Energy Agency have amongst others been proponents of
CCS technology, but it was not until 2020 that CCS was discussed at the political level.
Additionally, the Danish Waste Association published a memorandum in 2019, in which CCS was a
pivotal part of the vision for a CO2-neutral waste sector. In 2020, the climate agreement for
industry and energy ("Klimaaftalen for Industri og Energi m.v. af 22. juni 2020") was signed,
stating that funding will be allocated and increased towards 2029 for market-based CCS or similar
technologies, which have the aim to reduce CO2 in the atmosphere
2
.
Denmark possesses many suitable reservoirs in the subsoil for storing CO2, and the Danish
Energy Agency wants to be well-equipped to prepare a CCS strategy to position themselves in this
emerging market. To do this, they need to understand the market for CCS, the potentials and
particularly Denmark's competitiveness in the market.
As such, Ramboll has been requested to investigate the market potential for CO2 storage from
Northern Europe in Denmark, an assessment of Denmark's competitiveness in this market and
associated market-based business case set-ups, including the necessary prerequisites. The results
of the investigating will indicate and have an impact on the extent to which CCS capacity will be
planned in Denmark.
Introduction
The report is structured into three main chapters ("CCS potential",
“Overview and evaluation of
possible set-ups
for transport and storage of CO2 in Denmark” and “Profitability assessment of
CO2 storage in Denmark”), that
investigates the following topics:
-
-
-
1
2
Potential for CCS and exports to Denmark from ten selected Northern European countries
(UK, Norway, Sweden, Finland, Poland, Estonia, Latvia Lithuania, The Netherlands and
Germany);
Mapping of possible set-ups for transport and storage of CO2 and their associated costs;
Institutional considerations for a CCS business model in Denmark;
BBC
The device that reverses CO2 emissions
Regeringen - Klimaaftale for energi og industri mv. 2020
4
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0005.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
-
-
Assessment of Denmark’s competitiveness as a CO2 storage provider; and
A business case evaluation of business case set-ups where Denmark is deemed to have a
competitive advantage
CCS market potential
The aim of this assessment is to provide a thorough understanding of the market potential for
CCS in the Northern European countries covered in this analysis, with a particular emphasis on
identifying import opportunities, specified as the share of capturable CO2 intended for storage,
that cannot be stored within the country’s own CO2 storage capacity. Thus,
the assessment
covers estimated CCS potential within each of the ten analysed counties, the CO2 storage
capacity, and, on this basis, a potential
gap for the country’s need to export CO2
to be stored
abroad is found. The assessment will, in this sense, provide input to the volumes used in the
business cases.
Overview and evaluation of possible set-ups for transport and storage of CO2 in Denmark
Potential set-ups for storage and transport are assessed to outline various options that are
possible for transport and storage of CO2, as well as to calculate the costs and compare them
between the options. This to identify relevant market-based business case set-ups, which are
cost-efficient and where Denmark can be competitive. The input from this assessment is applied
when constructing the business cases and the associated cost inputs.
This part of the analysis also discusses institutional considerations, which are important to
consider in a CCS business model since there is a need for state and Government involvement as
well as a mix of various bodies to establish the CCS infrastructure and operate the business. The
input from this assessment will serve as some of the prerequisites for the business case set-ups in
the following chapter.
Profitability assessment of CO2 storage in Denmark
This part of the analysis provides a view on whether and when selected business case set-ups will
be profitable and under which pre-requisites. The business cases are chosen based on the
previous analyses, which indicate potential set-ups where Denmark is competitive. These business
cases will provide decision-making material for the Danish Energy Agency who will compare the
different business cases.
5
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
2.
DANISH ABSTRACT
CCS markedspotentiale
Den politiske opbakning til CCS varierer meget imellem de ti lande, denne analyse omfatter
(Finland, Sverige, Norge, Tyskland, Storbritannien, Holland, Polen, Estland, Letland og Litauen).
De lande, hvis
nationalpolitik er mest imødekommende over for CCS, er Norge og
Storbritannien.
Begge har stærke støtteordninger for CCS, der målrettet udvikler teknologien og
understøtter projekter, som sænker omkostningerne for CCS. Desuden har landene udviklet
fordelagtige lovgivningsmæssige rammer og konkrete CCS-mål eller forpligtelser, der er fremsat
med henblik på at implementere CCS på nationalt plan. De lande, hvis
nationalpolitik er mindst
imødekommende over for CCS, er Polen og de baltiske lande
(Litauen, Letland og Estland).
Ingen af disse har inkluderet CCS som en del af deres nuværende klimastrategi eller foreslået
støtteordninger, lovgivning eller konkrete mål med henblik på at udvikle eller implementere CCS
teknologi på nationalt plan. Imidlertid har disse lande anerkendt, at CCS teknologien potentielt
kan blive relevant i fremtiden, hvilket indikerer en voksende politisk interesse for emnet.
De lande (som analysen behandler) med
den største CO2 udledning fra store kilder
er
Tyskland, Polen, Storbritannien og Holland. I 2017 havde de en udledning på hhv. MTCO2 ~406,
~166. ~146, and ~95. Af disse lande anses
Storbritannien, Tyskland og Polen for at have de
største totale CCS-potentialer.
I Tyskland og Polen kan den største del af CCS-potentialet
tilskrives fossile kraftværker, hvor det i Storbritannien kan tilskrives både kraft- og
varmesektoren samt de CO2-tunge industrier (olie og gas raffinaderier, mineral-, jern og stål-,
kemikalie- og madvareproducenter).
Det totale CCS-potentiale i Sverige, Finland
(i begge
tilfælde tilskrives det hovedsageligt papirmasse- og papirindustrien)
og Holland
(tilskrives det en
kombination af både naturgasværker og de CO2-tunge industreri)
er vurderet til at være
forholdsvis mindre relevant.
Derudover er CCS-potentialet i de baltiske lande vurderet til at
være ubetydeligt. I denne sammenhæng grundet deres relativt lave CCS volumener.
Både
Storbritannien og Norge har høje ambitioner for national CO2 lagring
(og endda for
import af CO2 fra udlandet), hvor Tyskland, Polen og Sverige er mere tilbageholdende overfor
national lagring af CO2. Lagringskapaciteten i de baltiske lande anses desuden for at være uegnet
til CO2 lagring.
Tyskland, Sverige og Finland anses for at have det største potentiale for at eksportere
CO2 (med henblik på lagring) til Danmark,
hvor
Holland og Polens anses for at være af
sekundær karakter.
Storbritannien og Norge er de vigtigste konkurrenter for Danmark ift. disse
Nordeuropæiske CO2- strømme. CCS-potentialet i Baltikum (Estland, Litauen og Letland) er så
lavt, at det anses som værende ubetydeligt.
Overblik og evaluering af mulige set-ups for transport og lagring af CO2 i Danmark
De vejledende
CO2-volumener, som er relevante for danske CO2-lagre (inklusiv de
nationale CO2 volumener), er vurderet til at være op imod ~45 MtCO2/år.
For de danske
lagre anses import af CO2 fra Tyskland, Sverige og Finland som værende mest relevant. Import af
CO2 fra Holland og Polen har også betydning for dem, men er vurderet til at være i relativt
mindre volumener og tilskrives større usikkerhed. CO2-import fra Baltikum, Norge og
Storbritannien forventes desuden at være af ubetydelig størrelse (de to sidstnævnte lande har
veludviklede nationale lagringsprojekter).
Danmarks potentielt bedste lagringsmuligheder ligger i Havnsø (onshore), Gassum (onshore),
Hanstholm (nearshore) og i den nordlige del af de danske olie- og gasfelter i Nordsøen.
Transportmuligheder inkluderer tankskibe, fartøjer og rørledninger. Udenlandske lagre, der
potentielt kan konkurrere med danske lagre, er fortrinsvist placeret i Norge eller Storbritannien.
For at sammenligne omkostningerne for forskellige sammensætninger af CO2
transport- og lagringsmuligheder er ni mulige set-ups opstillet.
Dette er blevet gjort med
henblik på at vurdere deres konkurrencedygtighed individuelt såvel som i kombination. De ni
opsætninger inkluderer en række kombinationer af transport og lagringsmuligheder, hvilket
betyder, at nogle opsætninger har behov for havne med mellem-lagringsmuligheder, mens andre
ikke har. Rambøll har desuden vurderet, at det ikke er muligt at håndtere 45 MtCO2/år ved
anvendelse af ét enkelt danske lager, hvilket betyder, at hvis en lagringskapacitet på 45 MtCO2/y
er ønsket, er en kombination af de opstillede set-ups nødvendigt.
6
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0007.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 1: Enhedsomkostninger (DKK/t) for hvert set-up ved 5 MtCO2/år (bestående af
transport og lager; CAPEX, akkumuleret OPEX og nedluknings omkostninger)
Set-up
#1
#2
#3
#4
#5
#6
#7
#8
#9
Nearshore;
Tankskib &
rørledning (fra KBH) ->
havn -> lager via
pipeline
Onshore;
Tankskib &
rørledning (fra KBH) ->
havn -> lager via
rørledning
DKK/t
106
91
136
133
175
207
185
166
Bemærk: Enhedsomkostninger præsenteret ovenfor er vist som dagens priser og ekskl. forrentning (ikke levelised)
Generelt viser omkostningssammenligningerne, at
onshore lagre generelt er de mest
omkostningseffektive
(uafhængigt af transportløsningen),
efterfulgt af nearshore lagre,
og
med offshore lagre som den dyreste løsning. Desuden,
giver rørledninger skaleringsfordele,
hvilket betyder, at det er den mest omkostningseffektive transportløsning ved stor
skala.
Alle lagertyper og transportløsninger har fordele og ulemper udover deres respektive
omkostningseffektivitet. Udover at være den billigste løsning,
har onshore lagret i Havnsø
også den fordel at være placeret tæt ved store nationale CO2 kilder
(fra
Københavnsområdet). Det er desuden usikkert, om lageret overhovedet kan anvendes (hvilket
understreger vigtigheden af at udføre forundersøgelser i form af seismiske test og boringer), og
den generelle
risiko for modstand fra offentligheden,
som kan lede til en forlænget
godkendelsesproces sammenlignet med offshore lagre.
Selvom offshore lagerløsningen er den dyreste løsning, har den en række fordele,
især i
form af at
man ved at det praktisk muligt at etablere lageret.
Desuden er tæthedsgraden for
de geologiske strukturer veldokumenteret, hvilket betyder, at det muligvis er
nemmere at få de
nødvendige tilladelser
til at etablere lageret (især sammenlignet med onshore løsningen).
Desuden kan noget af det
eksisterende udstyr
(i form af platforme og hjælpesystemer)
potentielt genanvendes
eller eftermonteres. Dermed har offshore lagret
potentiale for at
være tidligere klar,
end onshore og nearshore løsninger.
Set-ups, der inkluderer rørledninger fra Tyskland, vil formentligt resultere i mere stabile og
pålidelige CO2-volumener fra udlandet, hvilket muligvis vil gøre det nemmere (og billigere) at
finde investorer. Denne type transportløsning giver kun mening når et set-up på stor skala
planlægges fra starten. Set-ups baseret på skibstransport muliggør derimod en start ved mindre
skala og muliggør derefter en gradvis udbygning efter behov. Bemærk, at gradvis udbygning også
er muligt for onshore lageret, hvor efterfølgende etablering af rørledninger fra udledningskilder
eller anden tilhørende infrastruktur også er muligt.
Dansk konkurrenceevne for CO2-lagring vurderes på baggrund af følgende kriterier for
konkurrencedygtighed: løsningen er omkostningseffektivt, har lave marginalomkostninger og
inkluderer muligheden for at indbygge fleksibilitet for kunden. Ud fra dette har Rambøll vurderet,
at
Danmark kan tilbyde en konkurrencedygtig løsning, som er både
omkostningseffektiv, fleksibelt og praktisk for de mest relevante lande (især Tyskland,
Sverige, Finland og potentielt Polen).
De mest omkostningseffektive løsninger er baseret på
set-ups, hvor store mængder CO2 transporteres gennem rørledninger og efterfølgende lagres i
onshore eller nearshore lagre.
Institutionelle overvejelser
har ledt til disse tre key take-aways:
-
Det er nødvendigt med
statslig indblanding
ift. finansiering (af forudbetalte
kapitalomkostninger), risikostyring og støtte af CCS initiativer/projekter, da
markedsspillere på nuværende tidspunkt hverken har kapaciteten eller økonomisk
incitament til at udvikle CCS teknologi. Dermed er der stor sandsynlighed for at støtte og
aktiv involvering fra den danske stat og regering vil blive nødvendigt
Offshore,
Tankskib
(SE, FI, PL & DK) ->
havn -> lager via
rørledning + rørledning
(fra NL & DE) -> lager
221
7
Offshore,
Tankskib ->
havn -> lager via
rørledning
Offshore,
Tankskib ->
permanent tøjret FSU
-> CO2 lager
Onshore;
Tankskib ->
havn -> lager via
rørledning
Offshore,
Fartøjer ->
CO2 lager
Offshore,
Tankskib &
rørledning (fra DE) ->
havn -> lager via
rørledning
Nearshore;
Tankskib
-> havn -> lager via
rørledning
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0008.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
-
Der er et behov for, at der
involveres en organisation, der på vegne af staten
administrerer og bevarer et strategisk overblik
over projektet, og som sikrer at
projektet forløber i overensstemmelse med planen, samt at incitamentsstrukturen
effektivt demonstrerer markedsbaseret succes
Det er nødvendigt, at en eller flere af de deltagerende parter har
operationel og teknisk
ekspertise
til at drive forretningen
-
Rentabilitetsvurdering af CO2-lagring i Danmark
Baseret på Rambølls vurdering af Danmarks strategiske konkurrencefordele fremgår tre typer
forretningsmodeller som værende de mest konkurrencedygtige.
Table 2: Overblik over forretningsmodeller
Case 1 & 2:
Danmark kommer primært til at være
en national CO2-lagringsudbyder på lille-til-
mellemstor skala og bliver en mindre spiller på det
internationale marked
I dette tilfælde lagrer Danmark hhv. 5 MtCO2/y
(case 1) eller 10 MtCO2/år (case 2) og fokuserer
primært på de nationale CO2 volumener;
Der er tre
forskellige lagertyper, som kan anvendes i
disse tilfælde:
1) Offshore lagring på lille skala med
skibstransport til Nordsø-felterne,
hvor
fartøjer transporterer CO2 primært fra kilder i
Danmark direkte til Nordsø-felterne, hvor det
bliver lagret
2a): Onshore lagring på mellemstor skala i
Havnsø,
rørledningstransport fra København, og
skibstransport fra andre kilder
2B): Nearshore lagring på mellemstor skala
i Hanstholm,
rørledningstransport fra
København og skibstransport fra andre kilder
2C): Offshore lagring på mellemstor skala i
Nordsø-felterne,
rørledningstransport fra
København til Esbjerg og skibstransport fra
forskellige CO2-kilder til Esbjerg (som er
forbundet til offshore lageret via en rørledning)
*Bemærk, at løsninger på lille skala også kan udvikles for
hhv. onshore og nearshore lagre, hvor begge disse
lagertyper muligvis kan være mere fordelagtige hvis
sammenlignet med offshore løsningen i case 1. imidlertid
omfatter denne rapport kun beregninger af
omkostningerne for offshore lagre ved lille skala.
Case 3:
Danmark etablerer sig selv som en stor
international CO2-lagringsudbyder samtidig med, at
det nationale markedsbehov også imødekommes
I dette tilfælde udbyder Danmark lagring af CO2 på
en stor-skala for det internationale marked.
Danmark har en geografisk konkurrencefordel i form
af at være strategisk tæt placeret på Tyskland
Europas størst CO2 udleder
Sverige, Finland,
Polen og Holland. Danmark har desuden mulighed
for at tilbyde attraktive og omkostningseffektive
rørledningsløsninger til tyske CO2-volumener;
rørledningen ville gå fra Nordtyskland til Esbjerg og
have en kapacitet på 20 MtCO2/år.
I alt vil Danmark lagre 40 MtCO2/år; 20 MtCO2/år
fra Tyskland, 15 MtCO2/år fra Sverige, Finland og
Polen samt 5 MtCO2/år fra nationale kilder.
Denne case forudsætter involvering i det
internationale CO2-lagringsmarked og anses som
værende i stor skala, hvilket betyder, at denne case
har en mere
udbredt CO2 transport- og
lagringsinfrastruktur ift. case 1 & 2, fordi
flere
lagrings- og transportløsninger kombineres med
henblik på at opnå den ønskede skala og dermed
mere effektiv udnyttelse af driftsaktiver.
Table 3: Enhedsomkostninger (DKK/tCO2) for hver underliggende forretningsmodel
(bestående af transport og lager; CAPEX, akkumuleret OPEX og nedluknings
omkostninger)
Case 1
(5 MtCO2/y)
DKK/t
NPV
IRR
172
-2.0 BDKK
0.2%
Case 2A
(10 MtCO2/y)
82
11.5 BDKK
12%
Case 2B
(10 MtCO2/y)
109
5.5 BDKK
7%
Case 2C
(10 MtCO2/y)
132
2.1 BDKK
5%
Case 3
(10 MtCO2/y)
101
26.6 BDKK
9%
Bemærk: Enhedsomkostninger præsenteret ovenfor er vist som dagens priser og ekskl. forrentning (ikke levelised)
Fire ud af fem cases har en positiv NPV (nettonutidsværdi) inden for deres 30-årige livstid og har
en tilbagebetalingsperiode på 8-25 år.
Det er vigtigt at bemærke, at de ovennævnte
forretningsmodeller tager udgangspunkt i en antagelse om, at der vil være forretning i
at udbyde CO2 lagerplads, og at prisen vil være en kombination af f.eks. CO2 priser,
CO2 skatter, bevillinger, etc.
Imidlertid anses det ikke for at være nødvendigt at kende den
præcise sammensætning af CO2 lagringssubsidierne for at kunne vurdere rentabiliteten og break-
8
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
even for de ovennævnte cases. Tværtimod er det vigtigere at kunne estimere en repræsentativ
pris for CO2 transport- og lagring baseret på et plausibelt markedsbaseret (og dermed
konkurrencedygtigt) scenarie. Derfor har Rambøll udviklet en referencepris, der er baseret på de
omkostninger et Nordeuropæisk land ville have i forbindelse med eksport af CO2 til et offshore
lager i Storbritannien. Dette anses som værende repræsentativt for et muligt alternativ til de
danske CO2-lagringsløsninger. Referenceprisen er baseret på et gennemsnit af omkostninger for
en række af danske offshore lagerløsninger, som fremgår i set-ups (kapitel 5.3). Desuden er
anvendelsen af en referencepris anset som værende den mest repræsentative
forudsigelsesmetode, eftersom forudsiger af CO2-priser og støttemekanismer indebærer høj
usikkerhed og en række uforudsigelige sammensætningsmuligheder (f.eks. usikkerhed omkring
indkomst fra CO2-priser, skatter og bevillinger, allokeres eftersom den indkomst ikke
udelukkende går til transport- og lagringsudbyderne i CCS værdikæden).
Forretningsmodellen med den højeste
NPV; DKK ~26.6 milliarder, er case 3
(stor-skala
international CO2 lagringsløsning), primært baseret på høje årlige omsætningsvolumener (40
MtCO2/år) og stordriftsfordele, der kommer til udtryk via effektiv udnyttelse af driftsaktiver samt
integration af transport- og lagerløsninger med synergi, f.eks. rørledninger, der bliver anvendt
som transport til flere lagre. Desuden anvendes alle lagertyper i denne case, hvilket betyder
CAPEX er lavere sammenlignet med udelukkende at anvende offshore lagre. Selvom case 3 har
væsentligt højere totale omkostninger, end de nationalt fokuserede cases, forventes
tilbagebetalingsperioden (på
11 år)
at være kortere end case 1, 2B og 2C. Dette skyldes som
førnævnt de høje omsætningsvolumener kombineret med stordriftsfordele/ udnyttelse af
omkostningseffektive lager- og transportløsningerne.
Selvom case 1
(offshore CO2 lagring udelukkende med direkte skibstransport)
har tydelige
fordele i form af fleksibilitet, giver case 1 en negativ NPV på DKK ~(2.0) milliarder
og
den længste tilbagebetalingsperiode (25 år).
Dette skyldes primært OPEX omkostningerne
for denne case, som er betydeligt højere, end de andre nationaltfokuserede cases. Bemærk, at
denne case forudsætter, at CO2 udelukkende transporteres med fartøjer (den dyreste
transportløsning) igennem hele projektets 30-årige livstid. Hvis transportløsningen blev optimeret
i løbet af projektets levetid, ved f.eks. at udbygge med en rørledning eller en permanent FSU,
kunne forretningsmodellen i denne case potentielt forbedres. Desuden medfører den generelle
usikkerhed omkring omsætning en del usikkerhed i case beregninger. Rentabiliteten for denne
case ville forbedres, hvis omsætningen er højre end antaget for business cases i denne rapport.
Case 2C
(mellemstor skala, nationalt fokuseret case med offshore lager), giver en
NPV på DKK
~2.1 milliarder
og en
tilbagebetalingstid på 15 år.
Selvom NPV er positiv for denne case, er
den dyrere end 2A og 2B, eftersom offshore lagerløsninger har højere omkostninger, end onshore
og nearshore løsninger.
Case 2A
(mellemstor skala, national fokuseret case med onshore lager),
har den anden
højeste NPV på DKK ~11.5 milliarder
og den
korteste tilbagebetalingstid (8 år). Case 2B
(mellemstor skala, nationalt fokuseret case med nearshore lager) har en
NPV på DKK ~5.5
milliarder og en tilbagebetalingstid på 13 år.
Den case har den højeste CAPEX og den anden
højeste OPEX af all mellemstore cases (2A, 2B og 2C).
De ovenstående resultater er baseret på en række forudsætninger,
som bl.a. inkluderer
størrelsen af de forventede CO2-volumener, effektiv projektledelse, identificering af kvalificerede
parter med henblik på at give ansvar for projektets implementering, finansiel støtte (både
national og for case 3 også international), at de nødvendige tilladelser tildeles uden store
forsinkelser, at teknologien fortsat forbedres, og at det er muligt at begynde drift senest i 2030 (i
det mindste på linje med den forventede hastighed på udbygningen af den årlig
lagringskapacitet). Desuden har nogle cases specifikke forudsætninger, f.eks. at de udvalgte lagre
(især de mindre kendte onshore og nearshore lagre) kan anvendes til lagring af CO2, og at
adgang til den pågældende offshore rørledningsinfrastruktur er godkendt før anlægsarbejdets
begyndelse (og at det er muligt at eftermontere rørledningen til at håndtere store CO2-
volumener), samt at de nødvendige internationale aftaler er indgået på forhånd, f.eks. en aftale
med tyske firmaer og stat om eksport af CO2-volumener.
Desuden er
fordelene og ulemperne
for både case 1 & 2 (national løsning) og case 3
(international løsning) blevet
opstillet og sammenlignet
nedenfor.
Her er det vigtigt at bemærke, at nationalt orienterede løsninger er mindre komplekse og billigere
(især case 2A har en konkurrencedygtig pris, den højeste IRR og den korteste
9
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
tilbagebetalingsperiode). Imidlertid kan det være svært, når man starter på mindre skala,
efterfølgende at udvide til større skala med fokus på internationale markedsløsninger
sammenlignet med at planlægge efter stor skala fra begyndelsen. Bemærk, at for den nationalt
fokuserede case i lille skala med fartøj transport (case 1), har den største grad af fleksibilitet. Det
betyder, at der er mulighed for efterfølgende at udbygge til mellemstor skala (og endda stor
skala, selvom denne form for udbygning til stor skala kan betyde tabt omsætning og spildte
muligheder) og modificere til trinvis udvidelse. Dermed giver denne case mulighed for at udforske
markedet og udskyde den endelige beslutning for den strategiske retning for projektet. Case 1
har dog de højeste enhedsomkostninger (DKK/tCO2).
Den internationalt orienterede løsning (case 3) muliggør fuld udnyttelse af markedspotentialet (og
Danmarks strategiske placering tæt ved Tyskland, Sverige, Finland og Polen), ved at tilbyde en
konkurrencedygtig, praktisk og potentielt bindende løsning. Denne løsning har også potentiale til
at blive
en del af EU’s ambitiøse plan for
CO2 reduktionsmål, og dermed sikrer international
finansiering og risiko-/omkostningsdeling. Denne løsning er kompleks (dog ikke urealistisk, som
senest vist ved etableringen af Baltic Pipe), hvor det blev demonstreret, at det er nødvendigt med
meget statslig indblanding og investering. Det samme gælder, hvis en udbredt CCS-infrastruktur
skal etableres. Dette ville
også kræve EU’s samarbejde ift. at få finansiel støtte samt hjælp til
implementering af politik, der kan bidrage til at etablere et internationalt CO2 lagringsmarked.
Desuden har denne løsning mere gennemslagskraft ved en eventuel forhandling, hvis den er
planlagt til at være i stor skala fra begyndelsen
efterfølgende tilføjelse af ekstra lagre og
infrastruktur kan have en negativ effekt på konkurrencedygtigheden af dette system samt
størrelsen af de forventede CO2-volumener.
Refleksioner og anbefalinger til fremadrettet arbejde
Ud fra de vurderinger der er blevet præsenteret i rapporten og anbefalingerne til det
fremadrettede planlægningsarbejde af CO2 lageringsløsninger i Danmark, er det nødvendigt at:
-
-
Beslutte om import af udenlandsk CO2 er ønsket
Kortlægge realistiske lagerløsninger
baseret på interne præferencer og ambitioner.
Dette skal opfølges med en vurdering af, om der er et økonomisk optimeringspotentiale
udover de præsenterede løsninger i denne rapport (f.eks. ved store-til-middelstore
løsninger)
Igangsætte forundersøgelser
af de potentielle lagre, med henblik på at få en fuld
forståelse for deres potentiale og begrænsninger. Dette vil gavne og potentielt
fremskynde godkendelsesprocessen, eftersom mere anerkendt data kan undersøges og
dermed begrænse usikkerheder og risici
Hvis ambitionen er, at Danmark etableres som en international CO2-lagringsudbyder, er
det nødvendigt at
påbegynde strategiske partnerskaber og samarbejder (især med
tyske stakeholders) snarest muligt.
Lignende partnerskaber findes inden for
vindenergisektoren
f.eks. North Sea Wind Power Hub, som er et konsortium mellem
Energinet, Gasunie og TenneT, som sammen faciliterer en accelereret implementering af
offshore vindenergi i Nordsøen. Dette partnerskab kan anvedes som inspiration.
-
-
10
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
3.
EXECUTIVE SUMMARY
CCS market potential
The political support for CCS varies considerably among the ten analysed countries (Finland,
Sweden, Norway, Germany, UK, the Netherlands, Poland, Estonia, Latvia and Lithuania). The
countries with the most favourable national policies are Norway and UK,
both of which
have strong policies aimed at CCS, support schemes aimed at advancing the technology and
projects to drive down costs, favourable regulatory CCS frameworks as well as targets or
commitments towards its deployment. The
countries with the least national focus on CCS
include Poland and the Baltic countries
(i.e., Lithuania, Latvia, and Estonia) since none of the
countries currently pursue CCS as a strategy to reach climate targets, i.e. there no supporting
policies, funding schemes, regulation or targets in place to enhance CCS deployment. However,
even these lowest ranking countries have acknowledged that CCS might potentially be relevant in
the future, which may indicate growing political interest in the topic.
Among the analysed countries, the
highest emissions levels
from large sources are found in
Germany, Poland, UK, and the Netherlands, with MtCO2 emissions in 2017 at ~406, ~166, ~146,
and ~95, respectively. Concerning CCS potential, the report assesses that
UK, Germany, and
Poland demonstrate the highest total capturable volumes intended for CCS
among the
analysed countries. In Germany and Poland, a large share of CCS potential is linked to fossil
power plants. In contrast, in UK the CCS potential is linked to both the power & heat sector and
hard-to-abate industries (mineral oil & gas refineries, minerals, iron and steel, chemicals and
food).
CCS potential is also assessed in Sweden, Finland
(in both cases mainly related to the
pulp & paper industry),
and the Netherlands
(a combination of natural gas plants and industry).
The CCS potential in the Baltic countries is assessed to be insignificant due to low volumes.
Both
UK and Norway have high ambitions for domestic storage
(and even import of CO2
from abroad), while Germany, Poland and Sweden are more reluctant to domestic store CO2. No
suitable storage capacity is assessed in the Baltic region.
Germany, Sweden and Finland are deemed to have the most potential to export CO2 to
Denmark with the intention of carbon storage.
In contrast, the
Netherlands and Poland
have secondary potential.
UK and Norway are the major competing countries for CO2 streams
in Northern Europe. The potential in the Baltics (Estonia, Lithuania and Latvia) have such small
amounts of CCS volumes, and thus, the potential is almost insignificant.
Overview and evaluation of possible set-ups for transport and storage of CO2 in Denmark
The indicative CO2
volumes relevant for storage in Denmark (including domestic CO2
volumes) are estimated at up to ~45 MtCO2/y.
Import of CO2 for storage in Denmark is
mainly relevant from DE, SE and FI. However, lower and more uncertain potential for CO2 import
is also assessed from PL and NL, while no or insignificant import is expected from the Baltics, NO
or UK (the latter two have well-developed domestic storage projects).
Available options for storage are Havnsø (onshore), Gassum (onshore), Hanstholm (nearshore)
and the Northern oil and gas fields in the North Sea (offshore). Available options for transport are
shuttle tankers, vessels, and pipelines. The foreign storages that could potentially compete with
the Danish CO2 storages are mainly UK and Norway.
Nine different set-ups for transport and storage of CO2 in Denmark have been outlined
to compare their costs
and to assess which set-ups or combinations of set-ups in Denmark is
the most competitive. They include different transport and storage possibilities, meaning some
set-ups will require ports
and intermediate storage. It is Ramboll’s assessment
that no single
storage site in Denmark is capable of handling 45 MtCO2/y alone. Meaning, that if a capacity of
up to 45 MtCO2/y is desired, a combination of different set-ups must be used.
11
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0012.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 4: Cost per ton for each set-up at 5 MtCO2/y (comprise transport and storage;
CAPEX, accumulated OPEX and abandonment costs)
Set-up
#1
#2
#3
#4
#5
#6
#7
#8
#9
Onshore;
shuttle
tankers & pipeline (from
CPH) -> port -> storage
site via pipeline
Offshore,
Shuttle
tankers & pipeline (from
DE) -> port -> storage
site via pipeline
166
Offshore,
Shuttle
tankers -> permanently
moored FSU ->
injection site
Onshore;
Shuttle
tankers -> port ->
storage site via pipeline
Offshore,
Shuttle
tankers -> port ->
storage site via pipeline
Nearshore;
Shuttle
tankers -> port ->
storage site via pipeline
Nearshore;
Shuttle
tankers & pipeline
(CPH) -> port ->
storage site via pipeline
DKK/t
106
91
136
133
175
207
185
Note: Costs presented above are not levelised
In general, cost comparisons show that
onshore storage is the most cost-effective solution
(both when pipeline and sea transport is applied),
followed by nearshore storage
and with
offshore storage as the most expensive solution. On the other hand,
pipelines provide scale
advantage and is thus the most effective transport solution at large-scale.
When other aspects than costs are considered, both onshore and offshore solutions and
transportation options (pipeline and sea transportation) have advantages and disadvantages. In
addition to being the least expensive option,
the onshore storage has the advantage of being
located close to the large domestic CO2 emission sources
(Copenhagen area). However,
uncertainty whether the site can be used
(and thus need for seismic tests and drilling) and
the general
risk of public opposition
can lead to a longer permitting process than in case of the
offshore site.
Although the most expensive option, offshore storage offers several advantages,
especially in the form of
general feasibility
and demonstrated tightness, and that it can be
potentially
easier to obtain necessary permits
(especially for the onshore site). Furthermore,
some of the
existing equipment
(platforms and support systems)
can be potentially reused,
meaning that the offshore solution can be
potentially even quicker implemented
than the
onshore or nearshore solution.
Solutions with a pipeline from Germany would provide a more certain CO2 stream from abroad,
making it potentially easier (and cheaper) to find investors. On the other hand, this type of
solution is only meaningful when the full-scale operations are planned for construction from the
beginning, while sea transportation enables small-scale start with gradual build-up. Note that a
more gradual start is also possible in case of the onshore storage, where pipelines from sources
and other connecting infrastructure can be added afterwards.
When assessing the competitiveness of Danish CO2 storage,
the general criteria for
competitiveness have been defined: a low-cost solution with low marginal cost and the ability to
create a solution
that allows flexibility. Based on that, it is Ramboll’s assessment that
Denmark
can offer a competitive solution highly that is both cost-effective, flexible and a
convenient option for the target countries (especially Germany, Sweden, Finland and
potentially Poland).
The most cost-competitive solutions include set-ups where large CO2
amounts are contracted via pipeline and those that comprise or combine onshore and nearshore
storage sites.
Institutional considerations
suggest three main key take-aways:
-
The necessity of
state involvement
in terms of funding (upfront capital expenditure),
risk management and supporting the initiatives, since other actors do not have the
capacity or economic incentive at present to drive the development for CCS on their own.
Thus, there is most likely a need for state-aid and state involvement in Denmark as well,
and the Danish Government will probably need to take a supportive role in the CCS
initiative
The need for a
body which acts on behalf of the state and administers and
maintains the strategic overview
of the project progress and follow-up to ensure the
project is progressing accordingly and the incentive structures are in place working
efficiently to demonstrate market-based success
12
-
Offshore,
Shuttle
tankers (SE, FI, PL &
DK) -> port -> storage
via pipeline; Pipeline
from DE & NL ->
storage
221
Offshore,
Vessels ->
injection site
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0013.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
-
The need for parties who possess
operational and technical experts
who can execute
the business
The institutional considerations are one of the key prerequisites for the results of the business
case set-ups. Mainly, it is important to note that the reference price presented in the profitability
assessment entails state-aid. Thus, without state-aid, the revenue price and the business case
results would not be feasible.
Profitability assessment of CO2 storage in Denmark
Based on the assessment of Denmark’s competitive traits,
three overarching business cases are
considered to be the most competitive:
Table 5: Overview of the business cases
Case 1 & 2:
Denmark to become primarily a small-
to-medium sized domestic CO2 storage provider,
while serving the international market in small-scale
In this case, Denmark is storing CO2 for 5 MtCO2/y
(case 1) or 10 MtCO2/y (case 2) and will focus
primarily on domestic CO2 volumes; There are
three different storage placement options for
these cases:
1): Offshore small-scale storage with sea
transportation only (no pipelines or ports)
in the North Sea fields,
with vessels
transporting CO2 directly from source points in
Denmark to the offshore North Sea fields where
it is injected
2A): Onshore medium-scale storage in
Havnsø,
with a pipeline from Copenhagen, and
sea transport from other sources
2B): Nearshore medium-scale storage in
Hanstholm,
with a pipeline from Copenhagen
and sea transport from other sources
2C): Offshore medium-scale storage in the
North Sea fields,
with a pipeline from
Copenhagen to Esbjerg and shuttle tankers from
various CO2 sources to Esbjerg (which is
connected with the offshore site via a pipeline)
*Note that small-scale cases could also be developed for
onshore and nearshore storage, and these solutions could
potentially have similar advantages and lower costs than
the offshore solution in case 1. However, the scope of this
report only comprises the offshore storage for the small-
scale solution.
Case 3:
Denmark to become an established large-
scale international CO2 storage provider while
serving the domestic market simultaneously
In this case, Denmark is a large-scale CO2 storage
provider for international markets. Denmark has a
competitive advantage in terms of its location, as
Denmark is strategically located in close proximity
to Germany
the largest CO2 emitter in Europe
as well as Sweden, Finland, Poland and The
Netherlands. Denmark can provide an attractive and
cost-effective pipeline solution for German CO2
volumes, a pipeline spanning from Northern
Germany to Esbjerg serving 20 MtCO2/y. In total,
Denmark will store 40 MtCO2/y; 20 MtCO2/y from
Germany; 15 MtCO2/y in total from Sweden,
Finland and Poland, as well as 5 MtCO2/y
domestically from Denmark.
The large-scale international case is much more
widespread in terms of the required CCS
infrastructure than compared to case 1 & 2 and
combines various storage and transport solutions to
achieve desired scale and economies of scale.
Table 6: Cost per ton underlying each business case (comprise transport and storage;
CAPEX, accumulated OPEX and abandonment costs)
Case 1
(5 MtCO2/y)
DKK/t
NPV
IRR
172
-2.0 BDKK
0.2%
Case 2A
(10 MtCO2/y)
82
11.5 BDKK
12%
Case 2B
(10 MtCO2/y)
109
5.5 BDKK
7%
Case 2C
(10 MtCO2/y)
132
2.1 BDKK
5%
Case 3
(10 MtCO2/y)
101
26.6 BDKK
9%
Note: Costs per ton presented above are not levelised
Four out of five cases result in positive NPV values within a 30-year lifetime and range from a
payback period between 8-25 years. However, it is
pivotal to note that the assessed business
cases take a point of departure in the assumption that there will be a business case for
CO2 storage providers, and the price will be a combination of, e.g., CO2 prices, CO2
taxes, grants etc.
However, the way in which the price is subsidised is not deemed necessary to
assess the profitability and break-even of the business cases. Rather, it is important to forecast a
price that is representative of a feasible market-based (i.e. competitive) scenario, and thus, we
have developed a reference price for transport and storage, which is based on what it would cost
13
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
for the export countries to export their CO2 to an offshore UK storage, which is deemed a
representative, competitive and feasible alternative to Danish CO2 storage solutions. The
reference price is based on an average of the various Danish offshore storage alternatives
presented in the set-ups (Chapter 5.3). Further, utilising a reference price is seen as the most
representative methodology, since forecasting the CO2 price and subsidy mechanisms includes
high uncertainty and an array of the possible pathway (e.g., uncertainty around how income from
CO2 costs, taxes and grants are allocated, since they are not solely allocated to CCS).
The business case scenario showing the highest positive
NPV; DKK ~26.6 billion, is case 3
(large-scale international CCS solution), which is mainly due to the high revenue volumes per
year (40 MtCO2/y) and economies of scale from large-scale operations and from combining
solutions e.g., pipelines utilised for different types of storages. Furthermore, this case includes all
types of storages, meaning that CAPEX is lower than if only offshore storage was applied.
Although case 3 has a significantly higher total cost than the domestic cases, the investment
payback (payback
period is 11 years)
is expected sooner than for 1, 2B and 2C, again due to
expected large CO2 volumes combined with economies of scale/ use of price-effective storage and
transport solutions.
Although providing a clear advantage in form of flexibility, Case 1
(small-scale,
domestically focused case with sea transportation only)
results in a negative NPV (DKK ~
(2.0) billion)
and the
longest payback period (25 years).
The main reason is that this case
has a considerably higher OPEX than the rest of the domestically focused cases and the highest
cost per ton CO2 among all cases. However, it is important to note that the case is built on the
assumption that only vessels will be used for the transportation of CO2 (which is the most
expensive transportation solution) during the 30-year business case period. If the transportation
is optimised during the ramp-up, by, e.g. adding a pipeline or permanently moored FSU, the
business case could improve. At the same time, the revenue applied in the model is difficult to
determine, and there is therefore associated uncertainty with regards to the business case results
i.e. business case would improve with higher revenue.
Case 2C
(medium-scale, domestically focused case, with offshore storage)
posts an NPV of
DKK ~2.1 billion
and a
payback period of 15 years.
While this is a positive NPV it is more
expensive than 2A and 2C since offshore storage sites are more expensive than onshore and
nearshore solutions.
Case 2A
(medium-scale, domestically focused case, with onshore storage)
results in the
second-highest NPV of DKK ~11.5 billion
and has the
shortest payback period (8 years).
Case 2B
(medium-scale, domestically focused case, with nearshore storage) has a
NPV of DKK
~5.5 billion and a payback period of 13 years.
This case has the highest CAPEX of all
medium-size cases (i.e. 2A, 2B, 2C). However, OPEX is the second-lowest.
The results above are based on several prerequisites,
including expected CO2 volumes,
strong project management and identification of qualified, responsible parties, financial support
(both nationally and in case 3 also internationally), that necessary permits are obtained without
major delays, technological enhancement and ability to start the operations no later than 2030 (or
at least in line with the volume uptake). Furthermore, some case-specific prerequisites apply, e.g.
that the reservoirs (especially the less known onshore and nearshore storages) can be used for
storage of CO2 and availability of the existing offshore pipeline infrastructure in time for the start
of constructions works (and that it is possible to fully retrofit it to handle the large CO2 volumes)
and that necessary international agreement, e.g., with German companies and state are secured
upfront before the pipeline is constructed. For case 1 (small-scale and domestically focused case),
one important prerequisite is that oil and gas companies possessing the concession rights are
willing to switch from oil & gas activities to CO2 storage.
Furthermore,
pro’s and con’s have
been compiled
for both case 1 & 2 (domestic solution) and
case 3 (international solution).
It is essential to highlight that the domestic-oriented solutions are less complex and more
affordable options (especially case 2A, which offers a highly price competitive option with the
highest IRR and with the shortest payback period). However, when starting at a smaller scale, it
can be in many cases more difficult to move towards large-scale and international market
solutions than starting at large-scale from the beginning. On the other hand, the small-scale
domestic case with vessel transportation (case 1) is the one providing the highest degree of
flexibility, as it can be ramped up to the medium-scaled solution (or even large-scale, although
14
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
choosing this way around can lead to lost opportunities), and modified into other solutions
stepwise. Consequently, this case gives the possibility to explore the market before making the
final decision on the strategic direction. However, this case has also the highest total cost per ton
of CO2.
The internationally oriented solution (case 3) enables full utilisation of the market potential (and
Denmark’s
strategic location, with close proximity to DE, SE, FI and PL)
by offering a price
competitive, convenient, and potentially binding
solution. This solution can also play into the EU’s
plan to reach ambitious CO2 reduction targets and thus secure international financing and
cost/risk-sharing. On the other hand, this solution is significantly more complex (although not
unrealistic, as proven by the recent Baltic Pipe project), it would imply need for extensive state
involvement and investments in widespread CCS infrastructure and also require EU to cooperate
in continuing to support and pass policies that will aid the CCS market. Furthermore, this solution
is the most meaningful if planned at large scale from the beginning - adding storages or
infrastructure at a later time can impair the competitiveness of this system and also expected
CO2 volumes.
Reflections on recommended next steps
Based on the assessment presented in this report, following next steps are recommended to move
forward with planning of the CCS solution in Denmark:
-
-
A decision needs to be made with regards to whether import of foreign CO2
is
desired
Realistic storage options should be mapped
based on internal preferences and
ambitions. This should be followed by an assessment of whether there is economic
optimisation potential in other combinations than presented in this report (e.g. large-to-
medium-sized solutions)
Feasibility studies should be carried out
to gain a complete understanding of the
potential and limitations of the considered solutions. This will also benefit and potentially
speed up the process, as more detailed and reliable data can be presented and thus limit
uncertainties and risks
If the ambition is to become an established large-scale international CO2 storage
provider,
initiation of strategic partnerships and collaborations (especially with
German stakeholders) should be launched as soon as possible.
Similar alliances
are currently existing within renewable energy
e.g. the North Sea Wind Power Hub,
which is a consortium between Energinet, Gasunie and TenneT, jointly facilitating an
accelerated deployment of large-scale offshore wind in the North Sea, and can be used for
inspiration
-
-
15
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.
CCS MARKET POTENTIAL
This chapter aims to provide a thorough understanding of the market potential for CCS in the
Northern European countries covered in this analysis, with a particular emphasis on import
opportunities, specified as the share of capturable CO2 intended for storage, that cannot be
stored within the country’s
CO2 storage capacity.
The chapter, therefore, provides an overview of the link between CCS needs and the CO2 storage
capacity within each of the Northern European countries and, based on this potential deficit, an
assessment of the potential volumes that need to be exported to other countries.
4.1
KEY CONCLUSIONS ON THE CCS POTENTIAL IN NORTHERN EUROPE
This section provides
a general overview of this chapter’s key conclusions. For detailed
elaborations, the report refers to the following sections covering each country concerning
assessments of CCS potential in the country based on reviews of CO2 national targets and
policies, estimations of volumes relevant for CCS, and estimations of CO2 storage potential.
Among the analysed countries, the highest emissions levels from large sources are found in
Germany, Poland, UK, and the Netherlands, with MtCO2 emissions in 2017 at ~406, ~167, ~146,
and ~95, respectively. However,
among the analysed countries, the report finds that the
political support for CCS varies considerably.
The
countries with the most favourable
national policies are Norway and the UK,
both of which have strong policies aimed at CCS,
support schemes aimed at advancing the technology and projects to drive down costs, favourable
regulatory CCS frameworks as well as targets or commitments towards its deployment, yet both
countries highlight that deployment of CCS at scale is subject to costs coming down sufficiently.
The Netherlands is ranked as the third-most CCS favourable country with respect to policy
support, having strong policies aimed at CCS in place and targets for its deployment, yet
considering CCS to be a transition solution. Countries ranked medium include Sweden, Germany,
and Finland, which acknowledge CCS as necessary for reaching climate neutrality and have some
supporting policies in place yet assessed not to be sufficient for large-scale CCS deployment. The
countries with least national focus on CCS include Poland and the Baltic countries
(i.e.,
Lithuania, Latvia, and Estonia) since none of the countries currently pursue CCS as a strategy to
reach climate targets, indicated by the lack of supporting policies, funding schemes and regulation
as well as lack of targets for its deployment. However, even these lowest ranking countries have
acknowledged that CCS might potentially be relevant in the future, which may indicate growing
political interest in the topic.
With respect to CCS potential, the report assesses that
UK, Germany, and Poland
demonstrate the highest total volumes of capturable CO2 intended for storage (“CC
potential”)
among the analysed countries, with total estimated Mt CCS potential between 2022-
2050 at 1,986, 871, and 591, respectively. In Germany, a large share of CCS potential is linked to
fossil power plants (natural gas and biomass-fire plants), which is similar to Poland (coal and
biomass CHP and natural gas), while in the UK the CCS potential is linked to both the power &
heat sector (hydrogen) and hard-to-abate industries (mineral oil & gas refineries, minerals, iron
and steel, chemicals and food). Although somewhat lower,
CCS potential is also assessed in
Sweden, Finland, and the Netherlands
in Sweden and Finland, the potential is mainly
related to the pulp & paper industry, while in the Netherlands, the potential is a combination of
both power plants (natural gas) and industry. The capturable potential in the Baltic countries is
assessed to be insignificant due to low volumes.
The countries with their own CO2 storage capacity include the most significant emitters
(Germany, Poland, UK, and the Netherlands) and Norway and Sweden, with estimated MtCO2
storage potential at 95,000, 78,000, 78,000, 4,000, 103,000 and 6,000, respectively. However,
the
attitude towards domestic storage varies among the countries with storage
potential
- while
UK and Norway have high ambitions for domestic storage (and even
import of CO2 from abroad), Germany, Poland and Sweden are more reluctant towards
domestic storage of CO2.
Low storage potential is estimated in Latvia and Lithuania, and for
this reason, political attention to domestic storage is low, while unsuitable geological conditions in
Finland and Estonia make domestic storage impossible.
16
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0017.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
The assessment of each country’s
possible needs to export CO2 for storage abroad, in order to reduce the deficit between CCS potential and
domestic storage capacity finds that
the highest potential in relation to CO2 storage in Denmark is assessed with regards to Germany,
Sweden and Finland,
as these countries have significant CCS potential and limited, or no storage capacity (or no intentions to use own storage).
Some potential, although more uncertain, could also be from the Netherlands,
since industry cluster projects, such as the CO2TransPorts,
identify the risk that CO2 transport demand might exceed the storage capacity
3
and the Dutch Government acknowledges that it will be challenging
for The Netherlands to achieve emissions reduction by scaling up renewables and thus, CCS could be a potential source to make up for this
potential gap
3
.
Similarly, CO2 imported from Poland may also become relevant for storage in Denmark,
as it is highly uncertain whether
(and when) Poland will utilise its own storage. The potential for Denmark is assessed below with regards to Norway and UK due to the high
possibility that the countries will capture and store the CO2 domestically. In addition, no potential for Denmark is assessed in the Baltic countries,
as emissions are insignificant and CCS potential is uncertain. The table
below provides a quick overview of each individual country’s CCS potential.
Table 7: Summary of CCS potential in selected countries
Country
CO2 emissions 2017 (MtCO2)
National CCS focus/support
CCS targets set
Total CCS potential (MtCO2) 2022-2050
Ave
r
age quantity of capturable CO2 intended for
storage (MtCO2):
-
-
2022-2040
2041-2050
7
16
-
N/R
HIGH
HIGH
LOW
HIGH
LOW
MEDIUM
14
19
6,000
4
6
103,000
35
49
95,000
50
119
78,000
12
15
4,000
19
34
78,000
TBD
MEDIUM
0.2
0.4
-
N/R
LOW
LOW
LOW
0.4
0.3
2,286
0.1
0.1
3,400
279
4
349
111
871
1,986
274
591
6
7
2
FI
46.8
SE
51.3
NO
25.4
DE
406.2
UK
146.3
NL
95.0
PL
166.7
EE
24.7
LT
5.2
LV
1.0
Own storage capacity (Mt)
Own storage potential/support
Potential for DK storage
The green tick mark indicates that the conditions for CCS are assessed to be favourable;
The red cross indicates that the conditions for CCS are assessed to be unfavourable.
Low value
High Value
The yellow bar indicates that it is uncertain whether the conditions for CCS are favourable or unfavourable.
3
4
European Commission, “Candidate PCI projects in cross-border carbon dioxide transport networks”
IEA
The Netherlands 2020 Energy Policy Review
17
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0018.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2
4.2.1
COUNTRY DEEP-DIVES
Finland
4.2.1.1 Summary of CCS potential in Finland
Finland’s CO2 emissions from
large sources in 2017 were ~47 MtCO2
5
. The largest emissions
sources are pulp and paper (43%) and thermal power and heat (36%).
Finland aims to become carbon neutral in 2035, which is the most ambitious target of all
countries. However, the country does not have any CCS specified targets and is relying heavily on
natural carbon sinks from forests and soils to balance its emissions in 2035.
No national support systems for CCS development and deployment are in place in Finland.
CCS potential in Finland is estimated at 279 MtCO2 between 2022 and 2050 and on average 7
MtCO2/y between 2022 and 2040 and 16 MtCO2/y between 2041 and 2050 for both the power &
heat sector and the industry sector. The potential has been assessed primarily with respect to
BECCS, as Finland has the largest pulp and paper industry in Europe.
CO2 storage is not possible in Finland since the country does not have suitable geological
formations.
The relevance for storage in Denmark is potentially high since potential bio-CCS is high, and
Finland will not develop national storage sites.
Below is an overview of the CCS potential in Finland.
Table 8: Summary of CCS potential in Finland
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
46.8
Comments
CO2 emissions from the largest point sources, mainly
generated by the pulp and paper industry using biomass,
followed by the power and heat industry.
2030: -39% from 2005 levels (non-EU ETS)
6
2035: Carbon neutral (all sectors)
2050: -80-95% emissions mitigation from 1990 levels
CCS has not been in the spotlight in Finnish policies and
targets. However, in Finland’s long-term
GHG development
strategy, CCS is presented in one of two potential pathways
where Finland can achieve its long-term CO2e 2050 reduction
goals
7
.
Finland has no CCS targets and has not mentioned CCS in its
national energy and climate plan. Finland plans to phase out
fossil fuels and rely on natural carbon sinks to achieve net-zero
emissions.
279
Finland’s CCS potential is mostly comprised of potential from
bio-CCS derived from the pulp and paper industry as well as
power plants utilising biomass as fuel.
No suitable geological formations for CO2 storage are present in
Finland
Not relevant
National CCS focus/Support
CCS targets
Total CCS potential (MtCO2) 2022-2050
Own storage capacity (Mt)
Own storage potential/support
-
8
Potential for DK storage
High
Potentially high significance to DK due to high CCS
potential, and the fact that Finland will not develop
national storage sites.
5
6
7
EEA and E-PRTR
Finland’s
Integrated National Energy and Climate Plan (NECP 2030)
CO2 reduction target for EU ETS sectors not available
Finland will publish an updated Climate Act soon, which will enter into force in the spring of 2021, in which the target for 2050 (-80% emissions
reduction) will be updated along with 2030 and 2040 targets that are in line with the path towards carbon neutrality in 2035
Technical Research Centre of Finland “CO2 Capture, Storage and Reuse Potential in Finland”
8
18
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0019.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.1.2 CCS national targets and policies Finland
Finland is aiming to become carbon neutral in 2035. In the context of the Finnish Government
Programme,
“carbon neutrality” refers to a balance between Finland’s regional GHG emissions and
removals by sinks. Finland prioritises emissions reduction (mitigation) but notes in its government
programme that it will heavily rely on natural carbon sinks (from forest and soil) as a
supplemental measure. Current actions are not aligned with the target as these actions account
for only 16 Mt of emissions reductions of the 35 Mt that will be necessary. To meet the gap (19
Mt), The Finnish Climate Change Panel estimates that carbon sinks will need to be at least 21.4
Mt.
9
The emissions reductions measure are carried out in a way that is fair from a social and
regional perspective which involves all industries and sectors of society.
Finland does not have any CCS targets. However, in
Finland’s long-term
greenhouse gas emission
strategy, two pathways are described to reach carbon neutrality in 2035, one of which includes
the usage of CCS (mainly from bio-CCS), where the total emissions reduction is estimated at 14
MtCO2e in 2050. The other pathway outlines extremely stringent emission reduction across all
sectors (-87.5% reduction vs. -82% in the scenario with CCS in 2050), including industrial
processes where it is deemed most difficult to achieve substantial reductions.
Finland has no national support system for CCS in place at the time. However, in 2011-2015 they
ran a Carbon Capture and Storage research program allocating EUR 15 m for the CCS research.
Finland has implemented The Act on CCS, providing a general framework for CCS, with activities
subject to the general environmental licensing system under the Environmental Protection Act. In
addition, Finland has ratified the London Protocol that allows CO2 export to other states for
storage purposes. Additionally, Finland prohibits CO2 storage due to the lack of suitable geological
formations.
Table 9: CCS national targets and policies in Finland
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
The policy maturity considered low/medium since Finland follows
the EU directive and has also implemented specific CCS
legislation.
2030: -39% from 2005 levels (non-EU ETS)
10
2035: Carbon neutral (all sectors)
2050: -80-95% emissions mitigation from 1990 levels
11
CCS targets have not been set.
Finland's CCS legal and regulatory framework is based upon
the EU storage Directive and regulates activities through CCS-
specific legislation, most notably The Act on CCS
12
.
No national support systems in place.
Finland has legislative limitations on geological storage in the
Finnish territory because of the lack of suitable geological
formations. However, storing volumes up to 100,000 tonnes for
the purposes of research and development of technology may
be permitted.
13
National CCS targets
CCS policies and legislations
CCS funding
CCS storage-related policies
9
Finnish Government, “A fair transition
towards a carbon
neutral Finland”
Finland’s Integrated National
Energy and Climate Plan (NECP 2030)
CO2 reduction target for EU ETS sectors not available
Finland will publish an updated Climate Act soon, which will enter into force in the spring of 2021, in which the target for 2050 (-80% emissions
The Act on CCS provides the general framework for CCS, with activities subject to the general environmental licensing system under the
10
11
reduction) will be updated along with 2030 and 2040 targets that are in line with the path towards carbon neutrality in 2035.
12
Environmental Protection Act. CCS projects will also be subject to a mandatory Environmental Impact Assessment under national EIA legislation,
whenever they are executed in facilities for which an EIA is mandatory, as well as whenever the overall amount of captured CO2 under the
project is 1.5 megatonnes or more.
13
Legislation on carbon capture and storage
19
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0020.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.1.3 CCS potential (capturable CO2 intended for storage) in Finland
In 2017,
Finland’s large stationary sources emitted in round numbers
~47 MtCO2 in 2017, of
which the power sector comprises ~17 MtCO2 and the industry ~29 MtCO2.
Finland is one of the leading pulp and paper producers in Europe and thus, has significant biogenic
emissions from the pulp and paper industry - estimated at ~20 MtCO2 in 2017.
Additionally, the other industry sectors comprise mineral oil & gas refineries, cement production,
iron and steel production as well as chemicals production, where some CCS potential is identified.
CCS could pose a medium-term solution to remove fossil fuel CO2, according to the Ministry of
Economic Affairs and Employment of Finland; especially if Finland is to achieve their ambitious
carbon neutrality target in 2035, they will need to look into all mechanisms
14
. In the long-term,
however, the goal is to remove all usage of fossil fuels in Finland, and this reduces the potential
for CCS with regards to CO2 from fossil fuels.
Thermal power and heat generation (16.9 MtCO2 in 2017) sources are considered to have low to
moderate potential since Finland is using and will use large shares of biomass at their CHP and
district heating plants where bio-CCS could otherwise have potential.
The calculated capturable quantity of CO2 intended for storage (CCS potential) is estimated at an
average 7 MtCO2/y between 2022 and 2040 and 16 MtCO2/y between 2041 and 2050 for both
the power & heat sector and the industry sector.
Figure 1:
Finland’s potential energy mix towards 2050
Source: Ramboll Analysis; Ministry
of Economic Affairs and Employment of Finland, “Finland’s long-term
low greenhouse gas
emissions development strategy”
14
Interview with Ministry of Economic Affairs and Employment of Finland
20
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0021.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 10: CCS potential in Finland
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
15
)
2022-2040
Power & Heat
17.1
32
(2)
2041-2050
57
(6)
The overall significance of CCS within the Finnish power & heat sector is considered low to moderate
due to Finland’s large usage of
biomass within this sector, which could be relevant for BECCS. Finland is to date one of the leading countries in forest-based
biomass to energy, and this is expected to remain at stable levels, while other forms of energy such as renewable and nuclear are
making up for the power and heat growth going forward
16
. Finland has some of the largest power plants situated by the shore in
Helsinki, which incentivises the usage of BECCS since the country does not have to transport these amounts by land
The potential for BECCS is estimated to begin from 2025 as Finland is assumed to deploy carbon reduction measures sooner due to
its carbon neutrality target already in 2035. The capture share for BECCS is assumed to increase from 5% in 2025 and increases to
80% in 2050
The capturable volume of CO2 intended for storage within the segment is estimated at ~5.7 MtCO2/y in 2050
Finland has quite small amounts of emissions coming from the fossil fuel-driven industry, which is relevant for CCS, including
mineral oil & gas refineries (3.1 MtCO2/y), cement production (1.3 MtCO2/y), iron and steel production (1.5 MtCO2/y) as well as
chemicals production (0.7 MtCO2/y)
The significance of CCS for the fossil driven industrial sector is low since Finland is prioritising natural carbon sinks as opposed to
carbon removal technologies. However, if Finland is to reach their ambitious carbon neutrality target in 2035, it will need to
consider all options to reduce its emissions
Ramboll has assumed that CCS could be used in the industry already starting from 2025 to achieve the climate goals and continue
from a 5% capture share up to 30% towards 2050. However, according to the Ministry of Economic Affairs and Employment, CCS
for fossil fuels will be a medium-term solution since coal, and natural gas will be phased out in the long term, and according to
scenario studies, 82-87.5% (compared to 1990 levels) of emissions are mitigated by 2050
17
.
Error! Bookmark not defined.
Thus,
Ramboll has estimated a decrease of CO2 within the industry to follow this trajectory
The total capturable volume intended for storage is estimated at up to ~1 MtCO2/y in the early 2030s and decreases to 0.5
MtCO2/y in 2050, as fossil fuels are phased out
In addition to the industries above, Finland has a significant pulp and paper industry, and thus, bio-CCS could be relevant. Pulp &
paper plants are often located close to coastlines and rivers (as their processes require significant amounts of water), making it
potentially easily accessible to collect emissions.
Additionally, bio-CCS is not part of Finland's current climate strategy, but they might deploy it to meet their climate goals. As with
the other industries above, the deployment is assumed from 2025 with a 5% capture rate until however in contrast to the above,
the rate increases to 60% in 2050
The total capturable volumes intended for bio-CCS (pulp and paper industry) is estimated at up to 9.7 Mt/y (from ~2035)
Comment
Industry
29.4
87
(5)
103
(10)
Other
2.9
-
-
No other significant potential areas have been assessed
15
16
17
Average CO2 capturable amount is calculated for the time period 2025-2040 as well as 2041-2050
Ministry of Economic Affairs and Employment of Finland, “Finland’s long-term
low greenhouse gas emission development
strategy”, 2020
Ministry of Economic Affairs and Employment
of Finland, “Finland’s long-term low greenhouse gas emission development strategy”, 2020
21
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0022.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.1.4 CO2 storage potential in Finland
Finland does not have any geological structures suitable for carbon storage
18
.
Moreover, the country does not currently have any carbon capture projects
19
but has allowed
carbon export, as described in section 4.2.1.2. The Finnish attitude to CCS technology is
favourable, but legislative barriers are currently preventing implementation
20
.
Finland will not be able to domestically store captured carbon from any upcoming CCS activity and
will have to utilise CO2 storage capacity in other countries.
4.2.2
Sweden
4.2.2.1 Summary of CCS potential in Sweden
Sweden’s
CO2 emissions from
large sources in 2017 were ~51 MtCO2. Most emissions relate to
the pulp and paper industry using biomass (22.8 MtCO2).
Sweden is committed to achieving climate neutrality by 2045, and CCS is acknowledged as a
means of achieving negative emissions, mainly through the deployment of BECCS. CCS policy
measures such as investment support are in place, though currently not identified to be sufficient
for the realisation of full-scale projects. CCS targets have been set for 2030 (3.7 MtCO2e total, of
which 1.8 MtCO2 from BECCS) and 2045 (10.7 MtCO2e total, of which 3-10 MtCO2 from bio-
CCS). To
achieve Sweden’s climate targets, ~9% of required emissions reductions by 2030 and
15% by 2045 can be achieved through other complementary means such as CCS.
Support systems for CCS are in place through, e.g., the Swedish Energy Agency, allocation of SEK
100 million to CCS and BECCS pilot projects, and initiatives to support R&D projects within bio-
CCS with SEK 50 million annually from 2020-2027.
CCS potential in Sweden is estimated at 349 MtCO2 between 2022 and 2050 and 14 MtCO2/y
between 2022 and 2040, and 19 MtCO2/y between 2041 and 2050. The majority of these
emissions relate to the pulp and paper industry.
Storage potential in Sweden is estimated at 6,000 Mt in aquifers. Although offshore CO2 storage
is permitted, Sweden is expected to rely on the transport of CO2 as the Swedish official report on
a strategy for negative greenhouse gas emissions concluded that rather than prioritising
establishing a storage site, Sweden should depend on sea transport to storage outside Sweden.
The relevance for storage in Denmark is deemed high, as Sweden has national plans to develop
CCS technology but not for the development of national storage sites.
Below is an overview of the CCS potential in Sweden.
Table 11: Summary of CCS potential in Sweden
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
CO2 reduction targets
Indicator
51.3
Comments
CO2 emissions from largest point sources; mainly by the pulp
and paper industry using biomass, followed by the heat and
power generation, and iron and steel industry
2030: -20% from 2005 levels (EU ETS) and -63%
21
from 1990
levels (non-EU ETS)
22
2040: -75% from 1990 levels (national target)
23
2045: Net zero emissions
18
19
20
21
22
23
Technical Research Centre of Finland, “CO2 capture, storage and reuse potential in Finland”
The Global CCS Institute,
“Global Status of CCS 2020”
Interview with Ministry of Economic Affair and Employment of Finland
Equivalent to -59% reduction from 2005 levels
Sweden’s Integrated National Energy and Climate Plan (NECP 2030)
Regeringens Proposition 2019/20:65:
“En samlad politik för klimatet –
klimatpolitisk
handlingsplan”
22
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0023.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
National CCS focus/Support
Sweden recognises the important role that CCS will have in
reaching CO2 reduction targets, yet current policy measures
may not be sufficient for realisation of full-scale CCS projects.
Sweden has set CCS targets for 2030 (3.7 MtCO2e total,
whereof 1.8 MtCO2 from bio-CCS) and 2045 (10.7 MtCO2e
total, whereof 3-10 MtCO2 from bio-CCS). ~9% of the required
reductions in CO2 emissions by 2030 and 15% by 2045
24
can
be achieved through other complementary means such as CCS.
349
6,000
25
The majority of these emissions is related to the pulp and paper
industry.
6,000 Mt of storage in aquifers
Offshore CO2 storage is permitted. However, Sweden is
expected to rely on the export of CO2 as uncertainty regarding
national storage capacity was deemed too high while reliable
storage sites in the North Sea were available
High
High significance to DK as Sweden has national plans to
develop CCS technology but not to develop storage sites.
CCS targets
Total CCS Potential (MtCO2) 2022-2050
Own storage capacity (Mt)
Own storage potential/support
Potential for DK storage
4.2.2.2 CCS national targets and policies Sweden
Sweden is aiming to become carbon neutral in 2045, expecting 85% of reductions to be delivered
through emissions reduction activities while the remaining 15 percentage points may be covered
by supplementary measures such as CCS (incl. BECCS)
26
. Sweden has set CCS targets for 2030
(3.7 MtCO2e total, whereof 1.8 MtCO2 from bio-CCS) and 2045 (10.7 MtCO2e total, whereof 3-10
MtCO2 from bio-CCS).
To reach Sweden’s
-63% CO2 reduction target by 2030, ~9% of the
required reductions in CO2 emissions may be achieved through other means such as CCS
27
.
Policy measures such as investment support are in place, though currently not identified to be
sufficient for the realisation of full-scale CCS projects. The Swedish government has recently
decided to ratify the amendment to the London protocol. This was mentioned as a necessary
action in the national energy and climate plan to allow for the development of CCS in the
country
28
.
The Swedish state has in place some financing mechanisms for CCS-related projects through the
Swedish Energy Agency. In 2019, the Swedish government allocated SEK 100 million to pilot
projects aimed at accelerating the deployment of CCS and BECCS. Through the Industriklivet
initiative, support is given to R&D projects which contribute to negative emissions, for example,
bio-CCS. The support is planned to be at SEK 100 million annually until 2020, thereafter SEK 50
million annually until 2027.
29
Sweden regulatory framework for CCS is primarily stand-alone and based upon the regulatory
permissions model found in the Swedish Environmental Code. In addition, further permissions are
required under the Continental Shelf Act and the Certain Pipelines Act. While the Swedish
regulatory framework addresses many key issues, some critical elements have not been fully
addressed, including the explicit definition of CO2 and CO2-specific transportation provisions.
Sweden has placed restrictions on where CO2 may be stored and the activities that may take
place within the Swedish Economic Zone and offshore sites
30
.
Sweden’s official report on a strategy for negative
GHG emissions considered storage from
Swedish CCS. While the report specified that it is likely that there is domestic storage in Sweden,
knowledge about their capacities was deemed to be poor. The strategy concluded that Sweden
should not prioritise establishing a storage site but rather depend on sea transport to storage
outside Sweden, for example, Norway or another North Sea country.
24
25
26
27
28
29
30
Klimat politiska rådet ”2020: Report of the Swedish Climate Policy Council”
Uppsala University ”A Probabilistic Assessment of the Effective CO2 Storage Capacity within
the Swedish sector of the Baltic Basin
2020 Report of the Swedish Climate Policy Council
Klimat politiska rådet ”2020: Report of the Swedish Climate Policy Council”
Regeringens Proposition 2019/20:65: “En samlad politik för klimatet –
klimatpolitisk
handlingsplan”
THEMA
Consulting Group “The role of Carbon Capture and Storage in a Carbon Neutral Europe”
Global CCS Institute CO2RE database
23
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0024.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 12: CCS national targets and policies in Sweden
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
Indicator
Comments
CCS recognised as a potentially important means of reaching
climate targets, and CCS target has been specified, yet lack of
sufficient policy measures and restrictions in the legal
framework creates a medium maturity level.
2030: -20% from 2005 levels (EU ETS) and -63%
31
from 1990
levels (non-EU ETS)
32
2040: -75% from 1990 levels (national target)
33
2045: Net zero emissions
Sweden has set CCS targets for 2030 (3.7 MtCO2e total,
whereof 1.8 MtCO2 from bio-CCS) and 2045 (10.7 MtCO2e
total, whereof 3-10 MtCO2 from bio-CCS). ~9% of the required
reductions in CO2 emissions by 2030 and 15% by 2045
34
can
be achieved through other complementary means such as CCS.
Policy measures such as investment support are in place,
though currently not identified to be sufficient for the
realisation of full-scale projects.
Sweden’s regulatory framework for CCS is primarily stand-
alone and based upon the regulatory permissions model found
in the Swedish Environmental Code.
CCS funding
CCS storage-related policies
The Swedish state has in place some financing mechanisms for
CCS-related projects through the Swedish Energy Agency.
Offshore CO2 storage is permitted. The Swedish official report
on a strategy for negative greenhouse gas emissions specified
that there is likely domestic storage in Sweden. Yet, knowledge
about their capacities was deemed to be poor. The strategy
concluded that Sweden should not prioritize establishing a
storage site but rather depend on sea transport to storage
outside Sweden, for example, Norway or another North Sea
country.
35
National CO2 reduction targets
National CCS targets
CCS policies and legislations
4.2.2.3 CCS potential (capturable CO2 intended for storage) in Sweden
Sweden’s emissions from large sources were 51 MtCO2 in 2017, of which 16.5 MtCO2
were from
the power & heat industry, 11.8 MtCO2 from the energy-intensive industries and 22.8 MtCO2
from pulp and paper production.
The calculated capturable quantity of CO2 from large sources is estimated at on average 14
MtCO2/y between 2022 and 2040 and 19 MtCO2/y between 2041 and 2050. The majority of these
emissions is related to the pulp and paper industry.
31
32
33
34
35
Equivalent to -59% reduction from 2005 levels
Sweden’s Integrated National Energy and Climate Plan (NECP
2030)
Regeringens
Proposition 2019/20:65: “En samlad politik för
klimatet
– klimatpolitisk handlingsplan”
Klimat politiska rådet ”2020: Report of the Swedish Climate Policy Council”
THEMA Consulting Group “The role of Carbon Capture and Storage in
a Carbon Neutral Europe”
24
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0025.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 13: CCS potential (intended for storage) in Sweden
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
36
)
2022-2040
Power & Heat
16.5
43
(4)
2041-2050
48
(5)
The overall significance of CCS within the Swedish power & heat sector is low due to renewable power generation. However, BECCS
has been emphasised as an important additional measure to achieve negative emissions in 2045 (although no specific CCS targets
have been made for CCS)
Forest is the largest source of bioenergy in Sweden (63% of land cover). Bioenergy is primarily used for heating
both in private
homes and in district heating
as well as for electricity production and for industrial processes
37
In order to meet the ambitious carbon neutrality targets towards 2045, the first projects are expected to be introduced before
2030
The capturable volume of CO2 intended for storage within the segment is estimated at up to ~5 MtCO2/y, and is executively
related to emissions from biomass-fired energy and heat plants (incl. waste-to-energy plants)
Process emission within the energy-intensive industry were 11.8 MtCO2 in 2017, mainly related to the production of iron and steel
(4.1 MtCO2), cement (2.8 MtCO2) and refining (2.7 MtCO2)
For the remaining industries, green hydrogen and electricity are expected to be preferred
The total capturable volume intended for storage is estimated at up to ~3 MtCO2/y
In addition to the industries above, Sweden is one of the major pulp and paper producers in Europe. Associated emissions were
estimated at ~22.8 MtCO2 in 2017. Pulp & paper plants are often located close to coastlines and rivers (as their processes require
significant amounts of water), making it potentially easily accessible to collect emissions.
The total capturable volumes intended for CCS are estimated at up to 11 MtCO2/y (in 2014; ramping gradually up from 2028
where the technology is assumed to be introduced)
Comment
Industry
11.8
116
(11)
143
(14)
4.2.2.4 CO2 storage potential in Sweden
Sweden has 6,000 Mt of total carbon storage situated in aquifers
38
. While the storage capacity is adequate to cover all upcoming CCS activity, no
investments in developing the storage sites have been made, as described in section 4.2.2.2.
The Swedish attitude towards CCS is generally positive
39
, as incentive schemes are in place to develop CCS technology. Moreover, several studies
are currently underway to hook up local fossil fuel power generation and industry in the Gothenburg area to CO2 export infrastructure, enabling
storage of Swedish carbon in the North Sea area
40
.
As a result, Sweden seemingly has no intention of developing domestic carbon storage sites and prioritises developing carbon export infrastructure
while looking for international opportunities to store the captured carbon.
36
37
38
39
40
Average CO2 capturable amount is calculated for the time period 2030-2040
Sweden.se/ Swedish Institute
Uppsala University, “A Probabilistic assessment of the effective CO2 storage capacity within the Swedish Sector of the Baltic Basin”
IOGP, “The potential for CCS and CCU in Europe”
DEA/Ramboll,
“Catalogue of Geological Storage of CO2 in Denmark”
25
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0026.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.3
Norway
4.2.3.1 Summary of CCS potential in Norway
Norway’s CO2 emissions from large sources in 2017
were ~25 MtCO2. Most emissions relate to
the energy-intensive energy sector (11.2 MtCO2) since power generation is mainly from
hydroelectric plants.
Norway has created favourable conditions for the development and use of CCS through solid
policy and regulatory support and dedicated action plans for CCS. Yet, no specific targets for CCS
deployment have been set. However, the processing industry has created a roadmap for achieving
climate targets towards 2050, including 33% from CCS and 20% from BECCS.
Extensive support systems for CCS are in place through various organisations and research
centres, among others the Norwegian CCS Research Centre (NCCS) in 2016, with 30 research and
industry partners and a budget of NOK 570 million over eight years. Key drivers for
Norway’s
successful CCS development projects have been the supporting policy framework and high CO2
prices.
Norway’s
CCS potential within the processing industry is high; 111 MtCO2 in total between 2022
and 2050, and on average 4 MtCO2/y between 2022 and 2040 and 6 MtCO2/y between 2041 and
2050. Energy majors are expected to see CCS as a way of protecting their existing extraction and
refining business. At the same time, fossil-reliant industries such as steel could choose to use CCS
rather than invest in options like hydrogen.
Storage potential in Norway is estimated at 103,000 Mt, of which 76,000 Mt of storage in aquifers
and 27,000 Mt of storage in depleted oil & gas fields.
The relevance for storage in Denmark is deemed low, as Norway has national plans to develop
CCS technology and develop storage sites.
Below is an overview of the CCS potential in Norway.
Table 14: Summary of CCS potential in Norway
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
CO2 reduction targets
Indicator
25.4
41
Comments
CO2 emissions from the largest point sources; mainly from the
power and heat generation industry, followed by the iron and
steel, non-ferrous metals and mineral oil and gas industry
2030: -50% from 1990 levels
42
(economy wide) and -30%
from 2005 levels (non-EU ETS)
43
2050: -90-95% from 1990 levels (economy wide)
Strong policy and regulatory support, as well as dedicated
actions plans for CCS, create favourable conditions for the
development and use of CCS in Norway.
Norway has not set specific targets for CCS deployment, with
the justification by the Norwegian Ministry of Climate and
Environment that it is not possible to quantify the emission
reductions that might be realized through Norway’s CCS
policies as it will, for most parts, take place in the industry
covered by the EU
ETS
44
.
However, the Norwegian processing industry has created a
roadmap for 2050 for achieving its long-term national climate
targets: deploy CCS to reduce as much as 33% of planned
emission reductions and ~20% from CCS combined with
combustion of biogenic matter. Further, long-standing policy
and research commitments suggest that CCS will become an
important means to achieving Norway’s long-term
target of
41
42
National CCS focus/Support
CCS targets
EU Emissions Trading Scheme data
Does not include biogenic emissions
Norway’s Fourth Biennial Report. In its National Determined
Contribution (NDC) under the Paris Agreement and committed to reduce emissions
Norwegian Ministry of Petroleum and Energy “Longship – Carbon Capture and Storage”
Norwegian Ministry of Climate
and Environment “Norway’s Fourth Biennial Report”
by at least 50 per cent and towards 55 per cent by 2030 compared to 1990.
43
44
26
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0027.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
reducing CO2 emissions by 90-95% by 2050, despite the
current lack of specified targets for CCS.
Total CCS Potential (MtCO2) 2022-2050
Own storage capacity (Mt)
Own storage potential/support
Potential for DK storage
Low
111
103,000
45
Primarily related to refining and other fossil-reliant industries
(e.g. iron & stell)
76,000 Mt of storage in aquifers; 27,000 Mt of storage in
depleted oil & gas fields;
Large offshore storage sites are being developed with large
investments from the government
Low significance to DK as NO has national plans to
develop CCS technology but also to develop storage sites
(and has sufficient storage capacity)
4.2.3.2 CCS national targets and policies in Norway
Norway aims to become a low-emission society by 2050, targeting reducing greenhouse gas
emissions between 90-95%
46
. Norway has identified CCS as important for achieving these
targets. Overall, the policy maturity is considered high as CCS strategies, policies, supportive
legislative frameworks, and support systems have created favourable conditions for CCS in
Norway.
The Norwegian Government has developed a CCS strategy, which includes research, development
and demonstration, an ambition to realize a full-chain demonstration facility, transportation,
storage and alternative use of CO2 and international work for the implementation of CCS as a
mitigation measure
47
. Important parts and tasks are given to the Research Council of Norway and
Gassnova (a state-backed body whose mission is to realise CCS solutions)
48
. In 2020, the
Norwegian government proposed to launch a
CCS project called “Longship”, which will
demonstrate a full, but flexible value chain with carbon capture from cement production and
potentially from waste management and shipping, and CO2 storage beneath the seabed.
Norway has not set specific targets for CCS deployment, with the justification by the Norwegian
Ministry of Climate and Environment that it is not possible to quantify the emission reductions
that might be realized through Norway’s CCS policies as it will,
for most parts, take place in the
industry covered by the EU ETS
49
. However, the Norwegian processing industry has created a
roadmap for 2050 for achieving its long-term national climate targets, according to which it needs
to deploy CCS to reduce as much as 33% of planned emission reductions and ~20% from CCS
combined with the combustion of biogenic matter
50
. Further, long-standing policy and research
commitments suggest that CCS will become an important means to achieving Norway’s long-term
target of reducing CO2 emissions by 90-95% by 2050, despite the current lack of specified
targets for CCS.
Norway has demonstrated a commitment to the deployment of CCS and to drive down technology
costs through extensive support systems targeted at CCS research and projects. Norway
established the Norwegian CCS Research Centre (NCCS) in 2016, with 30 research and industry
partners and a budget of NOK 570 million over eight years
51
. Further, Norway’s Technology
Centre Mongstad (TCM) has established itself as a leading international competence centre for the
demonstration of capture technology
52
. The Norwegian Government and the current industry
owners of TCM have entered into a new operating agreement from the end of August 2020 until
the end of 2023
53
. In addition, the national research programme CLIMIT is an essential source of
funding for research and demonstration of IS technology. In addition, the government has
established a strategic committee for clean energy research called ENERGI21, under which CCS is
one of six priority focus areas. Other key funding programmes include SkatteFUNN, which
45
46
47
48
49
50
51
52
53
Nordic CCS Competence Centre “CO2 Storage Potential in the Nordic Region”
Norwegian Ministry of Climate and Environment “Norway’s National Plan”
Norwegian Ministry of Climate and
Environment “Norway’s Fourth Biennial Report”
Norwegian Ministry
of Petroleum and Energy “Longship –
Carbon Capture
and Storage”
Norwegian Ministry of Climate and Environment “Norway’s Fourth Biennial Report”
Norwegian Ministry of Petroleum and Energy
“Longship –
Carbon
Capture and Storage”
Norwegian Ministry of
Petroleum and Energy “Longship –
Carbon Capture
and Storage”
Norwegian Ministry of Petroleum and Energy “Longship – Carbon Capture and Storage”
Norwegian Ministry of Petroleum and Energy
“Longship –
Carbon
Capture and Storage”
27
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0028.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
provides tax incentives for CCS related research, as well as Accelerating CCS Technology (ACT),
which is a European initiative managed by Norway to establish CCS.
The supporting policy framework and high CO2 prices have been crucial drivers for the
development of Norway’s successful CCS projects.
The Longship project proposed by the
Norwegian government requires funding of USD 2.7 billion, and will also comprise funding for the
transport and storage project Northern Lights, a joint project between Equinor, Shell and Total
54
.
The CCS projects from natural gas on the Sleipner, Gudrun and Snøhvit petroleum fields are the
only CCS projects currently in operation in Europe and the only projects in the offshore industry.
Norway does not have CCS-specific legislation; however, amendments to existing regulation have
created a comprehensive regulatory framework for the transport and storage of CO2 in Norway.
National pollution, environmental and petroleum legislation is sufficient to cover CCS, and
amendments have been made to regulations concerning the storage of CO2 in offshore sub-sea
reservoirs on the Norwegian continental shelf. Norway has implemented the EU CCS Directive,
which has provided a basis for amendments to existing legislation. In addition, Norway has
ratified the London Protocol that allows CO2 export to other states for storage purposes. Yet, the
Protocol has not entered into force as too few countries have ratified it.
Table 15: CCS national targets and policies in Norway
CCS NATIONAL TARGETS AND POLICIES IN NORWAY
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
The policy maturity is considered high due to CCS strategies,
policy, legislative frameworks and support systems, creating
favourable conditions for CCS.
2030: -50% from 1990 levels
55
(economy wide) and -30% from
2005 levels (non-EU ETS)
56
2050: -90-95% from 1990 levels (economy wide)
CCS targets have not been set.
The Norwegian government has developed a national CCS
strategy, created state-sponsored CCS authorities and recently
proposed a project to demonstrate a full but flexible value chain
with carbon capture from cement production and potentially from
waste management and shipping, and CO2 storage beneath the
seabed.
Norway does not have CCS-specific legislation; however,
amendments to existing regulation have created a
comprehensive regulatory framework for the transport and
storage of CO2 in Norway.
CCS funding
The government supports CCS through various supporting
schemes and R&D funding. National CCS centres, CCS funding
programmes have been influential in the development of
Norway’s successful CCS projects.
Offshore storage is permitted.
National CCS targets
CCS policies and legislations
CCS storage-related policies
54
55
Norwegian Ministry of
Petroleum and Energy “Longship –
Carbon Capture
and Storage”
Norway’s Fourth Biennial Report. In its National Determined Contribution (NDC) under the Paris Agreement and committed to reduce
emissions
Norwegian
Ministry of Petroleum and Energy “Longship – Carbon Capture and Storage”
by at least 50 per cent and towards 55 per cent by 2030 compared to 1990.
56
28
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0029.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.3.3 CCS potential (capturable CO2 intended for storage) in Norway
Norway’s emissions
from large sources were 25 MtCO2 in 2017. The majority of emissions is related to energy-intensive sectors since power
generation in Norway is almost entirely from hydroelectric power plants.
Norwegian government accords great importance to CCS. Energy majors are therefore expected to see CCS as a way of protecting their existing
extraction and refining business. Furthermore, fossil-reliant industries such as steel could use CCS rather than invest in options like hydrogen. CCS
will also be needed to deploy blue hydrogen.
The calculated capturable quantity of CO2 is estimated at an average of 4 MtCO2/y between 2022 and 2040 and 6 MtCO2/y between 2041 and
2050.
Table 16: CCS potential (intended for storage) in Norway
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
57
)
2022-2040
Industry
11.2
33
(3)
2041-2050
49
(5)
Process emission within energy-intensive industry were 11.2 MtCO2 in 2017, mainly related to refining (2.6 MtCO2), iron and steel
production (2.5 MtCO2) and non- ferrous metals (2.7 MtCO2)
The significance of CCS within the industrial sector is assessed to be relatively low and is mainly relevant for cement and refining
(where there are currently no other ways to reduce the process emissions significantly). It is often only one of the available options
(and less preferred) within other industrial subsectors, including iron and steel and chemicals. Moreover, in many countries, the
industrial sector prefers CCU instead of CCS. However, in Norway, the government accords great importance to CCS. Energy
majors are therefore expected to see CCS as a way of protecting their existing extraction and refining business. Furthermore,
fossil-reliant industries such as steel could use CCS rather than invest in options like hydrogen. CCS will also be needed to deploy
blue hydrogen.
The total capturable volume intended for storage is estimated at up to ~5 MtCO2/y
Fuel combustion is presumably related to oil & gas activities
The significance of CCS is assessed to be high in this context, as energy majors are expected to prioritise CCS, due to
governmental focus on this decarbonisation measure. The total capturable volume intended for storage is estimated at up to ~2
MtCO2/y (peak between 2033 and 2040)
Comment
Fuel
combustion
14.2
15
(1)
14
(1)
57
Average CO2 capturable amount is calculated for the time period 2030-2040
29
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0030.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.3.4 CO2 storage potential in Norway
Norway has 103,000 Mt of carbon storage in suitable geological structures, of which the majority
(76,000 Mt) is situated in aquifers and 27,000 Mt in located in oil and gas field units
58
. All known
storage units are located offshore in the North Sea and the Norwegian Sea on the Norwegian
Continental Shelf near current oil and gas fields
59
.
Carbon storage in oil and gas fields can be cheaper to develop than aquifer storage units as some
of the offshore infrastructure is already in place
60
.
Norwegian attitude and legislation are favourable towards CCS technology and offshore carbon
storage, as described in section 4.2.3.2.
As a result, the carbon storage capacity of Norway is considered sufficient to cover all upcoming
CSS activity and will be sufficient to store CO2 imports from other countries
61
.
The figure below provides an overview of the CCS projects in Norway.
Figure 2: Overview of CCS facilities in Norway
Source: Norwegian Ministry of Petroleum and
Energy, “Longship – Carbon capture and storage”, Ramboll analysis
58
59
60
61
Nordic CCS Competence Centre,
“CO2 Storage potential in the Nordic region”
EU GeoCapacity, “Assessing European capacity for Geological Storage of Carbon Dioxide”
IOGP, “The potential for CCS and CCU in Europe”
Ramboll Expert
30
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0031.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.4
Germany
4.2.4.1 Summary of CCS potential in Germany
Germany’s emissions
from large sources in 2017 were ~406 MtCO2. The energy sector is one of
the largest single sources of CO2 emissions in Europe.
Germany aims to become climate neutral in 2050, and as Europe’s largest emitter, CCS will most
likely become a significant means of reaching this climate target. The role of CCS for reaching
carbon neutrality has been noted in Germany’s Climate Action programme
as unavoidable and by
former Chancellor Angela Merkel at the Petersburger Klimadialog to be necessary. However,
currently, Germany has not set any CCS targets.
To support the deployment of CCS, Germany is preparing a subsidy programme aimed at the
country’s raw material industry for developing CCU and CCS technologies, with a budget at EUR
105 million for 2021 and, after that, an additional EUR 120 million per year until 2025.
CCS potential in Germany is estimated at 871 MtCO2 between 2022 and 2050 and on average 35
MtCO2/y between 2022 and 2040 and 49 MtCO2/y between 2041 and 2050, from close to 200
different large power and industrial processing facilities. The largest share of capturable CO2 is
expected to be derived from the power & heat sector (natural gas-fired power plants and
biomass-fired plants). Despite transforming to renewable energy sources within power supply,
natural gas is expected to remain an important energy source by
2050. Germany’s industrial
sector plays a substantial role in Germany with high emission levels that are hard to abate (iron
and steel, refining, chemicals/petrochemicals, cement).
Storage potential in Germany is estimated at 95,000 Mt, with 75,000 Mt of storage in depleted oil
& gas fields and 20,000 Mt of storage in aquifers. 80% of aquifers are situated in states that have
banned carbon storage. Germany is not actively pursuing CCS, and no facilities are currently
planned or under construction. National storage is expected to be limited going forward, partly
indicated due to public scrutiny of onshore storage.
The relevance for storage in Denmark is deemed potentially high. Given public opposition to
onshore storage and the limitation of CO2 storage on national territory, the export of German
CO2 for storage is considered likely.
Below is an overview of the CCS potential in Germany.
Table 17: Summary of CCS potential in Germany
62
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
406.2
Comments
CO2 emissions from largest point sources; mainly from power
and heat generation industry, followed by iron and steel,
cement, chemical and mineral oil and gas refinery industries
2030: -55% from 1990 levels (national target) and -38%
from 2005 levels (non-EU ETS)
63
2050: Climate neutral
As Germany is Europe's highest emitter, CCS will probably
need to play a significant role in Germany. Given the public
opposition and the limitation of CO2 storage on national
territory, the export of German CO2 for storage is deemed
likely.
No specific targets have been set for the deployment of CCS in
Germany.
871
The largest share of capturable CO2 is expected to be derived
from the power & heat sector (natural gas-fired power plants
and biomass-fired plants). Significant potential also assessed
within the industry (mainly iron and steel, refining,
chemicals/petrochemicals, and cement).
National CCS focus/Support
CCS targets
Total CCS Potential (MtCO2) 2022-2050
62
63
Global CCS Institute, ”Global Status of CCS 2020”
Germany’s Integrated National Energy and Climate
Plan (NECP 2030)
31
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0032.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Own storage capacity (Mt)
95,000
75,000 Mt of storage in depleted oil & gas fields; 20,000 Mt
of storage in aquifers. 80% of aquifers are situated in states
that have banned carbon storage
64
.
Germany is not actively pursuing CCS, and there are no CCS
facilities in planning/construction. Additionally, public scrutiny
of onshore storage indicates that national storage will be
limited going forward.
Own storage potential/support
Potential for DK storage
High
Carbon storage outside of the country seems to likely,
as the national storage of carbon is still controversial in
Germany.
4.2.4.2 CCS national targets and policies Germany
Germany is aiming to become climate neutral in 2050. As Germany is Europe's highest emitter,
CCS will most likely need to play a significant role in Germany. While the German climate action
programme highlights German initiatives that support CCS and CCU, it fails to substantiate a
national commitment to technology uptake. Thus, the degree to which CCS will support the
decarbonisation of industries has not been specified through CCS targets. However, the German
integrated national energy and climate action plan explicitly gives room to the option of using
carbon capture technology and notes that the majority of climate studies and scenarios confirm
that CCS is indispensable for achieving net-zero emissions by 2050
65
.
Until recently, Germany’s
had limited funding and support systems in place for the further
development of CCS research and development projects. A CCS subsidy programme is currently
being prepared, setting aside EUR 105 million for 2021 and, after that, EUR 120 million per year
until 2025
66
. Aside from the programme under development, non-exclusive CCS programs have
been in place, e.g., COORETEC focusing on coal-fired power with CCS, and Geotechnologien,
which was a German R&D programme researching CO2 storage, which has now ended. The
German NECP mentions the national “CO2-Win” and “CO2-Plus” programs as well as Germany’s
participation in the ERA-net EU Cofund ACT (Accelerating CCS Technologies) project as initiatives
that will support research and the future application of CCU and CCS technologies, i.e. carbon
separation, transport, storage and use
67
. In addition, Germany is currently preparing a subsidy
programme aimed at supporting the country's raw material industry in developing technologies
for CCU and CCS. The budget has been set at EUR 105 million for 2021 and, after that, an
additional EUR 120 million per year until 2025
68
.
Germany’s
regulatory framework related to CCS concerns the German CCS Act and the CO2
storage Act, both of which are integrated are based on the EU CCS directive in 2009. In 2012 the
German CCS Act made onshore storage of CCS forbidden. The CCS Act halted all CCS projects
except testing and demonstration pilots; no submissions were made. The storage Act restricts
CO2 storage to only some parts of Germany, and the Federal States determine whether CO2
storage may take place based on several criteria. Additionally, storage activities are limited to
those for which an application has been filed by December 2016 and to a maximum annual
capacity of 1.3 MtCO2 per storage site. The total combined annual storage capacity for Germany
is also limited to 4 MtCO2. However, the role of CCS in the future decarbonisation of the German
economy became a point of discussion again after Chancellor Merkel stated in 2019 that CCS was
necessary to achieve the ambitious climate targets.
Due to public acceptance issues and regulatory limits to onshore storage, tapping into the German
onshore CO2 storage potential is most likely not politically feasible.
64
65
66
67
68
European Commission, “On Implementation of Directive 2009/31/EX on the Geological Storage of Carbon Dioxide”
Bundesministerium für Wirtshaft und Energie ”Integrierter
Nationaler Energie-
und Klimaplan”
Media Group: Germany Launches CCUS Support
Bundesministerium für Wirtshaft und Energie ”Integrierter Nationaler
Energie- und Klimaplan”
Media Group: Germany Launches CCUS Support
32
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0033.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 18: CCS national targets and policies in Germany
69
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
Indicator
Comments
CCS recognised as a potentially important means of reaching
climate targets. Yet, the lack of specific targets for CCS
deployment and CCS restrictions in the legal framework creates
a medium maturity level.
2030: -55% from 1990 levels (national target) and -38%
from 2005 levels (non-EU ETS)
70
2050: Climate neutral
The Climate action programme names German initiatives
supporting CCS and CCU but fails to substantiate a German
commitment to the technology uptake.
The German CCS Act and the CO2 Storage Act are integrated
and are based on the EU CCS directive in 2009. The Storage
Act restricts CO2 storage to only some parts of Germany and
sets limits to storage capacity.
However, the role of CCS in the future decarbonisation of the
German economy became a point of discussion again after
former Chancellor Merkel stated in 2019 that CCS was
necessary to achieve the ambitious climate targets.
CCS funding
A CCS subsidy programme is currently being prepared, setting
aside EUR 105 million for 2021 and, after that, EUR 120 million
per year until 2025
71
. However, until recently, support has
been minimal, with a low level of R&D funding through non-
exclusive CCS programs, e.g., COORETEC focusing on coal-fired
power with CCS and Geotechnologien. The German NECP
mentions the national “CO2-Win” and “CO2-Plus” programs as
well as Germany’s participation
in the ERA-net EU project as
initiatives that will support research and the future application
of CCU technologies.
German CCS Act prohibits onshore storage of CCS. Due to
public acceptance issues and regulatory limits to onshore
storage, tapping into the German onshore CO2 storage
potential is most likely not politically feasible.
National CO2 reduction targets
National CCS targets
CCS policies and legislations
CCS storage-related policies
4.2.4.3 CCS potential (capturable CO2 intended for storage) in Germany
Germany's energy sector remains one of the largest single sources of CO2 emissions in Europe.
Emissions from large sources
72
are assessed at ~280 MtCO2 in 2017.
Today, energy in Germany is sourced predominantly by fossil fuels, followed by wind, nuclear
power, solar, biomass (wood and biofuels) and hydro. As illustrated in Figure 3, supply is
transforming towards heavier use of renewable energy sources in 2050; natural gas will remain
an important energy source towards 2050.
Germany also has a substantial industrial sector with a high level of emissions (108.0 MtCO2 in
2017), including production and processing of iron and steel, refining, chemicals/petrochemicals,
and cement.
The calculated capturable quantity of CO2 is estimated at on average 35 MtCO2/y between 2022
and 2040 and 49 MtCO2/y between 2041 and 2050, from close to 200 different large power and
industrial processing facilities. The largest share of capturable CO2 is expected to be derived from
the power & heat sector (natural gas-fired power plants and biomass-fired plants).
Within the industrial sector largest potential is assessed within the cement industry and refineries
due to lacking alternatives to abate emissions, followed by other industries where CCS is relevant
but only one option, i.e., chemical industry and iron & steel).
69
Thema Consulting Group, “The role of carbon capture and storage in a carbon neutral Europe”; “Integrated National Energy and Climate Plan” of
Germany’s Integrated National Energy and Climate Plan (NECP 2030)
Media Group: Germany Launches CCUS Support
Plants with emissions exceeding 100,000 MtCO2/y
Germany; The European Commission, “Assessment
of final national
energy and climate plan of Germany”
70
71
72
33
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0034.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Figure 3:
Germany’s potential
energy mix towards 2050
Source: Ramboll Analysis;
EWI Research, “The energy market in 2030 and 2050 –
The contribution of gas and heat
infrastructure to efficient carbon emission reductions.”
34
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0035.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 19: CCS potential (intended for storage) in Germany
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
73
)
2022-2040
Power & Heat
280.2
229
(21)
2041-2050
339
(34)
The overall significance of CCS within the German power & heat sector is low due to the focus on renewable power generation.
However, the German government has expressed an interest in BECCS due to negative emissions compensating some industry and
agricultural emissions hard to abate. Significance of CCS is also assessed to be high in case of non-recyclable and biogenic share of
waste-to-energy and for emissions from natural gas-fired power plants
The capturable volume of CO2 intended for storage within the segment is estimated at up to ~36 MtCO2/y
The capturable quantities are evenly split between power plants fired on natural gas and those fired on biomass. However, the
dynamics within these two segments are quite different. After an introduction around 2030, a capturable amount of CO2 from gas
plants would quickly ramp up to comprise more than 50% of this industry by 2040. A further increase is expected towards 2050, as
it is likely that only CCS-retrofitted plants will be allowed to operate. The overall share of capturable CO2 emissions from biomass-
fired plants is expected to be much lower (~20%) but constant through the entire period (2030-2050)
CCS is not considered relevant for coal-driven plants since they will be phased out shortly after the CCS introduction
Germany has a substantial industrial sector with a high level of emissions (108.0 MtCO2 in 2017), including production and
processing of ferrous metals (28.6 Mt in 2017, mainly related to iron and steel), refining (21.1 MtCO2 in 2017), chemicals/
petrochemicals (24.6 Mt in 2017) and cement (25.0 MtCO2 in 2017)
The significance of CCS within the industrial sector varies across disciplines. It is assessed highest for cement processing and
refining, where there are currently no other ways to reduce the process emissions significantly. Although switch of fossil fuels to
biomass can reduce some emissions from cement processing, BECCS could still be an option to create negative emissions. Potential
is also assessed within iron and steel, and chemicals. However, CCS is only one of several options on how to abate emissions
(alternatives include electricity, green hydrogen and recycling). In general, the chemical industry is prioritizing CCU over CCS
According to Germany’s Economy and Energy Ministry, around 30-40%
of industrial emissions are process-linked and cannot be
avoided using today's state of the art technology
74
.
The total capturable volume intended for storage is estimated at up to ~18 MtCO2/y (peak between 2030 and 2040), and the
highest potential is assessed within the mineral processing/cement industry. Ramp-up of the CCS within the industrial sector is
expected to be relatively quick and reach the full potential already in 2035
CCS is also considered highly relevant for reducing CO2 emissions within:
o
Chemical industry; Although the chemical industry is large in Germany, CCS is expected to be less prioritised than the
alternative measures to abate emissions
o
Iron and steel industry; Using hydrogen is an alternative (and high priority for the German government). Although the clear
focus of the recently published Hydrogen Strategy is on green hydrogen production in- and outside of Germany (due to
limited capacity/ability to produce enough green hydrogen, Germany is looking into collaborations with other countries),
there are no provisions against the import and use of blue hydrogen
75
. Blue hydrogen is therefore expected to be a
transitional solution, creating a need for CCS
o
The gas refining industry; Given the long-term commitment to natural gas via the Nord Stream pipeline
No other significant potential areas have been assessed
Comment
Industry
108.0
154
(14)
150
(15)
Other
18.8
-
-
73
74
75
Average CO2 capturable amount is calculated for the time period 2030-2040
The role of Carbon Capture and Storage in a Carbon Neutral Europe, Carbon Limits, 2020
Federal Ministry of Economic Affairs and Energy
– “Die Nationale Wasserstoffstrategie”
35
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0036.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.4.4 CO2 storage potential in Germany
Germany’s total CO2 storage capacity is 95,000 Mt,
of which the majority
75,000 Mt
is
situated in oil and gas fields, and 20,000 Mt is situated in storage aquifers. Most of the German
domestic carbon storage capacity is located onshore. The storage potential in the Baltic Sea is
limited and virtually non-existent in the North Sea
76
.
The German public has opposed onshore carbon storage, and as a result, only offshore carbon
storage is currently legal, as described in section 4.2.4.2. No current or planned development
projects of domestic carbon storage sites have been identified
77
.
This means Germany does not have nor plan on developing domestic carbon storage capacity to
cover upcoming CCS activity. However, due to the large amounts of captured carbon necessary to
reach emissions reduction targets and the lack of plans for developing national storage, carbon
export from Germany is deemed likely
78
.
The picture below provides an overview of German storage site locations.
Figure 4: Overview of German carbon storage site locations
Source:
Ramboll analysis, EU GeoCapacity, “Assessing European Capacity for Geological Storage of Carbon Dioxide”
76
77
78
DEA/Ramboll, “Catalouge of Geological Storage of CO2 in Denmark”
The Global CCS Institute, “Global status of CCS 2020”
Ramboll Expert
36
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0037.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.5
United Kingdom
4.2.5.1 Summary of CCS potential in the United Kingdom
The UK’s emission is among the largest emitters of the analysed countries, with emissions
from
large stationary plants in 2017 at ~146 MtCO2.
The UK has created favourable conditions for the development and use of CCS through strong
policy and regulatory support and dedicated action plants for CCS. Targets and commitments to
CCS deployment at scale starting from the 2030s have been made, estimating >10 MtCO2 to be
captured per year by 2030. CCS is a key part of the decarbonisation strategy to achieve carbon
neutrality in 2050 in the UK, subject to costs coming down sufficiently. CCS will be of particular
need in hard-to-abate industry sectors and decarbonisation of home-heating (hydrogen with
CCS).
To support CCS research and projects extensive funding has been granted in the UK, e.g., 100
million GBP via Clean Growth Strategy funding to CCUS, BECCS and transport and storage of CO2,
an additional 123 million GBP to R&D/innovation via UK CCS Research Centre), and with plans for
further 1 billion GBP funding and revenue mechanisms.
CCS potential in the UK is high in both power & heat and industry; 1,986 MtCO2 in total between
2022 and 2050, and on average 50 MtCO2/y between 2022 and 2040 and 119 MtCO2/y between
2041 and 2050 for both the power & heat sector and the industry sector. CCS potential in the
power & heat sector will primarily be in connection with hydrogen, in which CCS will be central to
support this. Within the industry, potential is in hard-to-abate industries, i.e., mineral oil & gas
refineries, mineral production (cement, lime and plaster), iron and steel production, chemicals
production, as well as food production.
The UK has significant storage capacity, estimated at 69,000 Mt of storage in aquifers and 9,000
Mt of storage in depleted oil & gas fields. Storage is permitted in the offshore area.
The relevance for storage in Denmark is deemed low, as the UK has already invested in CCS
technology, initiated storage projects, developed CCS deployment timelines and expect CCS to be
key to reaching net zero emissions.
Below is an overview of the CCS potential in the UK.
Table 20: Summary of CCS potential in United Kingdom
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
CO2 reduction targets
National CCS focus/Support
Indicator
146.3
Comments
CO2 emissions from large point sources; primarily from the
power and heat generation industry followed by refineries and
chemical production facilities.
2030: -68% from 1990 levels
79
(economy wide emissions)
2050: Net zero emissions
Strong policy and regulatory support, as well as dedicated
actions plans for CCS, create favourable conditions for the
development and use of CCS in the UK.
An extensive national support system is in place, granting 100
million GBP via Clean Growth Strategy to CCUS, BECCS and
transport and storage of CO2. Additional GBP 123 million to
R&D via UK CCS Research Centre and plans for further GBP 1
billion funding and revenue mechanisms have been announced.
CCS targets
The UK is committed to deploying CCS at scale during the
2030s, subject to costs coming
down sufficiently. The UK’s
target is to capture >10 MtCO2/y by 2030, and capture and
store ~0.32 tCO2 per capita. Between 2023-2032, the
government estimates that driving the growth of low hydrogen
could deliver savings of ~40 MtCO2e, equivalent to 9% of 2018
UK emissions.
80
By 2050, ~60% of the carbon captured in the
79
80
https://www.gov.uk/government/news/uk-sets-ambitious-new-climate-target-ahead-of-un-summit
HM Government “The Ten Point Plan for a Green Industrial Revolution”
37
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0038.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
UK has been estimated to be in the greenhouse gas removals
sector
81
.
Total CCS Potential (MtCO2) 2022-2050
1,986
Both within power & heat sector (in connection with hydrogen)
and industry (mineral oil & gas refineries, mineral production,
iron and steel production, chemicals production, as well as food
production)
69,000 Mt of storage in aquifers; 9,000 Mt of storage in depleted
oil & gas fields
The UK is actively developing and investing in offshore storage
sites as a part of the climate strategy which has the support of
the public
83
Low
Low significance for DK; UK has significant storage
capacity and already developed invested in CCS
technology, initiated offshore storage projects,
implemented CCS deployment timelines and believe CCS
to be key for reaching net-zero.
Own storage capacity (Mt)
Own storage potential/support
78,000
82
Potential for DK storage
4.2.5.2 CCS national targets and policies in the United Kingdom
The UK aims to become carbon neutral in 2050 and emphasises CCS as a key decarbonisation
strategy to achieve carbon neutrality. The UK’s ‘Clean Growth Strategy’ of 2017 includes CCS as a
specific approach to decarbonisation, setting forth an approach to enable the UK to become a
global technology leader for CCUS and ensure that government has the option of deploying CCUS
at scale during the 2030s
84
. CCS is recognised as an essential technology to reduce emissions
from especially industry sectors and to decarbonise home-heating (hydrogen with CCS). However,
the strategy notes that the cost of CCS will have to come down for it to be deployed at scale in
the
UK. In 2018, the UK Government’s ‘Carbon Capture Usage and Storage Deployment Pathway’
set out further details on the steps it plans to take to deploy CCUS at scale during the 2030s,
subject to the costs coming down sufficiently
85
. The Government’s
“10 Point Action Plan for a
Green Industrial Revolution”, announced in November 2020, also includes CCUS as a necessary
point to decarbonise hard to abate sectors and reach negative emissions
86
. In December 2020,
the UK’s Climate Change Committee, acting as the government’s climate advisers, have proposed
a legally binding “carbon budget” that is in line with the national
target
of “net-zero” emissions by
2050, in which all pathways explored see the use of CCS as a critical and cost-effective means of
meeting
the UK’s 2050 Net Zero target
87
.
The UK has set a
specific target for CCS deployment in 2030. The UK’s CCS target is
to capture
>10 MtCO2/y by 2030
88
. The Climate Change Committee estimates that by 2030, CCS per capita
will reduce UK emissions by 0.32 tCO2/person/year
89
. Further, the estimated savings between
2023-2032 from the deployment of low-carbon hydrogen are ~40 MtCO2e. By 2050, ~60% of the
carbon captured in the UK has been estimated to be in the greenhouse gas removals sector,
primarily through the combustion of biomass for electricity generation, with a further 20% used
for the production of hydrogen and 10% used with gas in the power sector. Bioenergy with carbon
capture and storage (BECCS) facilities have been estimated by the UK’s Climate
Change
Committee to remove 22 MtCO2/y from the atmosphere by 2035 and 53 MtCO2/y by 2050
90
. The
Committee estimates that Direct Air Capture of CO2 with storage (DACCS) starts to scale up from
2040 to reach 5 MtCO2/y by 2050.
The UK has an extensive national support system for CCS in place. CCS funding has been granted
through the Clean Growth Strategy, allocating GBP 100m for CCUS applications in low-carbon
hydrogen production, BECCS, as well as transport and storage of CO2. In addition, GBP 125m was
allocated to an R&D and innovation program, which established UK CCS Research Centre. In
81
82
83
84
85
86
87
88
89
90
Climate Change Committee “The
Sixth Carbon Budget -
The UK's plan to net zero”
Department of Energy
& Climate Change “CCS Roadmap Supporting deployment of Carbon Capture and Storage in the UK”
Edie “Survey: Two-thirds of Brits support UK’s green industrial revolution plans”
HM
Government “Clean Growth:
The UK Carbon Capture Usage and Storage deployment
pathway: An Action Plan”
HM Government “The Clean Growth Strategy Leading the way to a low carbon future”
HM Government “The Ten Point Plan for a Green Industrial Revolution”
Climate Change Committee
“The Sixth Carbon Budget
- The UK's plan
to net zero”
HM Government “The Ten Point Plan for a Green Industrial Revolution”
Climate Change Committee “The Sixth Carbon Budget
-
The UK's plan to net zero”
Climate Change Committee
“The Sixth Carbon Budget
-
The UK's plan to net zero”
38
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0039.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
2017, the Centre was awarded an additional GBP 6.1m to fund research work on CCS through
2022. In 2020, the government further committed to establishing a GBP 1 billion CCUS
Infrastructure Fund, and in 2021, aims to introduce a revenue mechanism to bring through
private sector investment in industrial carbon capture and hydrogen projects to provide the
certainty investors require
91
. Further, the Scottish Government’s strategy allocates
GBP 60m to
the Low Carbon Innovation Fund, as well as GBP 20m to the Energy Investment Fund.
Additionally, the UK government has supported several frontend engineering, and design (FEED)
studies for CCS in the UK (e.g., Peterhead and Longannet).
The UK is one of the leading nations in terms of policy support for CCS with a strong institutional
framework and a range of climate change mitigation policies such as emission performance
standards and a carbon price floor. The UK’s comprehensive legal
and regulatory CCS framework
addresses the full chain of the CCS project life cycle. The Energy Act 2008 and its accompanying
Carbon Dioxide Licensing Regulations 2010 transpose the requirements of the EU Storage
Directive and establish the UK's framework for offshore CO2 storage activities. The regime applies
to storage in the offshore area comprising both UK territorial sea and beyond designated as a gas
importation and storage zone (GISZ) under section 1(5) of the Act. In addition, the UK has
ratified the London Protocol that allows CO2 export to other states for storage purposes.
Table 21: CCS national targets and policies in the United Kingdom
CCS NATIONAL TARGETS AND POLICIES IN UNITED KINGDOM
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
National CCS targets
Indicator
Comments
The policy maturity is considered high due to CCS strategies and
targets, strong policy and legislative frameworks and financial
support, creating favourable conditions for CCS.
2030: -68% from 1990 levels
92
(economy wide emissions)
2050: Net zero emissions
The UK is committed to deploying CCS at scale during the 2030s,
subject to costs coming down sufficiently. The UK’s target is to
capture >10 MtCO2/y by 2030 and capture and store ~0.32
tCO2 per capita.
The UK is one of the leading nations in terms of policy support
for CCS with a strong institutional framework in place and a
range of climate change mitigation policies such as emission
performance standards and a carbon price floor. CCS legislation
comprises The Energy Act 2008 and its accompanying
regulations which transpose the requirements of the EU Storage
Directive and establish the UK's framework for offshore CO2
storage activities.
Extensive funding dedicated to CCS research and projects has
been granted in the UK.
Storage permitted in the offshore area comprising both UK
territorial sea and beyond designated as a gas importation and
storage zone (GISZ) under section 1(5) of the Act.
CCS policies and legislations
CCS funding
CCS storage-related policies
4.2.5.3 CCS potential (capturable CO2 intended for storage) in the United Kingdom
The UK is one of the largest emitters of the countries, with emissions from large stationary plants
estimated at ~146 MtCO2 in 2017, of which the power sector comprises 109.6 MtCO2 and the
industry 33.2 MtCO2.
At present, energy is sourced from primary oil (crude oil and natural gas liquids), natural gas,
primary electricity (consisting of nuclear, wind, solar and natural flow hydro), bioenergy and
waste, and a very small amount of coal (1%)
93
. The UK power and heat sector have been
transforming already from the 2020s towards increased supplies of low-carbon electricity
91
92
HM Government
“The Ten Point Plan for a Green Industrial Revolution”
https://www.gov.uk/government/news/uk-sets-ambitious-new-climate-target-ahead-of-un-summit
39
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
(renewables and nuclear) and hydrogen, where CCS will be a central support vehicle to those
supplies
94
.
The industry comprises mineral oil & gas refineries, mineral production (cement, lime and
plaster), iron and steel production, chemicals production, as well as food production, where high
CCS potential is deemed due to CCS regarded as a key solution to decarbonise these hard to
abate emissions.
All of the scenarios outlined by the CCC critically incorporate CCS since it is considered a cost-
efficient means of meeting the UK’s 2050
Net-zero target,
and the deployment of CCS is already
beginning from 2025
95
.
The calculated capturable quantity of CO2 is estimated at on average 50
MtCO2/y between 2022 and 2040 and 119 MtCO2/y between 2041 and 2050 for both the power &
heat sector and the industry sector.
94
95
Committee on Climate Change (CCC), “Net Zero. The UK's contribution to stopping global warming”
Gov.uk, “UK ENERGY IN BRIEF 2020”
40
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0041.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 22: CCS potential (intended for storage) in the United Kingdom
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
96
)
2022-2040
Power & Heat
109.6
518.4
(32.4)
2041-2050
798.8
(79.9)
The overall significance of CCS within the UK power sector is considered to be widespread due to the
UK’s
energy sector
transformation towards increased supplies of low-carbon electricity (renewables and nuclear) and hydrogen, where CCS will be a
central support vehicle to those supplies
97
Power and heat CO2 in the United Kingdom splits into thermal power and heat generation (99.7 MtCO2) and waste-to-energy
plants (9.9 MtCO2)
The capturable volume of CO2 intended for storage within the segment is estimated at up to 90 MtCO2/y, including BECCS:
- Based on scenario studies CCS from fossil power generation can range between 22-51 MtCO2 in 2050, and Ramboll estimates
the median of the two in 2050, i.e. 36 MtCO2
- BECCS will play a significant role for new WtE plants and extensions where CCS should be built, and all energy-from-waste
plants should fit CCS by 2050, starting from 2040. BECCS from the power industry as a whole is expected to range between
11-25 MtCO2/y in 2050, for which Ramboll also assumes the median; 18 MtCO2/y
- Further, there is an important role for hydrogen produced from fossil gas with CCS in the medium term to enable hydrogen
growth. Thus CCS from the production of hydrogen has potential and is estimated to range between 22-50 MtCO2/y in 2050,
where Ramboll applies the median (36 MtCO2/y)
The introduction of CCS is expected from 2025, and the most rapid emissions reduction increases are estimated from 2025-2035,
therefore the increase of CCS potential is the steepest between this period
98
. From 2035-2050 the CCS potential continues to rise
but at a slower pace: Following the 2024 coal phase-out, gas-fired power without CCS should be phased out by 2035 and any gas
plant built before 2030 should be made ready for a switch to CCS or hydrogen, which is why the deployment of CCS keeps
increasing towards 2050
The UK produces notable levels of emissions in the industry sector, including mineral oil & gas refineries, mineral production
(cement, lime and plaster), iron and steel production, chemicals production, as well as food production
In the industry sector, CCS faces competition from hydrogen, electrification and CCU. However, CCS is considered to comprise the
majority of engineered greenhouse gas removals in 2050. The significance of CCS is high within the industry sector since CCS is
considered the key deep decarbonisation option for manufacturing, oil refineries, cement and steel production.
Total capturable volumes intended for CCS excluding BECCS are aligned with the CCC high case of about 24 MtCO2/y in 2050:
- CCS is applied to the manufacturing sector at scale in the 2030s and continues to remove CO2 at similar levels out to 2050
-
CCS is also applied to half of the UK’s integrated steelwork capacity in the early
2030s
- CCS will play a significant role in binging emissions down for cement, lime and other mineral sites
- Oil refineries emissions are also abated through CCS, along with reduced oil demand and energy efficiency improvements. CCS
is the main emissions reduction measure for the remaining emissions from oil refineries
BECCS from the industry sector is expected to range between 11-25 MtCO2/y in 2050, of which Ramboll estimates the median in
2050, i.e. 18 MtCO2/y
Comment
Industry
33.2
278.8
(17.4)
390.3
(39.0)
96
97
98
Average CO2 capturable amount is calculated for the time period 2030-2040
Committee on Climate Change (CCC), “Net Zero. The UK's contribution to stopping global warming”
Climate change committee,
“The Sixth Carbon Budget. The UK’s path to Net Zero”
41
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0042.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.5.4 CO2 storage potential in the United Kingdom
The UK’s
total CO2 storage capacity is assessed
at 78,000 Mt. The majority, 69,000 Mt, is
situated in storage aquifers, and 9,000 Mt is situated in oil and gas fields units. Most of the
aquifer storage capacity is located on the United Kingdom continental shelf relatively far offshore
in the North Sea near the oil and gas fields. Oil and gas fields can be cheaper to develop than
aquifer storage units as some of the offshore infrastructures is already in place
99
.
The UK public has a positive attitude towards utilising domestic offshore carbon storage
capacity
100
. UK's storage capacity is considered to be sufficient to cover all upcoming CCS activity.
The picture below provides an overview of UK storage site locations and their relative sizes.
Figure 5: Overview of UK CO2 storage capacity
Source: Ramboll analysis, EU Geocapacity, “Assessing European Capacity for Geological Storage of Carbon Dioxide”; Costain,
Energy Technologies Institute,
Pale Blue Dot, Axis Well Technology, “Progressing Development of the UK’s Strategic Carbon
Dioxide Storage Resource: A summary of result from the strategic UK CO2 storage appraisal project
99
IOGP, “The potential for CCS and CCU in Europe”
Edie, “Two thirds of Brits support UK’s green industrial revolution plans”
100
42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.6
The Netherlands
4.2.6.1 Summary of CCS potential in the Netherlands
The Netherlands’ CO2 emissions from large sources in
2017 were ~95 MtCO2. Most emissions
relate to the power and heat sector (~65 MtCO2) and industrial production and processing (~30
MtCO2).
The Netherlands is aiming to reduce CO2 emissions by 95% from 1990 levels by 2050. CCS is
acknowledged in the Netherlands for its important role in reaching the climate target, yet mostly
as a
transition
solution until CCU and CCS linked with bioenergy can replace current CCS solutions
for fossil fuel industries. A CCS target has been set to 7.2 MtCO2/y by 2030, which is about half of
the country’s industry CO2
emissions reduction target of 14.3 MtCO2/y. Thus, CCS plays a
considerable role in the reduction of CO2 emissions from industry, yet it is controlled since
subsidies for CCS is capped at 7.2 MtCO2/y and subsidised are made available only if no other
cost-effective CO2-reduction alternatives are available, and finally, after 2035, no new subsidies
are granted to fossil CCS projects. The latter limitation is to ensure that the fossil fuel industry
does not continue in the future. According to national policies, CCS is initially limited to industry
sectors (steel, refinery, hydrogen, fertilizer, waste incineration)
101
. Despite ambitious climate
targets, the Netherlands is currently behind most other EU countries with respect to their
renewable energy targets,
i.e., the country’s share of energy coming from renewable sources is
the lowest in the EU.
National support for CCS has been granted through various R&D-related funding and going
forward; subsidies will be granted to a broader set of technologies to avoid CO2 emissions,
including CCS through The Sustainable Energy Transition Incentive Scheme (SDE++).
CCS potential in the Netherlands is estimated at 274 MtCO2 between 2022 and 2050 and on
average 12 MtCO2/y between 2022 and 2040 and 15 MtCO2/y between 2041 and 2050, with the
largest share from the power & heat sector. Gas is still expected to be part of the Dutch energy
mix towards 2050, and CCS will play an important role to abate CO2 emissions from this source.
Industrial sector emissions mainly relate to chemicals and refineries and will be highest in the
short-medium run, as in the long run, the government is expected to prioritize CCU and CCS
linked with bioenergy.
Storage potential in the Netherlands is estimated at 4,000 Mt, with 3,000 Mt of storage in
depleted oil & gas fields and 1,000 Mt of storage in aquifers. Storage is only allowed offshore or in
other countries.
The relevance for storage in Denmark is deemed medium. It is uncertain how much the
Netherlands expects to store nationally. The Netherlands has identified the risk that CO2 transport
demand might exceed the storage capacity in their CO2TransPorts industry cluster project
102
.
Additionally, there could be opportunities for export of Dutch CO2 if their national CCS projects
delay (the country has a history of delay with previous renewable energy projects), and finally,
The Dutch government has acknowledged that it will be challenging for The Netherlands to
achieve emissions reduction by scaling up renewables and thus, CCS could be a potential source
to make up for this potential gap
103
. Therefore, it is possible that Netherlands will not be able to
meet the CO2 demand with national storage capacity in time and will need to export CO2, at least
in the short-medium term.
Below is an overview of the CCS potential in the Netherlands.
101
The Dutch Ministry of Economic Affairs & Climate Policy: Clean Energy Solutions Center
– “Carbon Capture, Utilization and Storage in The
European Commission,
“Candidate PCI
projects in cross-border carbon dioxide transport
networks”
IEA
The Netherlands 2020 Energy Policy Review
Netherlands (Webinar)”
102
103
43
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0044.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 23: Summary of CCS potential in the Netherlands
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
CO2 reduction targets
Indicator
95.0
Comments
CO2 emissions from largest point sources; mainly by from the
power and heat generation industry, followed by the chemical
production and mineral oil and gas refinery industries
2030: -49% from 1990 levels (national target) and -36% from
2005 levels (non-EU ETS)
104
2050: -95% from 1990 levels (national target)
The Netherlands recognizes the important role CCS will have in
reaching CO2 reduction targets, yet mostly as a short-term
solution until CCU and CCS linked with bioenergy can replace
current CCS solutions.
The Netherlands initially planned to capture and store 18
MtCO2/y by 2030, but the target has been adjusted to 7.2
MtCO2/y, as few believed the initial goal to be realistically
achievable.
105
CCS is estimated to account for 20 mtCO2
reductions by 2030 from industrial sectors.
106
274
4,000
107
Evenly split between power & heat (natural gas emissions) and
industry (emissions from chemicals processing and refineries).
3,000 Mt of storage in depleted oil & gas fields; 1,000 Mt of
storage in aquifers
Storage of CO2 is only allowed offshore or in other countries but
supported by the government through several projects.
108
Medium
Medium significance for DK storage due to ongoing
national carbon storage site development. However,
uncertainty remains regarding project delays and
storage capacity, preventing NL from reaching GHG
targets in the next 10-20 years, making carbon export a
possibility in the future.
National CCS focus/Support
CCS targets
Total CCS Potential (MtCO2) 2022-2050
Own storage capacity (Mt)
Own storage potential/support
Potential for DK storage
4.2.6.2 CCS national targets and policies the Netherlands
The Netherlands is aiming to reduce CO2 emissions by 95% from 1990 levels by 2050. The
Netherlands has a favourable policy- and regulatory environment for the uptake of CCS, as is
seen by the government indicating CCS as a necessary instrument to reduce CO2 emissions in the
short term.
109
However, in the long term, the government wants to move away from CCS of fossil
fuel emissions towards CCU and CCS linked with bioenergy.
110
The Netherlands has set CCS targets limited to the industry sector, initially planning to capture
and store 18 MtCO2/y by 2030, but the target has been adjusted to 7.2 MtCO2/y, as few believed
the initial target to be realistically achievable
111
. By 2030, CCS has been estimated to account for
20 mtCO2 reductions from industrial sectors
112
.
Policy measures are in place to support the deployment of CCS in the Netherlands. The
government is preparing to release a new Dutch CCS Roadmap that is expected to accelerate the
deployment of CCS.
113
In 2019, the Dutch government decided, on top of the ETS system, to
implement a carbon tax, which could provide additional incentive for large emitters to implement
CCS.
104
105
106
107
108
109
110
111
112
113
The Netherland’s Integrated
National Energy and Climate Plan (NECP 2030)
CE Delft “Feasibility study into blue hydrogen –
technical, economic
and sustainability analysis”, July 2018
Global CCS Institute CO2RE database
GEUS “Assessment of CO2 Storage Potential in Europe”
International Energy Agency “The Netherlands 2020: Energy Policy Review”
Klimaat-akkoord
“Voorstel
voor hoofdlijnen van
het Klimaatakkoord”
International Energy Agency
“The Netherlands 2020: Energy Policy Review”
CE Delft “Feasibility study into blue hydrogen –
technical, economic and sustainability
analysis”, July 2018
Global CCS Institute CO2RE database
Global CCS Institute CO2RE database
44
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0045.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
In recent years, the Dutch Government has supported CCS R&D initiatives through CATO, which is
a national CCS R&D program that involves collaboration and funding from both the government
and industry.
114
The Sustainable Energy Transition Incentive Scheme (SDE++) of 2020 is a key
funding source as it awards subsidies to a broader set of technologies to avoid CO2 emissions,
including CCS. The government is expecting that a significant share of industrial emissions
reductions will be realised through SDE++ support for CCS and low-carbon hydrogen.
115
The
scheme sets a limit of 7.2 MtCO2/y for subsidising industrial CCS. A carbon storage project called
Porthos is expected to be granted funding from the SDE++ scheme in 2022.
The Netherlands has developed an integrated and comprehensive legal framework for CCS
activities, which draws upon wider national environmental and mining laws. The Dutch
government has mainly implemented the requirements of the EU storage Directive through
amendments to the national mining legislation, notably the Mining Decree and Mining Regulation.
In addition, the Netherlands has ratified the London Protocol that allows CO2 export to other
states for storage purposes.
Under the Dutch Mining Act, underground storage of CO2 is only allowed offshore or in other
countries.
116
To unlock storage potential, regulatory changes on the transfer of ownership and
decommissioning of the gas field after they have been depleted are necessary. These regulatory
aspects have been identified as potential barriers to the development of CCS projects in the
Netherlands.
Table 24: CCS national targets and policies in the Netherlands
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
Indicator
Comments
Strong policy and regulatory framework to support CCS and
specific targets for CCS deployment create favourable policy
conditions for CCS in the Netherlands, yet mostly in the short-
term.
2030: -49% from 1990 levels (national target) and -36% from
2005 levels (non-EU ETS)
117
2050: -95% from 1990 levels (national target)
The Netherlands initially targeted to capture and store 18
MtCO2/y by 2030, but the target has been adjusted to 7.2
MtCO2/y from the industrial sector.
118
By 2030, CCS is estimated to account for 20 MtCO2 reductions
from industrial sectors.
119
CCS policies and legislations
CCS is regarded as a necessary instrument to reduce CO2
emissions in the short term
120
, but in the long term, the
government wants to move away from CCS of fossil fuel
emissions towards CCU and BECCS.
121
The Netherlands has developed an integrated and
comprehensive legal framework for CCS activities, which draws
upon wider national environmental and mining laws.
CCS funding
Support systems and funding for CCS research and projects are
in place in the Netherlands, most notably through the national
CCS R&D programme CATO. The more recent funding source
available for CCS is the SDE++, which is a pivotal funding
source for CCS in the Netherlands. A carbon storage project
called Porthos is expected to be granted funding for the SDE++
scheme in 2022.
Underground storage of CO2 is only allowed offshore or in
other countries.
122
To unlock storage potential and prevent the
development of CCS projects in the Netherlands, regulatory
National CO2 reduction targets
National CCS targets
CCS storage-related policies
114
115
116
117
118
119
120
121
122
Global CCS Institute CO2RE database
International Energy Agency “The Netherlands 2020: Energy Policy Review”
International Energy Agency “The Netherlands 2020: Energy Policy Review”
The Netherland’s
Integrated National Energy and Climate Plan (NECP 2030)
CE Delft
“Feasibility study into blue hydrogen – technical, economic and sustainability analysis”, July 2018
Global CCS Institute CO2RE database
Klimaat-akkoord
“Voorstel voor hoofdlijnen van het Klimaatakkoord”
International
Energy Agency “The Netherlands 2020: Energy Policy Review”
International Energy Agency “The Netherlands 2020: Energy Policy Review”
45
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0046.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
changes on the transfer of ownership and decommissioning of
the gas field after they have been depleted are necessary.
4.2.6.3 CCS potential (capturable CO2 intended for storage) in the Netherlands
Total CO2 emissions from large sources
123
in the Netherlands were ~95 MtCO2 in 2017, of which
~65 MtCO2 were related to the power & heat sector and ~30 MtCO2 to the industrial production
and processing.
The overall significance of CCS within the Dutch power & heat sector is considered medium.
Despite the very ambitious targets for climate-change mitigation, the Netherlands today is
currently furthest behind other EU countries in the production of energy from renewable sources,
e.g., they fell short of their onshore wind target of 6 GW in 2020 due to public acceptance, grid
constraints (require a confirmation from relevant network operators) and land fees, whereas
large-scale PV projects were delayed since the supporting grid infrastructure was not delivered in
time for when the PV construct was finished. Renewable energy in the Netherlands comes mainly
from biofuels, waste, and wind, while geothermal, solar and hydro energy play only a minor role
in the country.
Despite plants phasing out production at Groningen, Europe's largest onshore natural gas field, by
2022, it is expected that the gas will still be part of the Dutch energy mix towards 2050.
Emissions for the industrial sectors have mainly concentrated around chemicals and refineries.
While significant potential is assessed with regards to refineries, the chemicals sector is expected
to prioritise other alternatives, including CCU, in the long run.
The calculated capturable quantity of CO2 is estimated at on average 12 MtCO2/y between 2022
and 2040 and 15 MtCO2/y between 2041 and 2050.
Figure 6:
The Netherland’s potential energy mix towards 2050
Source: Ramboll Analysis; Alliander,
ECN, “The supply of flexibility for the power system in the Netherlands, 2015-2050”
46
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0047.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 25: CCS potential (intended for storage) in the Netherlands
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
124
)
2022-2040
Power & Heat
64.6
75
(5)
2041-2050
95
(9)
The overall significance of CCS within the Dutch power & heat sector is considered medium, as the Netherlands is challenged to
convert all its energy production to renewable sources
The capturable volume of CO2 intended for storage within the segment is estimated at up to ~9 MtCO2/y, and mainly related to
the gas-fired plants
CCS is not considered relevant for coal-driven plants since they will be phased out shortly after the CCS introduction
Emission from the industrial sector was 29.9 MtCO2 in 2017, including production and processing of chemicals/ petrochemicals
(16.9 Mt in 2017) and refineries (10.6 MtCO2 in 2017)
The significance of CCS within the industrial sector varies across disciplines. It is high for refineries but much lower for the
chemicals industry, where there are several options to abate emissions. In general, the chemical industry is prioritizing CCU over
CCS
The total capturable volume intended for storage is estimated at up to ~5 MtCO2/y; The Netherlands has indicated CCS as a
necessary instrument to reduce CO2 emissions in the short term. In the long term, the government wants to move away from CCS
of fossil fuel emissions towards CCU and CCS linked with bioenergy. Consequently, CCS within the industrial sector is expected to
peak between 2030 and 2045 and slightly decrease thereafter.
No other significant potential areas have been assessed
Comment
Industry
29.9
79
(5)
51
(5)
Other
0.5
-
-
124
Average CO2 capturable amount is calculated for the time period 2030-2040
47
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0048.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.6.4 CO2 storage potential in the Netherlands
The Netherlands has a total of 4,000 Mt of storage capacity
3,000 Mt
in oil and gas fields and
1,000 Mt in aquifers
125
. As described in section 4.2.6.2, carbon storage is only allowed offshore,
which corresponds to 1,000 Mt of storage capacity in oil and gas fields and 700 Mt in offshore
aquifer storage capacity
126
.
While the Netherlands is developing projects to store carbon domestically, industry cluster
projects acknowledge that the demand for storing CO2 might exceed the storage capacity and
especially if the CCS project deliveries are faced with delays
127
. This means that the export of
captured carbon to international carbon storage sites could be necessary for the short-to-medium
term.
Despite Government support for CCS and their continued efforts to support CCS and set targets,
CCS was a controversial topic during the 2019 climate agreement negotiations; It was opposed by
several NGOs and some political parties
128
. Nevertheless, a study of public opination towards CCS
showed the Dutch public a neutral attitude towards offshore CCS
129
.
The picture below provides an overview of possible carbon storage sites in the Netherlands.
Figure 7: Overview of CCS facilities in Netherlands
Source:
Ramboll analysis, Vrije Universiteit Amsterdam, Jan de Jager, ”Petroleum Geology of the Netherlands”
125
126
127
128
GEUS, “Assessment
of CO2 Storage
Potential in Europe”
Noordzeeloket, ”CO2-storage”
European Commission, “Candidate PCI projects in cross-border carbon dioxide transport networks”
The Dutch Ministry of Economic Affairs & Climate Policy: Clean Energy Solutions Center
– “Carbon Capture,
Utilization and Storage in The
Centre for Energy and Environmental Studies, Dept. of Psychology, Leiden University, “Informed public opinion in
the Netherlands: Evaluation of
Netherlands
(Webinar)”
129
CO2 capture and storage technologies in comparison
with other CO2 mitigation options”
48
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0049.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.7
Poland
4.2.7.1 Summary of CCS potential in Poland
Poland’s emissions from large sources in
2017 were ~167 MtCO2. Most emissions relate to the
power & heat sector (121 MtCO2), and the remaining to industrial production and processing (22
MtCO2) and other activities (23 MtCO2), including coal mining, landfill etc.
Poland is the only country where the Government has not yet committed to becoming carbon
neutral of all the ten countries and the EU countries. However, the climate ministry presented an
update of the country’s 2040 energy roadmap
at the end of 2020, where the country formally
endorses the EU 2050 climate neutrality goal. Poland does not actively pursue CCS at present.
However, the outlook for its coal expansion plans provide opportunities for carbon removal for
Poland to reach the EU commitments.
CCS potential in Poland is estimated at 591 MtCO2 between 2022 and 2050 and on average 19
MtCO2/y between 2022 and 2040 and 34 MtCO2/y between 2041 and 2050, with the largest
share coming from the power & heat sector. To decarbonise the Polish power & heat sector, CCS
and BECCS are expected to be necessary. Although most of the existing plants are old, CCS will
be relevant for some of the newer current power & heat plants (coal and biomass CHP) and
upcoming natural gas (to be built by 2035). Further, CCS is expected to play a role in the
decarbonising industrial sector, specifically, iron and steel (in connection with the use of blue
hydrogen) and mineral/cement industry, where CCS is currently the only relevant option for
emissions abatement.
Storage potential in Poland is estimated to be 78,000 Mt, mainly in aquifers. Only offshore storage
can currently be developed (CO2 storage is banned until 2024 except for offshore demonstration
projects). However, no development projects have been registered, and Poland has shown limited
interest in national
storage. While Poland’s domestic
storage capacity can cover all upcoming CCS
activity needs until 2050, it is expected that only some of the upcoming CCS activity will be
covered by domestic storage capacity. Nonetheless, with potential EU funding Poland may become
interested in national storage, especially since the high cost of exporting CO2 might be high.
The relevance for storage in Denmark is deemed medium, as limited interest in national storage
and large CCS potential could make CO2 export relevant.
Below is a summary table of the CCS potential in Poland.
Table 26: Summary of CCS potential in Poland
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
166.7
Comments
CO2 emissions from the largest point sources; mainly from the
power and heat generation industry powered by old coal
plants, followed by the cement, iron and steel industries
2030: -21% in EU ETS sectors and -7% from 2005 levels
(non-EU ETS) (-30% from 1990 levels)
130
2050: -85-90% from 1990 levels
Poland does not actively pursue CCS at present. However, the
outlook for its coal expansion plans provide opportunities for
carbon removal for Poland to reach the EU commitments.
No specific targets have been set for the deployment of CCS in
Poland.
591
The largest share of capturable CO2 is expected to be derived
from the power & heat sector (natural gas-fired power plants
and biomass-fired plants). Significant potential also assessed
within the industry (mainly iron and steel, and cement).
77,000 Mt of storage in aquifers
however, estimates are
debatable and vary widely; 1,000 Mt of storage in depleted oil
& gas fields
National CCS focus/Support
CCS targets
Total CCS Potential (MtCO2) 2022-
2050
Own storage capacity (Mt)
78,000
131
130
131
PEP2040
– Poland’s energy policy until 2040
Mineral and Energy, Economy Research Institute of Polish Academy Sciences, “CO2 storage capacity of deep aquifers and hydrocarbon
fields in
Poland
EU GeoCapacity project
results”
49
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0050.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Own storage potential/support
TBD
CO2 storage is banned in Poland until 2024 (except for offshore
demonstration projects). This could indicate that the country
has no particular interest in storage at present. However, CCS
is expected to become a highly relevant measure to offset
emissions from the continued use of natural gas. Given that CO2
export can be more expensive than domestic storage, Poland is
therefore expected to explore its own storage options (especially
if the EU funding will be available)
Poland’s domestic storage capacity can cover all upcoming CCS
activity needs until 2050. However, only some of the upcoming
CCS activity is expected to be covered by domestic storage
capacity.
Potential for DK storage
MEDIUM
4.2.7.2 CCS national targets and policies Poland
Poland is aiming to reduce CO2 emissions by 85-90% from 1990 levels by 2050. However, the
climate ministry presented an update of the country’s 2040 energy roadmap at the end of 2020,
where the country formally endorses the EU 2050 climate neutrality goal. Poland does not actively
pursue CCS at present as a means of decarbonisation and has not set targets for CCS
deployment. However, the Polish energy policy notes that there is institutional interest in CO2
capture projects, and the possibility of implementing them with the option to transport it outside
Poland is not ruled out (e.g., in the North Sea region). Furthermore, in light of the planned
expansion of Poland’s coal industry, CCS can be expected to be
necessary for Poland to reach its
climate targets and EU commitments.
Currently, no national support system for CCS deployment is in place in Poland. Previously,
through its R&D program “New Technologies for Energy Generation”, Poland supported two CCS
pilot facilities that tested varying capture approaches in Lagisza and Jaworno power plants from
2010-2015. Both projects were cancelled due to the high cost of the CCS technology as well as
the influence of the social resistance coming from the rest of the EU of storing CO2 on geological
formations. Further, a demo CO2 post-capture project was performed at Belchatow (on the new
858 MW lignite-fired unit), which was also abandoned at the stage of a CCS ready investment due
to high cost and lack of sufficient (national) financial support
132
. However, the institutional
interest in CCS remains, and the option of capturing CO2 and transporting it outside Poland is
specifically noted in Poland’s energy policy as a consideration.
Poland has basic legal and regulatory frameworks in place related to CCS. Poland has
implemented the EU’s CCS Directive by amending the Polish Geological and Mining
Law. However,
CO2 storage is banned in Poland until 2024, except for offshore demonstration projects. Under
the amendments, Poland thus prohibits onshore storage and identifies only one storage site for
commercial CO2 storage
in the Baltic Sea, which is located far from the biggest sources of CO2
emissions.
133
Table 27: CCS national targets and policies in Poland
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
Poland does not actively pursue CCS at present.
2030: -21% in EU ETS sectors and -7% from 2005 levels
(non-EU ETS) (-30% from 1990 levels)
134
2050: -85-90% from 1990 levels
Poland has no CCS targets.
Poland has basic regulatory and policy frameworks to enable
CCS deployment in the country due to its EU membership. The
energy policy of Poland mentions the so-called
“CCS ready”
requirements, and the decision to employ CCS will need to fulfil
these requirements and be economically efficient.
National CCS targets
CCS policies and legislations
132
133
134
CCS
Polish Point of View, Basrec conference Warsawa
Carbon neutral Baltic
states: “Do we have CCUS among accepted options”
PEP2040
– Poland’s energy policy until 2040
50
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0051.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
CCS funding
CCS storage-related policies
No national support systems in place.
CO2 storage is banned in Poland until 2024, except for offshore
demonstration projects. CO2 use for EOR and EGR and
associated CO2 storage onshore and offshore are allowed.
4.2.7.3 CCS potential (capturable CO2 intended for storage) in Poland
Total CO2 emissions from large sources
135
in Poland were ~167 MtCO2 in 2017, of which 121
MtCO2 were related to the power & heat sector, 22 MtCO2 to the industrial production and
processing and the remaining 23 MtCO2 to other activities, including coal mining, landfill etc.
The overall significance of CCS within the power & heat sector in Poland is considered low, as
renewables and nuclear energy are expected to lead the decarbonisation of the power sector.
However, Poland’s reliance on natural gas is expected to increase
and be high at least until 2040.
Furthermore, there are up to date no announced plans to completely discontinue the four newly
build coal-driven power plants. Consequently, CCS is seen as necessary in order to abate the
remaining CO2 emissions within the sector. Poland also has carbon sink potential due to large
surface areas and large forest areas. However, forests are becoming mature, resulting in the
decrease of the carbon sink potential. Other options in terms of agricultural fields/soil and
wetlands are possible but would require significant investments. The total carbon sink is expected
to be approximately 10 MtCO2e/y in 2050
136
.
Poland's industry’s decarbonization pathway
will likely require the development of alternative fuels
(hydrogen, biomass, and electricity), and CSS is seen as a last-resort option at scale.
Decarbonisation of
Poland’s industry sector is also expected later on compared to the power &
heat sector.
The calculated capturable quantity of CO2 is estimated at on average 19 MtCO2/y between 2022
and 2040 and 34 MtCO2/y between 2041 and 2050, with the largest share coming from the power
& heat sector.
Figure 8:
Poland’s potential
energy mix towards 2050
Source: Ramboll Analysis; Forum Energii, “Polish
energy sector
2050”
135
136
Plants with emissions exceeding 100,000 MtCO2/y
Carbon-neutral Poland 2050: Turning a challenge into an opportunity, McKinsey & Company 2020
51
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0052.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 28: CCS potential (intended for storage) in Poland
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
137
)
2022-2040
Power & Heat
121.2
217
(17)
2041-2050
310
(31)
The overall significance of CCS within the power & heat sector in Poland is considered low, as renewables and nuclear energy are
preferred options for decarbonisation of the power sector
However, switching power-generation technology from fossil fuels to renewable energy is expected to be a major challenge for
Poland, and not all fossil sources will be decommissioned by 2050. Consequently, CCS is seen as a necessary measure in order to
abate the remaining CO2 emissions within the sector
Although the overall
decarbonisation of Poland’s power & heat
sector will be to a large degree driven by electrification, Poland has
recently invested in a number of large power plants relevant for CCS (4 newer coal-fired plants and seven biomass-fired CHP
plants) and five natural gas plants are planned to be delivered the mid-2020s. All of these plants are expected to operate towards
2050. The majority of the remaining installed coal capacity is older than 30 years and will most probably need to be
decommissioned before 2050
Total capturable CO2 volume from these plants is estimated at up to ~33 MtCO2/y
CO2 emissions from the industrial sector were at 22 MtCO2 in 2017, primarily concentrated in iron and steel (7.1 MtCO2 in 2017)
and cement (6.8 MtCO2 in 2017). Additional smaller amounts are assessed within refineries, non-ferrous metals and chemicals.
CCS would be an important measure to reduce emission within this sector, along with the development of alternative fuels
(hydrogen, biomass, and electricity). However, CCS is still considered a last-resort option at scale in Poland.
Total capturable volume intended for storage is estimated at up to ~3 MtCO2/y, and the highest potential is assessed within the
mineral processing/cement industry, where CCS is assessed to be the most effective way to significantly reduce emissions. Ramp-
up of the CCS within the industrial sector is expected to be moderate, starting from 2030 and reach the full potential around 2040
CCS is also considered highly relevant for reducing CO2 emissions within the iron and steel industry. Hydrogen is currently
considered to be a preferred option to abate CO2 emissions within this industry. However, there are no provisions against the
import and use of blue hydrogen. Blue hydrogen is therefore expected to be the transitional solution, creating the need for CCS
Some minor potentials are also assessed within the refining industry and chemical industry. However, in general, the chemical
industry is prioritizing CCU over CCS
Other comprises coal mining, landfill and waste management. None of these are considered relevant for CCS in Poland
Comment
Industry
22.4
32
(3)
31
(3)
Other
23.1
-
-
137
Average CO2 capturable amount is calculated for the time period 2028-2040
52
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0053.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.7.4 CO2 storage potential in Poland
Poland has an estimated 78,000 Mt of storage capacity, of which the majority
77,000 Mt
is
situated in storage aquifers, and 1,000 Mt is situated in oil and gas fields
138
. Aquifer units are
mostly located onshore, while oil and gas fields are located offshore and onshore. Only offshore
storage can currently be developed; however, no development projects have been registered
139
.
The storage capacity of oil and gas fields are mapped more accurately
140
and can theoretically
cover Poland’s CCS activity needs. The storage capacity
could be too expensive to develop and
operate due to the relatively small scale of the storage units and a lack of government will and
incentives. The current situation suggests that Poland is not currently interested in developing
storage. However, CCS is expected to become highly relevant as an emission offset measure for
the continued use of natural gas. Given CO2 export can be more expensive than storage, Poland
is expected to explore domestic storage opportunities, especially if EU finance is available
141
.
The Polish public recognizes CCUS as an effective climate change technology
142
. However,
currently little governmental support for the development of storage sites is provided, as
described in section 4.2.7.2. This means
that, while Poland’s domestic storage capacity can cover
all upcoming CCS activity needs until 2050, it is expected that only some of the upcoming CCS
activity will be covered by domestic storage capacity.
The picture below details the location and relative size of the storage locations in Poland.
Figure 9: Overview of Carbon Storage in Poland
Source:
McKinsey & Co., “Carbon-neutral
Poland 2050: Turning a challenge into an
opportunity”
4.2.8
Estonia
4.2.8.1 Summary of CCS potential in Estonia
Estonia’s emissions
from large stationary plants in 2017 were ~25 MtCO2, yet due to the closure
of five oil shale plants from 2017-2020, emissions have been adjusted to ~12 MtCO2. Of the
updated emissions, power and heat comprise 8.5 MtCO2, the industry comprises 2.6 MtCO2,
whereas waste management comprises the remaining 1.4 MtCO2.
138
Mineal and Energy, Economy Research Institute of Polish Academy of Sciences, “CO2 storage
capacity of deep aquifers and hydrocarbon field in
The Global CCS
Institute, “Global Status of CCS 2020”
Mineral and Energy, Economy Research Institute of Polish Academy of Sciences, “CO2 storage capacity of deep aquifers
and hydrocarbon fields
Ramboll Expert
Eurobarometer,
“Public Awareness and Acceptance of CO2 capture and storage”
Poland- EU Geocapacity Results
139
140
in Poland
EU GeoCapacity Project Results”
141
142
53
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0054.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Estonia aims to become carbon neutral in 2050, but the country does not have any CCS specified
targets. Nevertheless, the
country’s oil shale industry could suggest
the potential for the
implementation of CCS.
CCS potential in Estonia is estimated at 9.0 MtCO2 between 2022 and 2050, and on average 0.4
MtCO2/y between 2022 and 2040 and 0.5 MtCO2/y between 2041 and 2050, split fairly evenly
between power & heat and industry. CCS potential is mainly related to power & heat (due to
planned blue hydrogen production) and cement production (where CCS is the only option
currently relevant for CO2 abatement). Within the industry sector, decarbonisation, cement is
identified as a hard to abate emissions source. Thus CCS will likely play a role.
Storage potential in Estonia is low, as geological conditions are unfavourable for CO2 storage.
National storage is therefore not viable, and CO2 would need to be exported to other countries.
Additionally, CO2 utilisation is also currently very limited and require high-quality CO2. A study
from the University of Tallinn explored the options for using CCUS in Estonian oil shale-based
energetics. Preliminary results showed that it is technologically possible but very costly
143
; thus,
this strengthens further the case for CO2 export.
The relevance for storage in Denmark is deemed low, as the estimated volumes are too
insignificant.
Below is an overview of the CCS potential in Estonia.
Table 29: Summary of CCS potential in Estonia
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
24.7
Comments
CO2 emissions from the largest point sources; mainly from
heat and power industry powered oil shale, followed by the
waste management and cement industry
2030: -70% compared to 1990 (national target), and -13%
compared to 2005 (non-EU ETS)
144
2050: climate neutral
145
Estonia’s
policies, regulations and climate plans do not actively
pursue CCS development in the country today. However, as the
country has recently committed to carbon neutrality and in an
analysis which the Government commissioned, CCS/CCSU is
mentioned as a prerequisite to reduce emissions to zero.
No specific targets have been set for the deployment of CCS in
Estonia.
6
0
146
Primary CCS potential comes from its oil shale production as
well as the cement industry.
CO2 storage is not possible on Estonian territory as there are
no suitable geological formations.
Due to shallow setting, geological conditions in Estonia are
unfavourable for CO2 storage. Therefore, Estonia would need
to turn to the option of exporting CO2.
Low
Carbon storage outside the country seems likely,
however, the estimated CCS volumes are deemed
insignificant
National CCS focus/Support
CCS targets
Total CCS Potential (MtCO2) 2022-2050
Own storage capacity (Mt)
Own storage potential/support
Potential for DK storage
4.2.8.2 CCS national targets and policies Estonia
Estonia has committed to carbon neutrality by 2050. The country has no stated CCS targets.
However, it would need to turn to CCS to reach climate targets if oil shale (local fossil fuel) based
143
144
145
146
Interview with Tallinn University of Technology
Estonia’s 2030 National Energy and Climate Plan (NECP
2030)
Stockholm Environment institute
– “Reaching climate neutrality in Estonia”
GEUS “EU GeoCapacity Assessing European Capacity for Geological Storage of Carbon Dioxide”
54
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0055.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
electricity and oil production continues. Government has a plan to stop producing oil shale
147
power by 2035
148
. To address this, Estonia, together with Latvia and Lithuania, will synchronise
through Poland with a reliable and unified power system of continental Europe by 2025 to be able
to increase the amount of renewable energy sources employed. However, the Estonian
environment minister stated that the country could not drop oil shale until the power supply has
been secured. Therefore, within the next decade, Estonia will need to decrease its dependency on
oil shale, but the acceleration of this is uncertain, and thus, CO2 storage could be an additional
mechanism for renewables to achieve its climate targets. Further, Estonia plans to produce blue
hydrogen in the future. Producing Hydrogen with CCS could be one of the future options, and Bio-
CCS may also help to reach carbon neutrality by 2050.
National financial support for research is targeted now for CO2 capture and use
149
. Based on the
Estonian Government-commissioned study on a climate-neutrality scenario in 2050, total hard-to-
abate emissions are estimated to be 2.1 MtCO2e (excluding Transport), with the energy sector
contributing to close to zero emissions.
In 2019-2021, Tallinn University of Technology will carry out the project
“Climate change
mitigation through CCS and CCU technologies” to assess the suitability and work of different
carbon capture technologies developed scenarios for the application of these technologies in the
Estonian oil shale industry
150
.
The absence of storage capacity in Estonia has meant that permanent storage of CO2 has been
prohibited.
Estonia has ratified the London Protocol that allows CO2 export to other states for storage
purposes.
Table 30: CCS national targets and policies in Estonia
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
CCS identified in the national climate strategy as potentially
relevant, yet lack of supportive policy measures and regulatory
restrictions create less favourable conditions for CCS.
2030: -70% compared to 1990 (national target), and -13%
compared to 2005 (non-EU ETS)
151
2050: climate neutral
152
Estonia does not actively pursue CCS and has no CCS facilities
in operation/construction.
The NECP does not mention the strategic energy technology
(SET) plan, even though Estonia is actively participating in
three implementation working groups on photovoltaics,
offshore wind and carbon capture utilisation and storage.
153
The applicable legislation mainly deals with the transportation
and capture of CO2 rather than key aspects of CCS, such as
monitoring and verification requirements, surface access and
reclamation activities or closure regimes.
154
CCS funding
At the end of 2018, at the initiative of Norway, the Nordic
Cooperation Group on Carbon Capture, Use and Storage
(CCUS) and GHG Reduction (NGCCUS) were established, which
could be a source of CCS funding. However, the Estonian
development plan for research, development, innovation and
entrepreneurship 2021-2035 is currently being developed, and
thus more detailed funding and timeframes remain unclear.
National CCS targets
CCS policies and legislations
147
CO2 emission from oil shale combustion is significantly higher in comparison with other fossil fuels as energy sources. This is why CO2 emission
EER News, “Environment minister: Estonia
cannot drop
oil shale until supply is secured”
Tallinn University of Technology
– “Carbon neutral Baltic States: Do we have CCUS among accepted options?”
Stockholm Environment Institute
“Raising Estonia's climate
ambition
analysis of possibilities”
Estonia’s 2030 National Energy and Climate Plan (NECP 2030)
Stockholm Environment institute
– “Reaching climate neutrality in Estonia”
European
Commission “Assessment of the final national energy and climate plan
of
Estonia”
Global CCS Institute CO2RE database
per capita in Estonia is about two times higher than the average value in Europe.
148
149
150
151
152
153
154
55
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0056.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
CCS storage related policies
The absence of storage capacity in Estonia has meant that the
permanent storage of CO2 has been prohibited (with a limited
exception for research purposes). Specifically, geological
storage of carbon dioxide is prohibited in Estonia and under the
continental shelf in accordance with the Earth's Crust Act, as
well as within Estonia's maritime boundaries in accordance with
the Water Act.
155
4.2.8.3 CCS potential (capturable CO2 intended for storage) in Estonia
Total CO2 emissions from large stationary plants in Estonia were at ~25 MtCO2 in 2017.
However, from 2017-2020, five oil shale plants have closed, and therefore the emissions have
been adjusted to about ~12 MtCO2
156
. Of the updated amounts, power and heat comprise 8.5
MtCO2, the industry comprises 2.6 MtCO2, whereas waste management comprises the remaining
1.4 MtCO2.
The overall significance of CCS within the power & heat sector in Estonia is considered low, as
renewables and nuclear energy are expected to lead the decarbonisation of the power sector.
However, Estonia's reliance on oil shale mixed with biomass (maximum 20% of the mix) is
expected to remain, although Estonia has introduced a target to phase out oil shale plants by
2035 due to the country's worry of energy supply security.
With regards to the industry, cement has been identified in Estonia's decarbonization pathway as
a hard to abate emissions source, where CCS will likely play a role.
157
The calculated capturable quantity of CO2 is estimated at on average 0.4 MtCO2/y between 2030
and 2040 and 0.5 MtCO2/y between 2041 and 2050, split fairly evenly between power & heat and
industry.
155
156
157
Global CCS Institute CO2RE database
Tallinn University of Technology, “Carbon
neutral Baltic states: do we have CCUS among accepted
options?”
Stockholm Environment Institute
“Raising Estonia's climate ambition analysis of possibilities”
56
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0057.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 31: CCS potential (intended for storage) in Estonia
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
158
)
2022-2040
Power & Heat
8.5
1.2
(0.1)
2041-2050
0.5
(0.05)
The overall significance of CCS within the Estonia power & heat sector is low
due to the Government’s focus on renewable power
generation and nuclear. However, Estonia has expressed the need for energy supply security through domestic measures after
having rapidly closed five oil shale production plants in recent years; thus, this might pose a deployment of CCS at the currently
existing fossil fuel-driven power plants starting from 2030. Nevertheless, the Government has announced a target of phasing out
all oil shale plants by 2035. Therefore it is expected that 50% of currently operating plants will be closed by 2035. From 2035-2050
it is estimated that 50% of energy will be produced by renewable energy and nuclear, whereas the other 50% will be produced
from other fuels mixed with biomass (the maximum share of biomass mix is 20%). Based on these trends and assumptions, CCS is
assumed to be utilised for 20% of the emissions from the early 2030s
The capturable volume of CO2 intended for storage within the segment is estimated at up to 0.2 MtCO2/y (peak between 2030 and
2040)
Estonia has a small industrial sector with an emission of 2.6 MtCO2 in 2017, including cement production and other wood
processing. The emissions relevant for CCS come solely from cement (0.6 MtCO2), which are hard to abate emissions in 2050
CCU is a competitor to CCS and is preferred compared to CCS. Therefore CCS of the cement emissions are estimated from 30-40%
between early 2030 to 2050
The capturable volume of CO2 intended for storage within the segment is estimated at up to 0.5 MtCO2/y in 2050
No other significant potential areas have been assessed
Comment
Industry
2.6
1.4
(0.1)
3.3
(0.2)
Other
1.4
-
-
4.2.8.4 CO2 storage potential in Estonia
Carbon storage in Estonia is unfavourable due to unsuitable geological conditions
159
. Any domestic storage of Carbon is prohibited by law, as
described in section 4.2.8.2.
Estonian attitude towards CCS technology is favourable in the shape of national financial support for research projects while also allowing the
export of carbon for storage
160
. However, Estonia does not currently have CCS facilities in operation or construction
161
.
As a result, Estonia does not have the storage capacity to cover upcoming CCS activity and will be looking to export captured carbon.
158
159
160
161
Average CO2 capturable amount is calculated for the time period 2030-2040
Institute of Geology, Tallinn University
of Technology, “Possibilities for geological storage and mineral trapping of industrial CO2 emissions in the Baltic Sea”
Tallinn University of Technology, “Carbon Neutral Baltic States: Do we have CCUS among accepted options”
The Global CCS Institute,
“Global Status of CCS 2020”
57
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0058.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.9
Lithuania
4.2.9.1 Summary of CCS potential in Lithuania
Lithuania’s emissions from large stationary
plants in 2017 were ~5 MtCO2, of which only 0.1
MtCO2 were related to the power & heat sector. Most emissions relate to waste-to-energy plants
and the remaining industry, including oil & gas refineries, chemical production and cement
production.
Lithuania is aiming to become carbon neutral
by 2050. Lithuania’s strong focus on renewable
energy is reflected in the 45% renewable energy share in final energy consumption in 2030. While
the Lithuanian government states that CCSU technologies are required to reduce the cost of
renewable energy, no specified CCS targets are mentioned in
the Government’s National energy
and climate strategies.
CCS potential in Lithuania is estimated at 7.4 MtCO2 between 2022 and 2050 and on average 0.4
MtCO2/y between 2022 and 2040 and 0.3 MtCO2/y between 2040 and 2050. In general, very
small potential is assessed for CCS by 2050, as oil and gas have been phased out, and other
alternatives such as CCU are prioritized in the rest of the industry.
Storage potential in Lithuania is estimated to be 2.2 Mt. However, both onshore and offshore CO2
storage was recently banned in Lithuania (July 2020).
The relevance for storage in Denmark is deemed low, as the estimated volumes are too
insignificant.
Below is an overview of the CCS potential in Lithuania.
Table 32: Summary of CCS potential in Lithuania
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
5.19
Comments
CO2 emissions from largest point sources; mainly chemicals
production industry focusing on the production of fertiliser and
ammonia, followed by the mineral oil and gas industries
2030: -43% from 2005 levels (EU ETS) and -9% from 2005
levels (non-EU ETS)
162
2040: -70% from 1990 levels (all sectors)
2050: Carbon neutral: -80% from 1990 levels (all sectors)
and -20% absorbed by LULUCF carbon sink
Lithuania’s policies, regulations and climate
plans do not
actively pursue CCS development in the country today.
However, the country has recently committed to carbon
neutrality, and CCS is mentioned as potentially relevant to
achieve climate neutrality.
No specific targets have been set for the deployment of CCS in
Lithuania.
7
The potential is deemed from oil and gas refineries primarily,
who are the main advocates for CCS, however, will be phased
out by 2045.
2,280 Mt of storage in aquifers and 6 Mt of storage in oil and
gas fields
Lithuania recently banned CO2 injection, and thus, CO2 storage
is not permitted onshore or offshore
164
.
National CCS focus/Support
CCS targets
Total CCS Potential (MtCO2) 2030-
2050
Own storage capacity (Mt)
2,286
163
Own storage potential/support
Potential for DK storage
Low
Carbon storage outside the country seems likely,
however, the estimated CCS volumes are deemed
insignificant
162
163
164
Lithuania’s Integrated National Energy and Climate Plan (NECP 2030)
GEUS “Assessment of CO2 Storage Potential in Europe”
Lithuanian Parliament,
LRT news
58
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0059.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.9.2 CCS national targets and policies Lithuania
Lithuania aims to become carbon neutral by 2050, allowing 20% of CO2 reductions to be
absorbed by the LULUCF carbon sink. While the Lithuanian government states that CCSU
technologies are required to reduce the cost of renewable energy and that further developing
CCUS technologies and analysing their applications in Lithuania is necessary,
no specified CCS
targets
have
been set in Lithuania. Lithuania’s strong focus on renewable energy is reflected in
the 45% renewable energy share in final energy consumption in 2030.
Latvia does not have national support systems in place for CCS funding. According to the
country’s NECP,
2% in its SET-plan will be allocated to CCS of the share of total R&I investments
from 2021-2027 in the field of energy
165
. However, despite these developments, CCS is not
considered a priority in Latvia today.
Lithuania’s legal and
regulatory framework related to CCS activities has been developed to
address multiple elements of the project lifecycle. The framework transposes the requirements of
the EU storage Directive into national law. The licensing regime adopted is similar to other models
governing the country's oil, gas, and mining operations. While several elements of the resulting
framework are well characterised, some aspects of the CCS project lifecycle have yet to be fully
addressed. In addition, Lithuania has recently banned CO2 injections, thereby permitting neither
onshore nor offshore storage
166
.
Table 33: CCS national targets and policies in Lithuania
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
CCS identified in the national climate strategy as potentially
relevant, yet lack of supportive policy measures and regulatory
restrictions create less favourable conditions for CCS.
2030: -43% from 2005 levels (EU ETS) and -9% from 2005
levels (non-EU ETS)
167
2040: -70% from 1990 levels (all sectors)
2050: Carbon neutral: -80% from 1990 levels (all sectors) and
-20% absorbed by LULUCF carbon sink
The country has no CCS targets. However, the National energy
and climate action plan from 2021-2030 outlines that
technology will play a central role in achieving its energy policy
goals, one such technology mentioned is CCS.
168
The country has developed a legal and regulatory model for CCS
activities, which addresses multiple elements of the project
lifecycle and transposes the requirements of the EU storage
Directive into national law.
Latvia will allocate 2% in its SET-plan priorities to CCS of the
share of total R&I investments from 2021-2027 in the field of
energy
169
. However, CCS is not considered a priority.
Lithuania recently banned CO2 injection, and thus, CO2 storage
is not permitted onshore or offshore
170
.
National CCS targets
CCS policies and legislations
CCS funding
CCS storage-related policies
165
166
167
168
169
170
Latvia’s national energy and climate plan, 2021-2030
Lithuanian Parliament,
LRT news
Lithuania’s Integrated National Energy and Climate Plan (NECP 2030)
National energy and climate action plan of the republic of Lithuania for 2021-2030
Latvia’s national
energy and climate plan, 2021-2030
Lithuanian Parliament,
LRT news
59
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0060.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.9.3 CCS potential (capturable CO2 intended for storage) in Lithuania
Total CO2 emissions from large stationary plants in Lithuania were at ~5 MtCO2 in 2017. Only 0.1 MtCO2 were related to the power & heat sector;
From waste-to-energy plants, and the rest from industry, including oil & gas refineries, chemical production and cement production.
Lithuania is mainly focused on renewable energy, so the emissions are already to date minimal in the power and heat sector.
Lithuania’s climate plan notes that the country will make maximum use of natural carbon sinks and prefers
CCU above CCS; only environmentally
safe CCS technologies will be used to ensure a 100% reduction in the industry segment
171
. There is reportedly one oil company that is advocating
the use of CCS
172
. Further, the fossil fuel industry will be fully abandoned by 2045 and will be replaced by green hydrogen.
The calculated capturable quantity of CO2 is estimated at on average 0.4 MtCO2/y between 2022 and 2040 and 0.3 MtCO2/y between 2041 and
2050.
Table 34: CCS potential (intended for storage) in Lithuania
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
173
)
2022-2040
Power & Heat
0.1
0.2
(0.02)
Industry
5.1
4.4
(0.4)
2041-2050
0.2
(0.02)
2.6
(0.3)
The overall significance of CCS within the Lithuanian power & heat sector is insignificant due to the lack of emissions in this sector
as renewables have been employed at large-scale already
The capturable volume of CO2 within the segment is estimated below ~0.1 MtCO2/y in 2050
The significance of CCS in the industry is low since other carbon removal means are prioritised, such as CCU
CCS will be mainly relevant for the oil & gas industry, which only comprise 1.7 MtCO2 in 2017 since CCU is preferred for the other
industry sectors (cement and chemical production)
CCS is estimated to rise up to comprise about 20% of emissions reduction for industry from 2035 to 2045
Since the fossil fuel industry will be phased out by 2045, the CCS potential from the oil & gas sector is removed, and Ramboll
estimates the capture potential to be only 10% of emissions
The capturable volume of CO2 intended for storage within the segment is estimated to peak from 2035-2045 at 0.6 MtCO2/y and
will decrease with the closure of oil & gas refineries (largest advocate of CCS) by 2045 to below 0.1 MtCO2/y towards 2050
No other significant potential areas have been assessed
Comment
Other
-
-
-
171
172
173
Latvia’s national energy and climate plan, 2021-2030
Expert interview with Baltics representative from Tallinn University of Technology
Average CO2 capturable amount is calculated for the time period 2030-2040
60
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0061.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.9.4 CO2 storage potential in Lithuania
Lithuania’s total carbon storage capacity is 2,280 Mt,
situated almost exclusively in aquifer
storage units with 5.8 Mt of storage capacity located in oil and gas fields
174
. However, the aquifer
storage units are located close to the surface and have not been tested for any leakages, which is
a long and expensive process.
As described in section 4.2.9.2, any carbon storage is prohibited in Lithuania, but that could
change in the short term as new politicians are elected. The attitude towards CCS technologies in
Lithuania is considered favourable
175
as several carbon capture facilities have been planned with
the intention of exporting the captured carbon
176
.
As a result, Lithuania has adequate domestic storage to cover upcoming CCS activities but does
not plan to develop the storage sites. This means that any carbon captured from upcoming CCS
activities will have to be exported for storage.
4.2.10 Latvia
4.2.10.1 Summary of CCS potential in Latvia
Latvia’s emissions from large stationary plants in 2017 were
~1 MtCO2. Thermal power and heat
comprise the total amount of these emissions. Latvia (and Lithuania) has significantly lower
emissions than Estonia due to the utilisation of other main energy sources (nuclear and hydro-
energy) than oil shale.
Latvia is aiming to become carbon neutral in 2050. As energy and transport sectors comprise
~64% of total GHG emissions in 2017, these sectors are expected to play a significant role in
achieving the
goal. Latvia’s carbon neutrality strategy states that CCS could
be relevant for
industrial sectors, yet not in the significant energy and transport sectors. The potential for CCS in
Latvia is low as the country has no industrial plants >100 ktCO2.
Latvia's CCS potential is estimated at 2.2 MtCO2 between 2022 and 2050, and on average 0.1
MtCO2/y between 2022 and 2040 and 0.1 MtCO2/y between 2040 and 2050, and the potential is
mainly related to the power & heat sector. Latvia does not have industrial plants above 100 ktCO2
(where CCS could be applied), and therefore, the potential for CCS in Latvia is considered low.
Storage potential in Latvia is estimated to be 3,400 Mt in aquifers. The relevance for storage in
Denmark is deemed low, as the estimated volumes are so insignificant.
Below is an overview of the CCS potential in Latvia.
Table 35: Summary of CCS potential in Latvia
SUMMARY OF CCS POTENTIAL
Category
CO2 emissions 2017 (MtCO2)
Plants >100 ktCO2
Co2 reduction targets
Indicator
1.0
Comments
CO2 emissions from the largest point sources; mainly from the
power and heat generation industry
2030: -65% from 1990 (national target) and -6% from 2005
(non-EU ETS)
177
2050: Carbon neutral
Latvia’s policies,
regulations and climate plans do not actively
pursue CCS development in the country today. However, the
country has recently committed to carbon neutrality, and CCS
is mentioned as potentially relevant to achieve climate
neutrality.
No specific targets have been set for the deployment of CCS in
Latvia.
National CCS focus/Support
CCS targets
174
175
176
177
GEUS, “Assessment of CO2 storage potential in Europe”
IOGP, “the potential for CCS and CCU in Europe”
Tallinn University of Technology, “Carbon Neutral Baltic
States:
Do we have CCUS among accepted options?”
Latvia’s Integrated National Energy and Climate Plan (NECP 2030)
61
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0062.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Total CCS Potential (MtCO2) 2022-
2050
Own storage capacity (Mt)
Own storage potential/support
2
3,400
178
Mainly related to the power & heat sector
3,400 Mt of storage in aquifers
Domestic CO2 storage is not currently permitted in Latvia and
as no experiments have been conducted to ensure geological
suitability for carbon storage, developing these sites would be
difficult and could take several years
179
Potential for DK storage
Low
Carbon storage outside the country seems likely,
however, the estimated CCS volumes are deemed
insignificant
4.2.10.2 CCS national targets and policies Latvia
Latvia aims to become carbon neutral by 2050 but does not actively pursue CCS as a means to
achieve this climate target and currently has no CCS facilities in planning/construction. Thus,
no
specific targets related to CCS
have been set either. However, Latvia’s carbon neutrality
strategy states that CCS could be relevant for energy and industrial sectors
180
, indicating that the
policy support for CCS is slightly maturing.
Latvia has not previously provided funding or support to CCS research or projects. However, the
NECP indicates that Latvia will spend 2% of investments in total R&I investments in the field of
energy on CCS between 2021-2027
181
. However, the funds allocated to energy research are not
described, making it difficult to assess the degree to which the 2% to CCS is sufficient.
Latvia’s regulatory framework related to CCS has transposed the requirements
of the EU storage
Directive into national law. However, it has also prohibited CO2 storage in the country.
Latvia’s
legal and regulatory framework considers some parts of the CCS project cycle, including the
operator’s responsibilities, carbon
dioxide purity criteria and dispute resolution procedures, yet
key aspects of the CCS process such as storage and closure are not addressed due to the
prohibition and storage of CO2
182
.
Table 36: CCS national targets and policies in Latvia
CCS NATIONAL TARGETS AND POLICIES
Category
Country CCS policy
maturity/potential
National CO2 reduction targets
Indicator
Comments
CCS identified in the national climate strategy as potentially
relevant, yet lack of supportive policy measures and regulatory
restrictions create less favourable conditions for CCS.
2030: -65% from 1990 (national target) and -6% from 2005
(non-EU ETS)
183
2050: Carbon neutral
No specific targets have been set for the deployment of CCS in
Latvia.
Latvia’s regulatory framework has
transposed the EU storage
Directive into national law. However, the framework prohibits
CO2 storage in the country.
No national support system for the deployment of CCS in place,
yet Latvia’s NECP indicates that funds will be
allocated to R&I in
the field of energy on CCS between 2021-2027
184
, although it is
unclear if the funds will suffice for the deployment of CCS.
According to Section 82 of the Law On Pollution, storage of
carbon dioxide in geological formations and the water column is
prohibited in the territory of Latvia, the exclusive economic zone
and continental shelf thereof.
185
National CCS targets
CCS policies and legislations
CCS funding
CCS storage-related policies
178
179
180
181
182
183
184
185
GEUS “Assessment of CO2 Storage Potential in Europe”
Ramboll Expert
Strategy of Latvia for the Achievement of Climate Neutrality by 2050
Latvia’s Integrated National Energy and Climate Plan (NECP 2030)
Global CCS Institute CO2RE database
Latvia’s Integrated National Energy and Climate Plan (NECP 2030)
Latvia’s
Integrated National Energy and Climate Plan (NECP 2030)
Ecolex - Latvia, Law on pollution
62
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0063.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.10.3 CCS potential (capturable CO2 intended for storage) in Latvia
Total CO2 emissions from large stationary plants in Latvia were ~1 MtCO2 in 2017, of which all amounts come from thermal power and heat.
The overall significance of CCS within the thermal power and heat is considered low, as renewables are expected to lead the decarbonisation of the
power sector. However, in its strategy towards carbon neutrality in 2050, Latvia mentions with regards to the energy sector that the assessment of
the introduction of new technologies in relation to carbon capture and storage should be taken into consideration.
The calculated capturable quantity of CO2 is estimated at on average 0.1 MtCO2/y between 2022 and 2040 and 0.1 MtCO2/y between 2040 and
2050.
Table 37: CCS potential (intended for storage) in Latvia
Sector
CO2
emissions
2017,
MtCO2
Capturable quantity of
CO2, MtCO2
(avg. MtCO2/y
186
)
2022-2040
Power & Heat
1
1.2
(0.1)
2041-2050
1.0
(0.1)
The potential for the power and heat sector is low since the Latvian Government has plans to reduce its emissions with renewable
energy. However, in its strategy towards carbon neutrality in 2050, Latvia mentions with regards to the energy sector that the
assessment of the introduction of new technologies in relation to carbon capture and storage should be taken into consideration
187
Ramboll assesses that CCS could capture up to 20% of power and heat emissions towards 2050 since there are potential
competing alternatives that could be preferred, such as CCU
188
The CCS potential is about 0.1 MtCO2/y in 2050
They have mentioned plans to employ CCUS within the industry sector, however, their industry sectors do not have large stationary
plants (above 100 ktCO2/y), which is why CCS potential is not considered.
No other significant potential areas have been assessed
Comment
Industry
-
-
-
Other
-
-
-
186
187
188
Average CO2 capturable amount is calculated for the time period 2030-2040
Strategy of Latvia for the Achievement of Climate Neutrality by 2050
Interview with CCUS expert in Baltics
63
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.2.10.4 CO2 storage potential in Latvia
Latvia has a carbon storage capacity of 3,400 Mt, of which the majority, 3,000 Mt, is situated in
aquifers, and 400 Mt is situated in oil and gas fields
189
. Some capacity in the oil and gas fields is
currently being used for the storage of natural gas
190
. However, experiments testing the
geological suitability for carbon storage have not been initiated and could take years to complete
adding to the cost of developing domestic storage capacity
191
.
As described in section 4.2.10.2, any storage of carbon is currently prohibited domestically in
Latvia. However, this could change in the short term, as governmental opinion changes following
election cycles. Latvian attitude towards CCS is regarded as neutral
192
due to small CCS incentives
and lack of recognition of CCS in the national 2050 climate strategy
193
. Moreover, Latvia has not
yet allowed the export of carbon for storage but has been urged to by experts
194
.
As a result, Latvia does not have the carbon storage capacity to cover all upcoming CCS activity.
189
190
191
192
193
194
GEUS, “Assessment of CO2 storage potential
in Europe”
Ramboll/DEA, “Cata
Ramboll Expert
IOGP, “The potential for CCS and CCU in Europe”
INFORSE-Europe,
“Sustainable Energy Strategy for Latvia’s: Vision 2050”
Tallinn University of Technology,
“Carbon Neutral Baltic States: Do we have CCUS
among
accepted options?”
64
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0065.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
4.3
ASSUMPTIONS UNDERLYING ESTIMATION OF CAPTURABLE CO2
Data basis for CO2-emissions
The analysis presented in this report is based on emissions data retrieved from the E-PRTR emissions data from the year 2017. The year 2017 was
chosen as it comprises the most complete data set, where all countries had had the opportunity to re-report and confirm emission numbers.
Moreover, the E-PRTR database includes emissions from biogenic sources, which are relevant from a CCS perspective.
Due to the incompleteness of the E-PRTR emissions data set in years after 2017, it is not possible to compare emissions from that database to
identify trends or outliers that can impact the estimates presented in the report. As a result, emissions data from the EU-ETS database from 2017
and 2019 was used. Specifically, the
industrial ‘Combustion of fuels’ emissions
was used. This covers the emissions released as a direct result of
the combustion of fuels used for heating in plants emitting more than 100 ktCO2/year. These emissions were compared to identify trends and
outliers.
Box 1 - A note on emissions comparison
Emissions compared below are based on values from the EU-ETS emissions database from the years 2017 and 2019 respectively. The emissions
are the confirmed unadjusted values. have been used as a tool to identify potential countries with severe reductions in emissions and thus
potentially need to have emissions values adjusted to reflect the countries’
current emission-level.
The E-PRTR database does not fully cover
both 2017 and 2019 for all countries that have been analyzed. As a result, the EU-ETS emissions database has been used instead. The datasets
included in this database have all been confirmed and the database covers all countries that have been analyzed in this report.
Table 38:
EU-ETS emissions comparison
EU-ETS
‘Combustion of Fuels’ emissions comparison
EU-ETS emissions,
2017 [MtCO2]
EU-ETS emissions,
2019 [MtCO2]
%-change
Comments
FI
12.4
11.3
-9%
SE
8.1
7.2
-11%
NO
14.2
13.7
-3.5%
DE
313.4
245.4
-22%
The decline in
emissions between
2017 and 2019 in
Germany was caused
by the decrease in
coal usage at power
plants
195
.
UK
98.1
81.5
-17%
The UK experienced a
rapid decline in CO2
emissions between
2017 and 2019 as the
heat & power sector
cut emissions by
60%
196
.
NL
61.3
53.9
-12%
PL
162.8
144.8
-11%
EE
12.5
6.2
-50%
Estonia has
phased out
several
plants
between
2017 and
2019
197
.
LT
0.9
0.6
-33%
Lithuania decreased
emissions by 1/3
between 2017 and 2019
due to large decrease in
the use of natural gas
and by the heat & power
sector
198
.
LV
1.3
1.6
23%
Latvia has seen an
increase in emissions
due to the national
energy strategy
focusing on
independent energy
supply
199
.
195
196
197
198
199
Clean Energy Wire, “Germany’s CO2 emissions set to fall markedly in 2019 as energy use declines”
IEA Emissions Database
Interview with Tallinn University CCS professor
IEA Emissions Database
National Energy and Climate Plan of Latvia
65
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0066.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
The general trend among all countries included in the analysis is a decline in emissions which is expected due to the global focus on reducing GHG
emissions. Events or actions causing substantial drops in emissions have all been addressed in our calculated estimates.
In Germany, 70% of the emissions are caused by the heat & power sector, which is currently going through a transition away from coal and oil
towards natural gas and zero-emission technologies. This has been accounted for in the estimates for CCS potential as CCS on coal and oil power
plants have been assumed to be zero due to the phase-out of coal and oil in Germany by as early as 2030 and 2038 at the latest. The United
Kingdom, Poland, Estonia, and Lithuania all have power sectors going through similar transitions, which have also had certain power generation
technologies excluded due to expected decommission before CCS reaches maturity. This is done because retrofitting CCS technology to plants
scheduled for decommissioning would be ineffective as only insignificant amounts of CO2 emissions would end up being captured by the CCS
system. Fitting CCS technology to a newer plant which is expected to run for a long time, would yield larger amounts of captured carbon and make
more sense as an investment as a result.
Latvia is the only country that has had its emissions increased. This is
due to the country’s national energy strategy,
which is currently focusing on
achieving a larger share of energy independence. Currently,
Latvia imports approximately 70% of the country’s electricity mostly from Sweden and
any domestic production of electricity
would as a result increase the emissions of Latvia. Moreover, Latvia’s emissions are insignificant
compared
to, e.g. Germany and Poland and has, as a result, had a low impact on the overall CCS potential estimates.
Technical assumptions for CCS potential
Estimation of CCS potential within each country is based on CO2 emissions from large sources, multiplied by technically capturable share (country-
based adjustments have been applied where necessary based on Ramboll’s
technical insights), and again multiplied by the expected share of CO2
that will be stored (estimated CCS share).
In the definition of the technical capture potential, this report applied some general assumptions for technically capturable volumes connected with
the power & heat plants and plants within the energy-intensive industries in Europe.
Table 39: Assumptions underlying technically capturable volume (technical capture potential) across the analysed countries
Sector
Industry
Significance of CCS
CCS application
200
Technical
capture
potential %
201
Power and heat
generation
Power and heat
plants, including
fossil, biomass-
fired plants etc.
In general, LOW for fossil-fired plants, as the focus
is typically on renewable power generation.
However, for some European countries currently
heavily relying on coal power generation, CCS on
coal power plants could be an attractive option.
MEDIUM/HIGH for biomass plants (incl. incineration
plants) due to interest for BECCS that can provide
CCS can be used in thermal power and heat plants
regardless of the fuel used during combustion is fossil or
renewable. The technology can be retrofitted to existing
plants or applied to newly constructed plants by collecting
and ‘cleaning’ the flue gasses
from the stacks.
Up to ~90%
200
201
Based on Ramboll’s technical insights and external research (mainly
The role of Carbon Capture and Storage in a Carbon Neutral Europe, Carbon Limits, 2020)
Share of volumes that are technically feasible to capture; Input based on Ramboll’s technical insights and external research (mainly
The role of Carbon Capture and Storage in a Carbon Neutral Europe, Carbon Limits,
2020)
66
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0067.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
negative emissions compensating some industry
and agricultural emissions hard to abate.
Iron and steel
(incl. other ferrous
metals)
MEDIUM; Both CCS and hydrogen can be applied.
Hydrogen replacing fossil fuels is expected to be
the preferred option. However, if hydrogen from
natural gas (blue hydrogen) is applied, then CCS is
key.
HIGH as emissions from refining and mineral oil
and gas are hard to abate.
HIGH, CCS is key in the cement sector as there are
no other ways to reduce the process emissions
significantly. While the use of biomass instead of
fossil fuels can reduce some emissions, BECCS
would still be relevant to provide negative
emissions).
MEDIUM; Mostly transitional solution as renewable
energy sources can be applied; In general, the
chemical industry is prioritising CCU over CCS.
CCS can be applied to current blast furnaces in the steel-
making process responsible for most of the CO2 emissions
in the iron and steel industry, enabling up to 50%
reduction of emissions. Alternatively, direct smelting
technology could be used to concentrate CO2 generation
further, enabling higher amounts of emissions reduction.
CO2 production from refineries is spread over multiple
stacks with varying CO2 emission amounts making it
infeasible to capture CO2 from all sources.
In the cement sector, 60-65% of CO2 is generated during
the heating process due to the combustion of fuels
providing heat and because of a reaction within the
cement during the heating process.
Up to ~60%
Refineries
Up to ~50%
Mineral production
(mainly cement,
but also glass
ceramics etc.)
Energy-intensive
industry
Up to ~50%
Chemicals
CCS can be applied to process emissions as well as
emissions from fuel combustion. Application varies due to
high diversity of the sector.
Ammonia and blue hydrogen production produce a
relatively pure CO2 stream, potentially allowing for very
high capture rates.
Up to ~50%
Pulp & paper
HIGH; Pulp and paper industry in most cases utilise
production residuals/biomass as energy input in
processing; BECCS here would be key here to
compensate for emissions from other industries
where they are harder to abate. Pulp and paper
plants are often located close to coastline and
rivers (as they need water in production), and this
makes it potentially easier to transport CO2
During the chemical pulping process, woodchips are
cooked by burning by-products from the paper-making
process. Installing CCS technology can be applied to
capture carbon from flue gasses.
Up to ~90%
Estimated CCS share
reflects what is actually expected for CCS given alternatives (CCU, renewable energy, heat pumps etc), and is based on
high-level qualitative and country-specific analysis (interviews and available research).
Box 2
Estimated CCS share
Note that table below presents the maximum estimated capturable share, i.e. peak share expected after years of gradual ramp-up.
67
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0068.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Overview of assumptions for CO2 emissions from large sources, technical potential and estimated CCS share per country are presented in the table
below. See appendix for more information on estimated CCS share.
Table 40:
Overview of assumptions for CO2 emissions, technical potential, and estimated CCS share (peak estimates) potential per country
Industry
Sub-industry
FI
SE
NO
DE
UK
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
emissions potential share emissions potential share emissions potential share emissions potential share emissions potential share
2017
2017
2017
2017
2017
16,9
0,2
1,5
0,0
3,1
0,7
0,0
20,3
1,3
0,0
0,0
2,9
46,8
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
N/A
90%
60%
N/A
50%
50%
N/A
80%
90%
N/A
N/A
N/A
11,7
4,8
4,1
0,7
2,7
1,0
0,0
22,8
2,8
0,0
0,0
0,7
51,3
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
N/A
90%
0%
N/A
50%
25%
N/A
80%
90%
N/A
N/A
N/A
14,2
0,0
2,5
2,7
2,6
1,5
0,0
0,2
1,2
0,5
0,0
0,0
25,4
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
50%
N/A
50%
N/A
75%
25%
N/A
50%
90%
90%
N/A
N/A
263,8
16,4
28,6
1,7
21,1
24,6
0,0
0,0
25,0
0,9
0,8
23,3
406,2
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
5%
50%
20%
N/A
30%
30%
0%
N/A
50%
N/A
N/A
N/A
99,7
9,9
6,7
0,0
10,8
4,8
0,6
0,0
7,2
1,0
1,2
4,4
146,3
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
10%
80%
50%
N/A
25%
25%
25%
N/A
90%
90%
50%
N/A
Power and
Thermal power and heat generation
heat
WtE plants
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
Chemicals production
Industrial
Chemicals production (fertiliser/ammonia production)
plants
Pulp & paper
Mineral production (cement)
Mineral production (lime, plaster, ceramics, glass etc)
Other
Total
Food processing
Other
Industry
Sub-industry
NL
PL
EE
LT
LV
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
CO2
Tech.
Est. CCS
emissions potential share emissions potential share emissions potential share emissions potential share emissions potential share
2017
2017
2017
2017
2017
55,7
8,9
0,0
0,0
10,6
16,9
0,0
0,0
0,5
0,1
0,9
1,4
95,0
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
5%
90%
N/A
N/A
90%
75%
75%
N/A
90%
N/A
N/A
N/A
121,2
0,0
7,1
1,2
1,7
1,0
1,7
0,0
6,8
2,1
0,0
166,7
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
30%
N/A
30%
N/A
50%
10%
10%
N/A
50%
40%
N/A
7,9
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,6
0,0
0,0
3,4
11,9*
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
5%
N/A
N/A
N/A
N/A
N/A
N/A
N/A
90%
N/A
N/A
N/A
0,0
0,1
0,0
0,0
1,7
0,0
2,6
0,0
0,7
0,0
0,0
0,0
5,2
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
N/A
20%
N/A
N/A
0%
N/A
30%
N/A
90%
N/A
N/A
N/A
1,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
1,0
90%
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
20%
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Power and
Thermal power and heat generation
heat
WtE plants
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
Chemicals production
Industrial
Chemicals production (fertiliser/ammonia production)
plants
Pulp & paper
Mineral production (cement)
Mineral production (lime, plaster, ceramics, glass etc)
Other
Food processing
Other
Note: * CO” emissions in Estonia (EE), have been
adjusted in relation to the source (E-PRTR), as the CO2 emission from power and heat sector (20.7 Mt in 2017 according to E-PRTR) is
outdated since several fossils fuel-driven plants were close in the past couple of years. Therefore, a more representative number is 7.9 Mt.
68
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0069.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
5.
OVERVIEW AND EVALUATION OF POTENTIAL SET-UPS
FOR TRANSPORT AND STORAGE OF CO2 IN DENMARK
This chapter aims to identify relevant market-based business models that ensure the lowest
possible price of Danish CO2 storage and provide an assessment of the competitiveness of the
Danish storage sites.
The following sections will go into depth with identifying the North European CO2 streams relevant
for Danish storage, possible set-ups for transport and storage of CO2 in Denmark, the
competitiveness of the Danish CO2 storage and institutional considerations.
The conclusions from this chapter will create the basis for evaluation of various business models
for CO2 storage in Denmark, which will be examined in the next chapter.
5.1
KEY CONCLUSIONS ON THE POTENTIAL SET-UPS FOR TRANSPORT AND STORAGE
OF CO2 IN DENMARK
The total volume of up to ~45 MtCO2/y is potentially eligible for import from several North European
countries. Denmark has several sites with CO2 storage structures that can be paired with different
types of CO2 transportation options to provide various solutions for CO2 storage. Some of these
sites and transport set-ups can be combined to increase scale, enhance convenience, or decrease
costs. The most cost-efficient set-ups are onshore or nearshore, especially if they are combined
with CO2 transport pipelines from regions with large clusters of CO2 emission sources (e.g.
Hamburg, DE). Using transport pipelines from such regions enables an opportunity to offer flexible
low-priced transport solutions, which enhance the competitiveness of Danish storage solutions.
None of the solutions, however, can work by themselves, meaning there is a need for involvement
from the state.
When other aspects than costs are considered, both onshore and offshore solutions and both
transportation option (pipeline vs sea transportation) have advantages and disadvantages. The
onshore solution (especially Havnsø) is located close to the largest domestic CO2 source and can
allow flexibility if a gradual build-up is preferred (which is less meaningful in the case of offshores
that work best with transport pipeline). On the other hand, the offshore solution can prove to be
faster to implement due to a potentially shorter permitting process and the ability to reuse some of
the existing infrastructure.
The table below summarises the key conclusions on the potential set-ups for the transport and
storage of CO2 in Denmark.
Table 41: Key Conclusions on the overview and evaluation of the potential set-ups for
transport and storage of co2 in Denmark
Topic
North European CO2
streams relevant for
danish storage
Key Conclusions
The indicative CO2 volumes relevant for Denmark (including domestic CO2 volumes) are
estimated at up to ~45 MtCO2/y.
The foreign storages that could potentially compete with Danish CO2 storages are mainly the UK
and Norway. The import of CO2 is mainly relevant from DE, SE and FI. There is some potential
for CO2 import from PL and NL, while no or insignificant import is expected from the Baltics, NO
or UK (the latter two have well developed domestic storage projects).
Available options for storage are Gassum (onshore), Havnsø (onshore), Hanstholm (nearshore)
and the Northern oil and gas fields in the North Sea (offshore). Available options for transport
are shuttle tankers, vessels, and pipelines.
Nine possible set-ups for transport and storage og CO2 in Denmark have been identified: Two
onshore, two near shore and five offshore. They include different combinations of transport
and storage options, meaning that some set-ups will require ports and intermediate storage.
In general, the cost comparison shows that onshore storage is the most cost-effective solution
(both when pipeline and sea transport is applied), followed by nearshore storage and with
offshore storage as the most expensive solution. On the other hand, pipelines provide scale
advantage and are thus the most effective transport solution at large-scale.
Possible set-ups for
transport and storage
of CO2 in Denmark
69
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0070.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
In addition to being the least expensive option, the onshore storage has the advantage of
being located close to the large domestic CO2 emission sources (Copenhagen area). However,
uncertainty whether the site can be used (and thus need for seismic tests and drilling) and the
general risk of public opposition can lead to a longer permitting process than in the case of the
offshore site.
Although the most expensive option, offshore storage offers several advantages, especially in
the form of known feasibility and demonstrated tightness. It can be potentially easier to obtain
necessary permits (especially compared to onshore sites). Furthermore, some of the existing
equipment (platforms and support systems) can be potentially reused, meaning that the
offshore solution can be potentially even quicker implementer than the onshore or nearshore
solution.
Solutions with a pipeline from Germany would provide a more certain CO2 stream from
abroad, making it potentially easier (and cheaper) to find investors. On the other hand, this
type of solution is only meaningful when the full-scale operations are planned for construction
from the beginning, while sea transportation enables small-scale start with gradual build-up.
Note that a more gradual start is also possible in the case of the onshore storage, where
pipelines from source and other connecting infrastructure can be added afterwards.
Competitiveness of
Danish CO2 storage
The competitiveness of CO2 storage is defined by meeting the following criteria: a low-cost
solution, with low marginal cost, and the ability to create a solution that allows flexibility
Based on the above, it is Ramboll’s assessment that Denmark
can offer highly competitive
solutions that are cost-effective, flexible and a convenient option for the target countries (mainly
Germany, Sweden, Finland and potentially Poland). The most cost-competitive solutions include
set-ups where large CO2 amounts are contracted via pipeline and those that comprise or combine
onshore and nearshore storage sites.
Institutional
considerations
It is important to consider varying institutional set-ups of CCS since although CCS is technically
feasible and can remove CO2 emissions on a large scale, the business case does not exist without
state and Government involvement.
To understand the need for state involvement as well as the interplay between different actors
and institutional set-ups, several case studies have been studied: the Norwegian full-scale
carbon capture, transport and storage demonstration project
“Longship”, three large CCUS
developments in “the UK and the Government’s CCS business model considerations” as well
as
the Porthos CCS project in the Netherlands.
See 5.4.2. for the conclusions based on the case studies mentioned above.
5.2 MAPPING OF NORTH EUROPEAN CO2 STREAMS RELEVANT FOR DANISH STORAGE
As assessed in chapter 4, many of the North European countries are expected to apply CCS as a
measure to achieve 2030 and 2050 decarbonisation targets. However, not all of these countries
have sufficient storage capacity (or an intention to store CO2 domestically) and will therefore
need to seek foreign storage.
Based on insights from the previous chapter, this section will provide a mapping of possible CO2
flows between Denmark and Northern Europe, considering potential competing storages,
geographical conditions, clusters etc.
The foreign storages that could
compete with Danish CO2 storages are mainly the UK and Norway
with
storages situated offshore in the North Sea. They could potentially compete with a large
share of the CO2 export coming from the countries deemed relevant to export CO2 to Denmark
(i.e. Germany, Sweden, Finland, The Netherlands but perhaps less likely Poland). Poland could
also pose a potential competitive threat and compete with possible CO2 export streams from
Finland and Sweden. Of course, this is if they decide to pursue CO2 storage in the future (as
mentioned previously, geological storage of CO2 is prohibited until at least 2024 in the country).
Competition from the Baltics of CO2 exports is not expected since geological storage is not
possible in Estonia, while in Latvia and Lithuania, CO2 storage is currently prohibited. Additionally,
in Latvia and Lithuania, the CO2 CCS potential is very limited as policies and climate strategies in
these countries are not prioritising CCS and have a preference for CCU if they turn to greenhouse
gas removal technologies.
202
CO2 exports from the following countries
are expected to be most relevant:
202
Ramboll analysis
70
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Germany:
Large volumes of captured CO2 volumes intended for storage in foreign
countries are expected, as the country has clearly announced it will not utilise CO2
storage capacities on its own territory. The CO2 volumes are concentrated around the
Hamburg area and Northern Germany, where there are numerous power plants and large
iron and steel plants. Transport of CO2 from Germany to Denmark by ship and through a
pipeline are both feasible possibilities.
Sweden and Finland:
Although there is not a heightened focus on CCS in the countries’
climate strategies, compared to the focus on renewable energy and green hydrogen, the
pulp and paper industries in these countries are the two largest in Europe. BECCS could
therefore become highly relevant for both of these countries so they can close the CO2
emissions mitigation gap to reach their climate neutrality targets. Geological storage is
not possible in Finland, and although Sweden has some storage capacities, the country
has expressed a preference to export CO2. Moreover, many of the pulp and paper plants
are situated close to the coast or rivers (since they use a lot of water resources in their
production). It would be potentially effortless to export the CO2 from plants situated close
to the coasts with shuttle tankers.
CO2 exports might potentially also come from the Netherlands and Poland:
The Netherlands:
The country has expressed that CCS is a temporary solution to emission
removal until CCU and renewables become available at full scale. However, natural gas
production is not expected to be phased out in the Netherlands, at least in the short- and
medium-term; thus CCS has a large potential to be a key source to mitigate emissions at
these plants. The Netherlands has CO2 storage capacities and is planning CCS projects,
e.g. the Porthos project is the most known large-scale project. However, other projects
are also being planned: Athos in Amsterdam and the Carbon Connect Delta project
203
.
Depending on how the Dutch CCS projects progress, there might be some potential for
CO2 exports in the short term, industry cluster projects acknowledge that the demand for
storing CO2 might exceed the storage capacity and especially if the CCS project deliveries
are faced with delays
204
. This means that the export of captured carbon to international
carbon storage sites could be necessary for the short-to-medium term. Additionally, the
Netherlands have ambitious renewable energy targets, however, they are the country
furthest away in the EU from achieving their announced renewable energy targets
205
. To
make up for this gap due to the delay of renewables deployment, CCS could be a potential
solution to mitigate emissions. Therefore, CO2 emissions from both industry and the
power & heat (mainly in the long-term since CCS is limited to industry sectors, to begin
with) sector could pose some opportunities to utilise CCS, and some amounts could be
exported. It is uncertain to which countries (or how the share of exported CO2 emissions
would be split between countries) potential Dutch CO2 export volumes will be transported
to. Norway, UK or Denmark could all be potential candidates, and therefore this is also
limiting the forecasted CCS volumes from The Netherlands to Denmark. Therefore,
Ramboll estimates that there is some potential of storing CO2 from the Netherlands in
Denmark, yet the potential is smaller than the CO2 streams coming from Germany,
Finland, and Sweden.
Poland:
The country has CO2 storage capacities, which could become relevant in the
future and potentially also be cheaper than exporting CO2 to other countries. However,
they have not announced interest in utilising their own CO2 capacities, and this is
prohibited until 2024. And thus, there is some potential for CO2 exports from Poland, but
this is highly dependent on political decisions, and the unfolding of these are highly
uncertain.
Norway and UK storages could potentially compete for all the CO2 volumes described above.
The potential of CO2 exports from the Baltic countries is limited or even deemed insignificant. As
mentioned, the country’s
policies are not focusing
or prioritising CCS, and the CCS potential of
CO2 for CCS are limited. Nevertheless, the governing party in power changes often in these
countries and especially the Latvian and Lithuanian Government (depending on the ruling political
party) have shifted between allowing CO2 storage and prohibiting it, which poses uncertainty with
204
205
European Commission, “Candidate
PCI projects in cross-border carbon dioxide transport networks”
Eurostat
– “Renewable energy statistics”
71
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0072.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
regards
to the countries’ positioning towards CCS. Nevertheless, CCU is preferred above CCS in all
of the Baltic countries.
206
Figure 10: Overview of North European CO2 streams relevant for Danish storage
Source: Ramboll analysis, E-PRTR database
The indicative CO2 volumes relevant for Denmark (including domestic CO2 volumes) are
estimated at up to
~45 MtCO2/y.
Note that the volumes presented below are not final and only
potential volume estimates subject to change since they depend on future policy decisions and
climate strategies in different countries. This poses uncertainties since the political landscape and
policies change, making it difficult to forecast the CO2 CCS potential. Additionally, the imported
CO2 volumes are also dependent on the development of CO2 prices, competition from foreign
CO2 storages and Denmark’s own CO2 storage capacity developments.
Table 42: Estimated CO2 volume that can be potentially imported to DK (MtCO2/y)
Country
Total CO2
intended for
CCS
(MtCO2/y)
207
42
Comment
Potential
import to
DK
(MtCO2/y)
~21
Germany
~20% of all emissions are from clusters in Northern Germany; Since
capturable amount only includes large CO2 sources, an even higher
share is expected from these clusters. Consequently, Ramboll estimates
that up to 35% of emissions are within clusters; Additional CO2 can be
imported via shuttle tanker transport. Due to general constraints, i.e.
that some CO2 can be difficult to access or not feasible for dispersed
sources or sent to other competing countries, Ramboll makes the
assumption that up to ~50% of the estimated CO2 volumes can be
potentially transported to Denmark.
206
207
Expert interview; Tallinn University of Technology
Calculated as an average annual value for the years from the start point (e.g. 2025 for UK and 2030 for some other countries) and up to 2050
72
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0073.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Finland
Sweden
12
17
The majority of capturable emissions comes from the pulp & paper
industry, which are often located close to coastline or rivers, and thus
easily accessible. For financial estimates in this chapter, we assume that
up to ~75% of CO2 volumes intended for CCS will be transported to
foreign storages, including Denmark, of which half of the 75% can
potentially be exported to Denmark. Only shuttle tanker transport
applies.
Although the Netherlands have their own storage capacities, there
might be potential for CO2 export. The majority of emission sources are
close to coastline or rivers (and thus accessible), which makes them
somewhat feasible for CO2 export. However, both Norway and the UK,
in addition to Denmark, could compete for these exported CO2 volumes.
Based on these conditions, Ramboll estimates that 20% of estimated
CCS volume will be imported to Denmark; Shuttle tanker transport
applies for onshore and nearshores storage solutions, while either
shuttle tanker or pipeline applies for the offshore solution.
In Poland, there are some large energy clusters in the central and
southern part of the country. However, a large share of the plants in the
south are coal-driven and thus not relevant since the large majority will
be phased out. Although CO2 could potentially be transported from the
central part of the country (inland locations) via rivers, there is a high
probability that some of the CO2 is too difficult to access or not feasible
for dispersed sources. Existing and planned natural gas plants are
considered most relevant
these are relatively spread all over the
country. Further, emissions from industry are highest in the south and
south-eastern parts of the country. Consequently, for financial
estimates, we make a conservative assumption that ~25% of the
estimated impact will be transported to Denmark. Only shuttle tanker
transport applies since CO2 transported by a pipeline is deemed too
risky to construct if Poland starts to invest in their own storages.
~5
~6
The
Netherlands
14
~3
Poland
27
~7
Total CO2 that can be imported to DK (MtCO2/y)
~40
In terms of
domestic CO2 sources in Denmark,
we have estimated them to be at about ~5
MtCO2/y (~3 MtCO2/y from the Copenhagen area and ~2 MtCO2/y from the Aalborg area)
208
:
CO2 clusters are present in the Copenhagen area since it is an urban area with CO2
volumes coming from, e.g., Amager Bakke, Amagerværket, HC Ørsted power plant,
Avedøre power plant, Roskilde waste incineration plant and others
In Aalborg, situated in Northern Denmark, there are also CO2 sources from Aalborg
Portland, a cement plant and Nordjyllandsværket power plant
Other potential CO2 sources could be captured in the Aarhus area, which is also
urbanized.
POSSIBLE SET-UPS FOR TRANSPORT AND STORAGE OF CO2 IN DENMARK
5.3
The full CCS chain consists of several elements:
Capture at source
Compression/liquefaction
Intermediate storages at export
option at capture site and/or at a storage site
Transportation: pipeline transportation or ship (shuttle tanker of the vessel)
Intermediate storages close to storage - option
Geological storage
This section will map available options for transport and storage of CO2 in Denmark (last three of
the above-listed bullets),
i.e. part of the CCS value chain within Denmark’s scope. Different
options will then be compiled into different possible set-ups, paired with estimated costs and
compared to identify the most cost-effective solutions.
Options for transport and storage in Denmark, as well as cost estimates, are based on Catalogue
of Geological Storage of CO2 in Denmark by Danish Energy Agency and Ramboll (2021) and
Catalogue on Technology Data for Energy Transport published by the Danish Energy Agency and
Energinet
(2017, updated in 2020), supplied with Ramboll’s technical and commercial insights
(e.g. in relation to scaling up of costs for large-scale scenarios).
208
Danish Energy Agency/Ramboll - Catalogue of geological storage of co2 in Denmark
73
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0074.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Estimates such as costs, capacity etc., can only be clearly defined after design and data collection
has been performed and should therefore be treated as indicative and with some uncertainty.
Box 3
A note on set-ups
All storage and transport set-ups presented in this chapter are potential illustrative scenarios
only. This also pertains to the suggested storage and pipeline locations as well as the shipping
routes. Thus, the set-ups are not to be regarded as definitive rather as potential suggestions
for feasible scenarios. The set-ups take a point of departure in the Catalogue of Geological
Storage of CO2 in Denmark by Danish Energy Agency and Ramboll (2021).
5.3.1
Available options for transport and storage of CO2 in Denmark
5.3.1.1 Suitable storage sites in DK
Based on Ramboll’s previous analyses
209
, and mapping by GEUS, three different generic scenarios
are assessed for suitable storage sites in DK: onshore saline aquifers, near shore saline aquifers
and offshore depleted oil/gas fields.
Ramboll finds all geological storage scenarios analysed in this study to be feasible and realistic
210
.
However, the present report should not be used for decision making for the development of
concrete storage projects.
Onshore and nearshore saline aquifers:
An aquifer is a porous sandstone with water naturally
present in the pores in the sand. Consequently, injected
carbon dioxide
can behave the same way
water does (occupy the pores) or potentially be dissolved into the water over a longer time.
The
system consists of an injection well, injection pump for additional compression, monitoring in the
well cellar and different monitoring systems spread out on the surface of the anticipated
delineation of the CO
2
plume
211
. The below geological structures are considered to be realistic
options for onshore CO
2
storage in Denmark
212
:
Onshore structures:
-
-
-
North Jylland:
Vedsted structure (storage capacity as published by GEUS: 162 Mt); The
structure is mature for further development.
East Jylland:
Gassum structure (630 Mt), Voldum structure (288 Mt) and Paarup structure
(91 Mt); All these three structures could be developed as storage options.
Sjælland:
Havnsø structure (927 Mt); A large and promising structure, that has not been
drilled.
Near shore structures:
-
Hanstholm structure (2,753 Mt); The expected injection site is located some 30-50 km
offshore from the Port of Hanstholm. A similar but very immature type of near shore
storage option may exist in the southern part of the North Sea (off the coast of Esbjerg),
with the geological structure located some 100 km offshore.
Røsnæs structure (227 Mt); Located under the Great Belt with a smaller part below the tip
of Røsnæs. This means that wells potentially could be drilled from land.
-
Offshore depleted oil/gas fields
213
: Oil &
gas has been produced from the Danish North Sea since
the early 1970s, and some of the fields are approaching the end of field life. The depleted
northern sandstone fields in the Central Graben are at this point in time considered most suitable
for the timely development of geological CO2 storage. Chalk fields may be relevant later: requires
re-use of long horizontal wells and wellhead platforms,
The different storage options are presented in the figure below:
209
210
211
212
213
Catalogue of geological storage of CO2 in Denmark, Ramboll/DEA, 2021 and CCUS Technology Catalogue, Ramboll, 2020
Catalogue of geological storage of CO2 in Denmark, Ramboll/DEA, 2021
S.
M. Thomsen and J. Flørning, ‘CO2 neutral energy system utilizing the subsurface’, Copenhagen, 2019
Catalogue of geological storage of CO2 in Denmark, Ramboll/DEA, 2021
Catalogue of geological storage of CO2 in Denmark, Ramboll/DEA, 2021
74
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0075.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Figure 11: Overview of potential CO2 storage options in Denmark
Source: GEUS
5.3.1.2 Available options for the transport of CO2 to the storage site
214
CO2 emission sources and suitable geological storage sites are likely to be geographically
separated. Consequently, the realisation of carbon capture storage will nearly always involve the
transportation of CO₂. The
main technologies deemed suitable for the transport of CO2 are:
-
-
-
Pipeline transport
Ship transport (shuttle tanker transport combined with intermediate storage or transport
by vessels equipped with storage facilities)
Road transport
The different modes of transportation have varying advantages and disadvantages. Take CO2
transport by a shuttle tanker; this provides more flexibility than pipeline solutions since the routes
of transport can be easily adjusted. This is particularly beneficial because transportation is needed
for a new CO2 source location or storage site location. Further, the transport capacity can also be
adjusted depending on demand. Standard carrier shuttle tankers can also be used for other
transport of goods /e.g. LNG), if the need for transporting CO2 decreases.
On the other hand, shuttle tanker transport of CO2 is more expensive than pipeline transport for
short to medium distances and costly CO2 terminals and intermediate storage facilities are also
required for this mode of transportation. Thus, both the shuttle tanker's capital expenditure and
the terminal fees are fixed regardless of the distances. If large volumes of CO2 (providing
economies of scale) are transported or if CO2 point sources are located inland, then a pipeline
solution will be the most cost-efficient option. As shown in the graph below conducted by ZEP
215
,
pipeline transport is estimated to be more cost-efficient for transport distances of 500-700 km,
after which shuttle tanker becomes economically more feasible.
214
215
Catalogue on Technology Data for Energy Transport published by the Danish Energy Agency and Energinet (2017, updated in 2020)
The Cost of CO₂ Transport –
Post-demonstration CCS in the EU. ZEP report 2010.
75
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0076.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Figure 12:
Cost of CO₂ transport (EUR/tonne/km, 2010 cost level) by pipeline at 50%
capacity and by ship at 100% capacity (including terminal) for 10 MtCO2/y
Note: In the research below, transport of 10 MtCO2/y was compared between ships (shuttle tanker) and pipeline. Further, the
study underlies the assumption that pipeline utilisation is 50%. Different assumptions change the intersection point of when
which transport mode becomes more cost-efficient. Source: ZEP, Catalogue on Technology Data for Energy Transport
published by the Danish Energy Agency and Energinet (2017, updated in 2020).
When CO2 sources are concentrated (e.g. in the form of an industry cluster), the most
uncomplicated composition would be a capture, compression, pipeline transportation and storage.
Suppose several sources are combined and cannot be connected to a pipeline. In that case, there
will be a need for intermediate storage above the ground, which is connected to the permanent
storage by a pipeline for onshore/nearshore activities or shuttle tankers for offshore activities.
5.3.2
Mapping of possible set-ups for transport and storage of CO2 in Denmark
Possible set-ups for CO2 transport and storage are presented in this section. They have been
created based on Ramboll’s expertise within CCS
and with inspiration from ongoing CCS projects
in Norway, the Netherlands, and Great Britain. Additionally, experience from the oil and gas
industry and knowledge from the district heating industry have been used to qualify the set-ups
presented below. This includes but is not limited to the know-how of large volume transport of
gas and liquids using pipelines, ships and trucks.
In the table below,
nine set-ups in total are presented:
Two onshore, two near shore and five
offshore (presented in
Table 43
below, and also visualised in Figure 13). They include different
combinations of transport and storage possibilities, meaning some set-ups will require ports and
intermediate storage (e.g. set-up #3). In contrast, other set-ups are based exclusively at sea
(e.g. set-up #7).
Set-ups including pipelines from Northern Germany or the Netherlands are still open to shuttle
tanker transport from these countries. This means that CO2 transportation via shuttle tankers
from these countries is expected to continue but decrease to some extent to take advantage of
the decrease in marginal cost enabled by a pipeline.
76
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0077.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Table 43: Overview of potentially relevant set-ups for transport and storage of CO2 to Denmark
Shuttle tanker
Storage
type
Potential
site name
(and
capacity)
Vessel
Assumed
max.
injection
capacity
per year
Set-
up
#
Permanently moored FSU
CO2 Transport from
source
Intermediate
storage and
preparation
facilities
Port
Pipeline
Injection
site
Well pad
Description
Well head platform
Transport from
intermediate
storage to well
1
Gassum
(630 Mt)
Onshore
Or
Havnsø
(927 Mt)
10 MtCO2
(Gassum)
2
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site. The CO2 is
transported from the port to the injection site via
pipeline, where it is injected into the onshore storage site
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site.
- Additionally, CO2 from CPH is transported via pipeline to
the port
- The CO2 is transported from the port to the injection site
via pipeline, where it is injected into the onshore storage
site
- Assumption: 40%-80% (4MtCO2/y) will come from
DK/CPH through the pipeline, and the remaining CO2 via
sea from other sources
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site
- The CO2 is transported from the port to the injection site
via pipeline, where it is injected into the nearshore
storage site
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site
- Additionally, CO2 from CPH is transported via pipeline to
the port
- The CO2 is transported from the port to the injection site
via pipeline, where it is injected into the nearshore
storage site
- Assumption: 40%-80% (4MtCO2/y) will come from
DK/CPH through the pipeline, and the remaining CO2 via
sea from other sources
From DK/CPH
3
Røsnæs
(227 Mt)
Nearshore
or
Hanstholm
(2,753 Mt)
10 MtCO2
(Hanstholm)
4
From DK/CPH
Figure continues on the next page
77
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0078.png
ASSESSMENT OF THE MARKET POTENTIAL FOR CO2 STORAGE IN DENMARK
MAY 2021
Storage
type
Potential site
name
(and
capacity)
Assumed
max.
injection
capacity
per year
Set-
up
#
CO2 Transport from
source
Intermediate
storage and
preparation
facilities
Transport from
intermediate
storage to well
Injection
site
Description
5
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site
- CO2 is transported from the port to the injection site via
pipeline, where it is injected into the offshore storage site
- Vessels transport CO2 from ports near emissions sources
to injection sites
- The CO2 is transferred directly to the offshore storage
site, where it is injected
- Shuttle tankers transport CO2 from ports near emission
sources to a permanently moored FSU near the storage
site
- The CO2 is directly transferred from the FSU to the
injected site, where it is injected into an offshore storage
site
- Shuttle tankers transport CO2 from ports near emissions
sources to a port near the storage site
- Additionally, CO2 from Northern Germany is transported
to the port via an onshore pipeline
- CO2 is transported from the port to the injection site via
pipeline, where it is injected into the offshore storage site
- Assumption: 4-5 MtCO2/y will come from DE through a
pipeline, and the remaining CO2 via sea from other
sources
- Shuttle tankers transport CO2 from ports near emission
sources in DK, SE, FI & PL to a port near the storage site.
From the port, CO2 goes to the injection site via pipeline
- Additionally, pipelines from Northern Germany and the NL
transport CO2 from nearby CO2 emissions clusters to the
injection site via pipelines. From the injection site, the
CO2 is injected into the offshore storage site
- Assumption: 4-6 MtCO2/y will come from DE+NL via
pipeline, and the remaining CO2 via sea from other
sources
6
7
Depleted oil
and gas field
in the North
Sea
(estimated
Offshore
10 MtCO2
8
From DE
~
2,000 Mt)
From SE, FI, PL & DK
(rest)
9
From DE
From NL
Note:
Shuttle tankers
are considered pure transport vehicles, meaning they do not have cooling equipment and storage preparation equipment needed to connect directly to an injection
site. As a result, shuttle tankers need to unload CO2 into intermediate storage near refrigeration and storage preparation equipment before it can be transferred to an injection site;
Vessels
can be used for transport and carry cooling and storage preparation equipment. This means they can connect directly to injection sites;
Permanently moored FSU
stations are considered
stationary and cannot be moved. Shuttle tankers will transport CO2 to the station, which will prepare the CO2 for storage before sending it to the injection site;
Well pad:
An area that is
cleared or prepared for the drilling of wells, the area is a fenced-off area with drainage and other facilities to allow safe and environmentally friendly drilling of wells;
Wellhead platform:
An offshore steel structure for the support of production and/or injection wells and associated support systems;
Injection well:
A well for injection of CO2 into a
subsurface reservoir;
Intermediate CO2 storage:
A site with pressurised and cooled tanks for storage of liquified CO2;
Permanently moored vessel:
A so-called floating storage unit (FSU)
equipped with the injection facilities;
Source:
Ramboll analysis
78
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0079.png
Ramboll - ccccc
Figure 13: Illustration of different set-ups for ups for transport and storage of CO2 to
Denmark (see appendix for illustration of each set-up separately)
Note: Ports (especially foreign) are only illustrative suggestions for where CO2 could depart by ship transport.
Source: Ramboll analysis; Ramboll & the Danish Energy
Agency, “Catalogue of Geological CO2 Storage
in Denmark.”
It is Ramboll’s assessment
that no single storage site in Denmark is capable of handling 45
MtCO2/y alone. Meaning, that if a capacity of up to 45 MtCO2/y is desired, a combination of the
set-ups presented below must be used. The offshore storage sites do theoretically have adequate
storage capacity. However, even though they have the theoretical capacity to store the 45
MtCO2/y over a period of 30 years (1350 Mt in total), the maximum injection rate of the sites is
rated at 10 MtCO2/y. This is due to a large amount of the capacity being situated in depleted oil
and gas field that are in chalk reservoirs not suited for CO2 injection. Injection of CO2 into these
fields would require a large number of wells raising the price of CO2 injection to higher levels
216
.
Alternatively, large offshore aquifers could be utilised, however, they remain largely unmapped,
meaning there is a large amount of uncertainty regarding their storage capacity and possible
injection rates. As a result, offshore aquifers have not been considered in this report.
Note that shuttle tankers are currently not large enough to handle the estimated amounts of CO2
without deploying a large number of shuttle tankers. Set-ups below assume that larger shuttle
tankers (20,000 net tonnages or even above) will be available at the time storage is
operationalised. Larger shuttle tankers would require larger ports, which means that shuttle
tanker sizes will also vary depending on the size of the port near emissions sources. However,
some ports will remain small, which means large intermediate ports could be established where
smaller shuttle tankers from smaller ports could transport and unload CO2. Larger shuttle tankers
could then transport the aggregated CO2 from the intermediate port to the final port.
Furthermore, the set-ups are built upon the assumption that all pipeline, intermediate storage,
and injection site infrastructure will have to be constructed. Some infrastructure can theoretically
be re-used; however, given the large CO2 volumes assumed in this report, this is deemed a less
efficient and a more complex solution and will therefore not be considered.
More scenarios were considered, however, they were deemed technically, economically, or
politically infeasible for the time being. Particularly pipelines from Northern Germany and the
Netherlands were not included in the onshore and nearshore set-ups as the pipelines would have
to extend further, which was deemed too expensive.
216
Ramboll expert
79
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
5.3.3
Overview costs for transport and storage of CO2 in Denmark per set-up
To assess which solution(s) are the most cost-effective, each of the set-ups described in 5.3.2 has
been matched with respective costs for transportation and storage of CO2 in Denmark.
Cost estimates include relevant considerations, such as type of storage and transportation
technology applied, quantities of CO2 expected through pipelines and sea, respectively, and
distance from the source. Cost estimates in this report are based on assumptions from Catalogue
of Geological Storage of CO2 in Denmark by the Danish Energy Agency and Ramboll (2021) and
the Catalogue on Technology Data for Energy Transport published by the Danish Energy Agency
and Energinet (2017, updated in 2020).
Costs have been compiled for two scenarios: 5 MtCO2/y and 10 MtCO2/y. In order to secure full
comparability across presented set-ups, the cost comparison is only performed for the scenario
with 5 MtCO2/y, as assumptions underlying the 10MtCO2/y scenario are more set-up specific. For
example, the amount of CO2 transported via pipeline in set-up 2 (pipeline from Copenhagen to
onshore storage and remaining share transported from other sources by sea) is constant in both
scenarios, i.e. it amounts to 80% at 5 MtCO2/y and only 40% at 10 MtCO2/y. While set-up 1 is
100% sea transport in both scenarios (5 MtCO2/y and 10 MtCO2/y). However, it is our opinion
that conclusions drawn from the cost benchmark at 5 MtCO2/y will also be applicable for larger
scenarios. Overview of cost estimates for 10 MtCO2/y is provided in the appendix.
The cost comparison shows that
onshore storage is the most cost-effective solution
(both
when
pipeline and sea transport is applied). On the other hand,
a
pipeline provides a scale advantage
and is thus the most effective transport solution at large-scale
(i.e., e.g. 5 MtCO2/y). More
specifically, the following conclusions can be drawn:
-
-
-
-
Set-up 2 (focus on pipeline transport from Copenhagen to onshore storage) is the least
expensive
Set-up 4 (focus on pipeline transport from Copenhagen to nearshore storage) is the least
expensive nearshore option but more expensive than onshore storage
Set-ups comprising offshore storage are more expensive than those with both onshore
and nearshore solutions
Set-up 8 (focus on pipeline transport from DE) is the least expensive of all offshore
storage options
Storage cost comprises cost to establish the storage (e.g., pre-FID studies, the pipeline from port
to storage, injection equipment, monitoring equipment etc.) and operations (incl. organisation,
power etc.). In the calculation for onshore storage, it is assumed that the Havnsø storage site,
accessed through Kalundborg harbour, will be used due to the estimated size, proximity to
Amager Forbrænding and the current momentum of the site. For nearshore storage, it is assumed
that the Hanstholm storage site, accessed through Hanstholm harbour, will be used due to the
size of the estimated storage capacity. Offshore storage will be assumed to be in the Northern
part of the North Sea oil and gas fields, accessed through Esbjerg harbour, due to the sites'
geological nature, meaning fewer wells are needed for the same flow rate.
Transport cost covers the cost of transporting CO2 from ports near emission sources in five
Northern European countries and domestically in Denmark, to a Danish intermediate storage
facility near a storage site, either through the pipeline or by sea. Pipeline transportation includes
CAPEX (for both pipeline and power stations), maintenance, monitoring and power costs. Sea
transportation includes CAPEX (for ships and intermediate storage at export ports), maintenance
and fuel. Note that the cost for transport by the sea does not include harbour fees or the cost for
liquefaction (which is typically included at the CO2 capture plant).
CO2 transport costs from shuttle tankers are included in the business cases in chapter 6, although
this could potentially be paid by the emitter or split between the emitter and the CO2 storage
provider. In the case that Denmark pays for the export
countries’ transport of CO2,
the export
countries will receive favourable conditions
especially in the less expensive onshore storage
solution option. The cost of covering export countries’ transport might be transferred to Danish
emitters, making it more expensive for them, and Danish emitter might choose storage solutions
in competing countries. If CO2 is imported at a large-scale, it could be more feasible to cover the
export countries’ transport costs since the price could come down
with economies of scale.
Note that there is still a lot of uncertainty about costs and performance, as only a few carbon
storage projects have been implemented in Europe, and mostly in association with oil and gas
80
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0081.png
Ramboll - ccccc
production. In addition to the general cost levels, there is also uncertainty with respect to the
delimitation
of the operator’s responsibility after closing of the storage
(and costs for e.g.
monitoring) and to the technical development (e.g. injection rates in different types of reservoirs
as well as the choice of steel material, e.g. wells), which can both impact costs. Initially, we
assume that a conservative approach will be used, which may increase the cost for the first large-
scale projects. In line with operational experience, there may be a decline in cost due to a more
optimized design. The actual capacity may prove to be larger than the nameplate capacity.
Box 4
A note on costs
All individual costs inputs i.e. transportation and storage costs presented in this chapter and
utilised in the business cases in chapter 6 are not levelized costs.
Details regarding assumptions used for cost estimation in each set-up are described in Appendix.
Table 44: Cost for the different set-ups for transport and storage of CO2 in Denmark
Set-up # 1
Onshore;
Shuttle
tankers ->
port ->
storage site
via pipeline
Set-up # 2
Onshore;
shuttle
tankers &
pipeline
(from C PH)
-> port ->
storage site
via pipeline
Set-up # 3
Nearshor
e;
Shuttle
tankers ->
port ->
storage site
via pipeline
Set-up # 4
Nearshor
e;
Shuttle
tankers &
pipeline
(C PH) ->
port ->
storage site
via pipeline
Set-up # 5
Offshore;
Shuttle
tankers ->
port ->
storage site
via pipeline
Set-up # 6
Offshore;
Vessels ->
injection
site
Set-up # 7
Offshore;
Shuttle
tankers ->
permanentl
y moored
FSU ->
injection
site
Set-up # 8
Offshore;
Shuttle
tankers &
pipeline
(from DE) -
> port ->
storage site
via pipeline
Set-up # 9
Offshore;
Shuttle
tankers
(SE, FI, PL
& DK) ->
port ->
storage via
pipeline;
Pipeline
from DE &
NL ->
storage
MDKK
5 MtC O2/y
120
70
20
n/a
10
20
4.770
180
390
1.750
1.925
525
n/a
n/a
9.101
525
223
967
473
527
920
3.036
2.430
n/a
n/a
n/a
1.435
835
600
2.723
473
n/a
2.250
2.668
2.461
n/a
207
6.417
n/a
5.950
467
2.627
n/a
1.607
1.020
221
114
107
MDKK
5 MtC O2/y
Pre-FID Cost
2D Seismic
Basline studies
Appraisal well
FEED Studies
Approvals
CAPEX
Intermediate storage
Injection plant
Pipeline
Injection wells
Wellhead platform
Mooring and loading system
Purpose built C O2 carrier/FSU
Accumulated OPEX
Base organisation
Intermediate storage
Injection plant
Pipeline
Injection wells
Monitoring
Power
Wellhead platform
Standby vessel
Mooring and loading system
Purpose built C O2 carrier/FSU
Closure costs
Abandonment cost (ABEX)
Post-C losure C ost/Monitoring
CAPEX
Transport shuttle
Vessel
Export intermediate storage
Accumulated OPEX
Transport ships fixed O&M
Vessels fixed O&M
Fuel costs
CAPEX
Onshore pipeline
Offshore pipeline
Pumping station
Accumulated OPEX
Onshore pipeline fixed O&M
Offshore pipeline fixed O&M
Power cost
195
90
20
55
10
20
2.315
180
420
140
1.575
n/a
n/a
n/a
2.938
175
223
521
38
427
670
884
n/a
n/a
n/a
n/a
805
405
400
3.669
1.419
n/a
2.250
4.412
3.738
n/a
673
-
n/a
n/a
n/a
-
n/a
n/a
n/a
106
46
60
MDKK
5 MtC O2/y
195
90
20
55
10
20
2.315
180
420
140
1.575
n/a
n/a
n/a
2.938
175
223
521
38
427
670
884
n/a
n/a
n/a
n/a
805
405
400
2.723
473
n/a
2.250
2.607
2.461
n/a
146
467
350
n/a
117
203
95
n/a
108
91
46
44
MDKK
5 MtC O2/y
370
90
20
230
10
20
4.065
180
420
350
2.835
280
n/a
n/a
4.512
350
223
521
95
825
920
884
694
n/a
n/a
n/a
1.311
711
600
3.669
1.419
n/a
2.250
4.499
3.738
n/a
761
-
n/a
n/a
n/a
-
n/a
n/a
n/a
136
76
61
MDKK
5 MtC O2/y
370
90
20
230
10
20
4.065
180
420
350
2.835
280
n/a
n/a
4.512
350
223
521
95
825
920
884
694
n/a
n/a
n/a
1.311
711
600
2.348
473
n/a
1.875
2.316
2.157
n/a
159
2.100
1.050
700
350
905
284
189
432
133
76
57
MDKK
5 MtC O2/y
120
70
20
n/a
10
20
4.770
180
390
1.750
1.925
525
n/a
n/a
9.101
525
223
967
473
527
920
3.036
2.430
n/a
n/a
n/a
1.435
835
600
3.669
1.419
n/a
2.250
4.587
3.738
n/a
848
-
n/a
n/a
n/a
-
n/a
n/a
n/a
175
114
61
MDKK
5 MtC O2/y
300
150
60
n/a
30
60
2.980
n/a
340
n/a
1.960
275
405
n/a
13.242
525
n/a
844
n/a
608
920
3.450
4.650
1.240
1.005
n/a
1.122
522
600
4.542
n/a
2.292
2.250
5.759
n/a
4.917
843
-
n/a
n/a
n/a
-
n/a
n/a
n/a
207
131
76
MDKK
5 MtC O2/y
120
70
20
n/a
10
20
3.855
n/a
390
n/a
1.925
525
375
640
11.443
525
n/a
967
n/a
527
920
3.036
2.430
620
831
1.587
1.275
675
600
3.669
1.419
n/a
2.250
4.575
3.738
n/a
837
-
n/a
n/a
n/a
-
n/a
n/a
n/a
185
124
61
MDKK
5 MtC O2/y
120
70
20
n/a
10
20
4.770
180
390
1.750
1.925
525
n/a
n/a
9.101
525
223
967
473
527
920
3.036
2.430
n/a
n/a
n/a
1.435
835
600
2.723
473
n/a
2.250
2.659
2.461
n/a
198
1.108
875
n/a
233
506
236
n/a
270
166
114
52
TRANSPORT
Total cost per ton, DKK/ton
*hereof storage
*hereof transport
Source: Catalogue of Geological Storage of CO2 in Denmark by Danish Energy Agency and Ramboll (2021) and Catalogue on
Technology Data for Energy Transport published by the Danish Energy Agency and Energinet (2017, updated in 2020),
supplied with Ramboll’s technical and commercial
insights (e.g. in relation to scaling up of costs for large-scale scenarios)
PIPELINE (from
port or from
emission source)
SHUTTLE
TANKER/
VESSEL
STORAGE
81
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0082.png
Ramboll - ccccc
5.3.4
Other advantages and disadvantages of the different set-ups
In the previous sections, the different set-ups were evaluated based exclusively on costs. This
section aims to provide an overview of other aspects of the identified aspects, both those in
favour and disadvantages.
In addition to being the least expensive option (as described in the previous section), the onshore
storage has the advantage of being located close to the large domestic CO2 emission sources
(Copenhagen area). However, uncertainty whether the site can be used (and thus need for
seismic tests and drilling) and the general risk of public opposition can lead to a longer permitting
process than in the case of the offshore site.
Although the most expensive option, offshore storage offers several advantages, especially in
known feasibility and demonstrated tightness. It can be potentially easier to obtain necessary
permits (especially for the onshore site). Furthermore, some existing equipment (platforms and
support systems) can potentially be reused, meaning that the offshore solution can be
implemented even faster than the onshore or nearshore solution.
Solutions with a pipeline from Germany would provide a more certain CO2 stream from abroad,
making it potentially easier (and cheaper) to find investors. On the other hand, this type of
solution is only meaningful when the full-scale operations are planned for construction from the
beginning, while sea transportation enables small-scale start with gradual build-up. Note that a
more gradual start is also possible in the case of the onshore storage, where pipelines from
source and other connecting infrastructure can be added afterwards.
The table below provides a detailed overview of the advantages and disadvantages of each set-up
for transport and storage of CO2 in Denmark.
Table 45: Overview of other (non-cost based) advantages and disadvantages of the
different set-ups
Set-up
Onshore
#1, #2
Advantages
- Havnsø is an attractive location for storage due to its
close proximity to large emission sources in the
Copenhagen area. Furthermore, it is close to a deep-
water port, making it feasible for transport with large
shuttle tankers (assumption for this project)
Disadvantages
- Since the site has not yet been
drilled, it is not 100% certain that
the site can be used for CO2
storage. It is, therefore, necessary
to carry out seismic surveys as well
as appraisal drilling, which can
extend the timeline (and also meet
public opposition due to the onshore
testing equipment)
- Due to the onshore location and
possible public opposition, permitting
process can be longer (and more
uncertain) than for the offshore
storage
- Nearshore reservoirs have not yet
been drilled, and it is not 100%
certain that they can be used for
CO2 storage. However, the seismic
equipment can be placed offshore,
meaning it is easier and can meet
less public opposition than onshore
- Although CO2 can be sourced from
the Aalborg area, the distance to the
largest source of domestic emissions
(Copenhagen area) is much longer
than for the onshore storage,
making it more expensive to
transport
- Although CO2 can be sourced from
the Aalborg area, the distance to the
largest source of domestic emissions
(Copenhagen area) is much longer
than for the onshore storage,
making it more expensive to
transport
Nearshore
#3, #4
- Pumping equipment can be located onshore, making
this solution less expensive than the offshore solution
(as the power connection can be done onshore and
does not need to be solved offshore)
- Similar to Havnsø, Hanstholm is located close to a
deep-water port that can receive large shuttle tankers
Offshore
All
offshore-
based
set-ups
- Tightness (and thus feasibility) of the geological
system has been already demonstrated, e.g. in
connection with EOR (Enhanced Oil Recovery) in North
America. Seismic studies still need to be carried out;
however, this process is expected to be shorter than is
the case for onshore or offshore storage sites.
- Furthermore, some of the existing equipment can be
reused (e.g. wells, platforms, parts of the topside
facilities, support systems). Together with the above,
this means that offshore storage can potentially be
82
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0083.png
Ramboll - ccccc
deployed faster/earlier than the onshore and nearshore
solutions.
- Due to long-distance to shore and lower environmental
impact, less public opposition is expected and
potentially easier to obtain necessary permits.
#6, #7
- Injection directly from vessels or FSU requires simpler
infrastructure and allows to start with a smaller
solution and then potentially gradually scale-up
- A set-up without the need for construction of pipeline
means that potentially fewer stakeholders need to be
involved
# 8, #9
- Pipeline from source binds emitters, lowering
competition for CO2 and providing more security (thus
potentially making it easier and less expensive to find
investors, especially if the pipeline entails certain CO2
sources like iron & steel industry in the Hamburg area)
- Potential synergies with a planned P-t-X plant close to
Esbjerg port, i.e. if the plant will need to use carbon, it
could be possible to share the pipeline from emission
sources and also costs
- Solutions with vessels (set-up #6)
and with FSU (set-up #7) are more
expensive than with a pipeline from
the port (set-up #8)
- To be fully efficient, solutions with
pipeline transport from mission
source require that the full-scale
infrastructure is constructed from
the start (i.e. it is not meant to start
small and then expand/add-on later
on)
- Solution with pipeline form source
(e.g. DE) require pre-work, i.e.
collaboration and agreements with
German companies and potentially
state
5.4 ASSESSMENT OF DANISH COMPETITIVENESS FOR CO2 STORAGE
To assess the competitiveness of the Danish CO2 storage, criteria for competitiveness need to be
defined. In this case, the following
criteria
are considered suitable
to assess the
competitiveness of a CO2 storage solution:
1.
A low-cost solution:
Although this report has not compared the cost of CO2 storage in
different countries, it was assessed that onshore storage is the least expensive solution
for CO2 storage, followed by near-shore storage and offshore storage as the most
expensive option. Similarly, when large CO2 volumes are concentrated, pipeline proves to
be the most cost-effective transport solution for distances of up to ~700 km. Combining
offshore solution with an onshore transport pipeline (from source) can thus potentially
provide a more cost-effective solution than a combination of offshore storage and CO2
transport by sea
2.
Offers low marginal cost:
Ability to create a solution that allows flexibility
i.e. it is
possible to add or reduce volumes at a low additional cost
3.
Provides high solution convenience
(for other countries): A solution that is convenient for
the CO2 producer; This could be geographical proximity or an easy and/or a low-cost way
to push over large amounts of CO2, i.e. without investing in multiple storage facilities and
complex logistics set-ups
Based on the analysis of the different
set-ups for transport and storage of CO2 in Denmark,
the following
factors
are identified in
providing Denmark with a competitive advantage:
Denmark can establish varying set-ups and even combine them if needed.
Possible
storage solutions include onshore, nearshore and offshore sites and the possibility of
establishing varying transport solutions (e.g., pipelines, shuttle tanker, vessels, etc.). All
storages can be potentially combined through a network of pipelines, allowing for a huge
storage capacity (e.g., ~40 MtCO2/y), high input flexibility and a low total cost per tonne
of CO2 (as a result of combining the least costly solutions for both storage and transport);
Different solutions can also be added/expanded over time
Denmark is strategically located close to Northern Germany,
which has one of the largest
CO2 sources in Europe. Close geographic proximity, combined with a possibility to build a
pipeline from a cluster in Northern Germany, can provide a very cost-effective and overall
convenient solution for Germany
Likewise, Denmark is favourably located regarding CO2 transport by sea from target
countries, Sweden, Finland, and Poland.
Although, e.g., SE has formally announced that
they are interested in collaboration with Norway for storage of CO2, many of the CO2 in
both Sweden and Finland comes from the pulp and paper plants that are spread along the
83
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0084.png
Ramboll - ccccc
coasts. As the CO2 can be stored on the eastern side of Denmark (e.g., in Havnsø), or
loaded off for pipeline transport to other storage sites in Denmark, this could potentially
provide a cost-competitive solution that is also highly convenient (as large amounts of
CO2 will only need to be shipped halfway compared to storages in, e.g., UK or Norway).
Based on the above, Ramboll assesses that
Denmark can offer a highly competitive solution that
is cost-effective, flexible, and a convenient option for the target countries
(especially Germany,
Sweden, Finland and potentially Poland). The most cost-competitive solutions include set-ups
where large CO2 amounts are contracted via pipeline and those that comprise or combine onshore
and nearshore storage sites.
5.5
INSTITUTIONAL CONSIDERATIONS
It is important to consider varying institutional set-ups of CCS since although CCS is technically
feasible and can remove CO2 emission on a large scale, the business case for it does not exist.
Market failures prevent actors from developing CCS on their own. There are two principle market
failures at work:
The price of emitting CO2 is lower than the socioeconomic cost of emitting CO2.
This
incentivises businesses to emit CO2 since, from a financial perspective, this is more
profitable than what is logical from a socioeconomic perspective (negative externality)
CCS technology has the characteristics of a public good,
i.e., it is useful to the public/others
and not only to the technology developer. The developer will thus carry the costs while the
benefits are shared by the public (positive externality)
Additionally, there are investment barriers such as establishing a storage facility that comes with
a high up-front cost. In contrast, the costs become lower for any new actors entering to utilise the
existent set-up. They benefit from the experience and knowledge from the first developments,
which will lower costs for subsequent actors who enter. Thus, from a business perspective, it can
therefore be profitable to wait until the first movers have incurred the cost of early development.
Finally, there is a need for many actors since the whole chain involves activities from capture, to
transport and storage. This creates a risk in terms of the development and dependency of other
actors; A risk that is difficult for one industry actor to take.
217
The above highlights the inevitable need for state involvement since without it, there will be no
incentives with current conditions for market actors to embark on CCS deployment alone. Further,
it also stresses the importance of considering institutional set-ups. The interfaces that arise from
the transition between the different CCS value chain segments leads to uncertainties and possibly
complex institutional set-ups, which shall be addressed. However, suppose the institutional set-up
is robust and carefully planned. In that case, CCS can be deployed at scale, and the CCS
abatement cost might come down and be more favourable compared to other CO2-reduction
solutions.
To understand the need for state involvement and the interplay between different actors and
institutional set-ups, it is useful to outline cases in other countries with CCS projects. Following
case studies will be described below: the Norwegian full-scale carbon capture, transport and
storage demonstration project
“Longship”, three large CCUS
developments in the UK and the
Government’s CCS business model considerations,
and the Porthos CCS project in the
Netherlands. Main takeaways from the cases (regarding institutional set-ups) are presented at the
end of this section.
Box 5
A note on business case set-ups vs. business models
A pivotal distinction is made between business case set-ups and business models. Business
case set-ups bring forth the most relevant market-based cases for which the profitability and
break-even is calculated, whereas business models incorporate the organisational aspects; In
this case, pivotal institutional considerations necessary to develop transport and storage
infrastructure and operate it, which are discussed below.
217
Natalia Romasheva and Alina Ilinova -
“CCS Projects: How Regulatory Framework Influences Their Deployment”;
Norwegian Ministry of
Petroleum and Energy, Longship
Carbon capture and storage
84
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0085.png
Ramboll - ccccc
5.5.1
Case studies from Norway, UK and the NL
5.5.1.1 Norway: The Longship carbon capture and storage project
The Norwegian Government proposed to the Norwegian Parliament that funding be provided to
establish a full-scale CCS project
named “Longship”. The objective of the Longship project
is to
demonstrate that CCS is feasible and secure and to facilitate learning and cost reductions in
subsequent projects. Further, according to the white paper to the Norwegian Parliament from the
Norwegian Ministry of Petroleum and Energy,
“Infrastructure
will be developed with additional
capacity that other projects can utilise. Hence, the threshold for establishing new carbon capture
projects will be lowered. Longship can also facilitate business development through harnessing,
transforming, and developing
new industries in Norway”
218
.
The Longship project set-up was based on a pre-feasibility study conducted by Gassnova in 2015,
which recommended that a transport and storage actor was needed to provide services to other
industry actors who did not possess expertise in CO2 transport and storage. Further, the study
suggested dividing the value chain into parts where each actor has responsibility for the
undertaking within their activities. Meanwhile, the state would minimise the risk of these actors by
acting as the intermediary between the interfaces of the value chain parts, which requires the
state to ensure the value chain functions throughout the design phase to the realisation and
operational phases, concerning the interfaces, schedules and operational risks.
The Longship project’s key operating parties are shown in the
picture below. They include the
Northern Lights Consortium,
which is a collaboration between Equinor, Norske Shell and Total E&P
who has the role of intermediate storage onshore, transport and geological storage. Equinor has
the lead responsibility of CCS studies performed by the Northern Lights. The Longship project also
includes industry companies capturing CO2 at their plants, hereunder, the cement company
Norcem AS
(part of the HeidelbergCement Group) as well as the waste-to-energy incineration
plant
Fortum Oslo Varme AS.
Figure 14: Overview of Longship project
Source: Norwegian Ministry of Petroleum and Energy, Longship
Carbon capture and storage
The Northern
Lights Consortium’s concept is shown in the below picture and
is an integrated part
of the Longship project.
218
Norwegian Ministry of Petroleum and Energy, Longship
Carbon capture and storage, p. 7
85
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0086.png
Ramboll - ccccc
Figure 15: Overview of Northern Lights concept
Source: Norwegian Ministry of Petroleum and Energy, Longship
Carbon capture and storage
In addition to the key stakeholders involved in the operation of the Longship CCS project, the
institutional set-up of the project importantly also includes the
Norwegian Government,
the
Norwegian state and Gassnova,
who is the state enterprise for CCS made up of members from
Gassnova and the Norwegian Ministry of Energy and Petroleum. The role of all the parties in the
institutional setup is described below.
The Norwegian Government
brought forth to the Norwegian Parliament that funding
should be allocated for the implementation of the Longship project. The Government
continues to foster international cooperation on technology development and emission
reduction, which are key to Longship. They also have the role to follow up on the Longship
project and the benefit realisation work in close collaboration with the industrial
companies and share the learnings of CCS in Europe and the world.
The Norwegian state
acts as the intermediary between Norcem, Fortum Oslo Varme (if
applicable) and Northern Lights. The state carries risks related to the interfaces between
the different parts of the project, as well as the risk associated with project scheduling
and costs. The state will need to balance the risks with the costs since costs will need to
be kept at a minimum to demonstrate the project feasibility and a successful effect of the
project. The state is expected to cover about two thirds (NOK 16.8 billion of 25.1 billion)
of the project costs. However,
the state’s eventual costs will depend on
the actual costs of
the project. The costs are high, and the state carries risk through funding agreements
with the industrial companies. The state will not engage in negotiations of state aid with
individual stakeholders. Uncertainty also prevails beyond
the state’s control that affects
the project success, such as other countries' climate policy development and the number
of subsequent projects implemented
Gassnova
leads the overall planning of Longship;
Follows up on the actors’ project
management through agreed reporting on behalf of the state, and manages the study
contracts with the industry partners. Gassnova evaluated the FEED studies and
subsequently provided project recommendations to the Government
219
. Gassnova also
coordinates the work on benefit realisation and facilitates the sharing of relevant
experience with other projects and stakeholders to ensure the overall project goals are
met.
Equinor
the majority of which is state-owned
–formed
a consortium with
Norske Shell
and Total E&P,
named
Northern Lights.
Equinor also has the lead responsibility of carrying
studies of CO2 transport in connection to the Longship project. They are jointly
responsible for the CO2 transport and storage part of the project. Knowledge and
219
In the Fall of 2016, Gassnova announced two competitions for state aid to carry out concept selection and front-end engineering design (FEED)
studies; one for CO2 capture on industrial sites and one for geological storage of CO2. After the studies were completed the Storting pledged
funding to initiate the FEED studies at Norcem and Fortum Oslo Varme.
86
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
experience from the Petroleum industry have been and are vital to the CCS development
in Norway. The companies will own and develop the project, which comprises shuttle
tankers for transport of liquid CO2, a reception terminal in Øygarden municipality located
in Vestland county on the south-west coast of Norway, and pipeline to a well where CO2
will be injected into a storage formation beneath the seabed. The state aid agreement for
the transport and storage part of the project has been designed to regulate the cost and
the risk distribution of the project, including incentives to keep costs low and bring in new
projects. All of the
Northern Lights’ revenues will stem from CO2 storage from
recent
projects. Thus, Northern Lights has a solid incentive to develop the market for CO2
storage. Further, the Ministry of Petroleum and Energy considers it pivotal that Northern
Lights’ capacity is utilised by industry actors
not financed directly by the Norwegian state.
The success of this will provide evident proof that the project has the desired effect.
Northern Lights has also contributed to the benefit realisation work during the FEED
phase. Northern Lights comprises a two-phase development plan: The first phase includes
an estimated capacity of 1.5 MtCO2/y (completed mid-2024) over 25 years. A subsequent
and potential second phase is estimated with a capacity of 5 MtCO2/y.
Norcem
is a Norwegian cement manufacturer part of the Heidelberg Cement Group, where
carbon capture from its activities at its factory in Brevik is performed. The company
conducted FEED studies and has also verified their selected carbon capture technologies,
optimised integration, prepared contracts with key suppliers and prepared benefit
realisation plans. The Norcem capture development has a large state grant (NOK 3.8
billion)
Fortum Oslo Varme
is a waste incineration plant, and carbon capture from its activities at
the waste incineration facility at Klemetsrud, Oslo is performed. The company conducted
FEED studies and has also verified their selected carbon capture technologies, optimised
integration, prepared contracts with key suppliers and prepared benefit realisation plans.
However, the Ministry of Petroleum and Energy ranks Norcem significantly higher than
Fortum Oslo Varme since
the state’s costs and risks are
lower for
Norcem’s project than
Fortum Oslo Varme’s project.
The state aid is limited to NOK 2 billion in investments and
NOK 1 billion in operating expenses and the rest of the costs Fortum will need to apply for
external funding. Thus, the Fortum Oslo Varme project is dependent on external funding
for it to become operational and has therefore applied for a large grant via the EU
innovation fund
The Longship project highlights the importance of state involvement to a large extent, since not
only is the state itself involved combined with Government support, but Gassnova and Equinor are
both state-owned
organisations. Gassnova ensures that the state’s interests
are incorporated
throughout the project, whereas any substantial revenue gains made by Equinor is state-owned
and thus also controlled.
5.5.1.2
UK: CCUS developments
and the Government’s CCS business model
propositions
The UK Government has recently funded three large developments that will jointly deliver CCUS
applications to approximately 50% of the industrial emissions generated in the UK: Teesside
(NZT) and Humber projects (ZCH) which will be connected by the Northern Endurance Partnership
(NEP).
220
These developments
are a consequence of the UK’s Ten Point Plan, which outlines the
need and ambition to develop a CCUS industry.
221
The below picture shows the connection between the three developments in the UK.
220
221
Business Live
– “Huge North Sea carbon storage solution backed alongside the regional projects set to feed it”
HM Government
– “The Ten Point Plan for a Green Industrial Revolution”
87
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0088.png
Ramboll - ccccc
Figure 16: Overview of the three large development projects delivering CCUS solutions
in the UK
Source: Oil and gas climate initiative
The NZT is a full chain CCUS project led by oil and gas majors
BP,
Eni, Equinor, Shell, and Total,
with BP as the main operator. From 2025, the project aims to capture up to 10 mtCO2 emissions
per year.
The ZCH is a partnership that will build a net-zero industrial cluster and has the ambition to
decarbonise the North of England, including solutions such as low carbon hydrogen production,
CCUS and shared onshore and offshore infrastructure and greenhouse gas removal technology. It
comprises 12 formal partners:
Associated British Ports (UK’s
leading port operator),
British Steel (steel producer),
Centrica Storage (Gas facilities),
Drax (UK’s
third-largest electricity generator),
Equinor (Oil and gas),
Mitsubishi power (power generation equipment),
National Grid Ventures (developing and operating energy infrastructure),
PX Group (manages, operates, and maintains industrial facilities),
SSE Thermal (developer, owner and operator of electricity generation and energy storage
assets),
Triton Power (power generation),
Uniper (energy company) and
The University of Sheffield AMRC (network of world-leading research and innovation
centres working with manufacturing companies)
By 2026, ZCH expects to capture at least 17 MtCO2/y from projects across the Humber 2035.
The NEP will develop the offshore infrastructure to transport and store millions of tonnes of CO2 in
the UK North Sea.
BP, Eni, Equinor, National Grid, Shell
and
Total
formed the NEP Partnership,
with BP as the operator.
All three developments have secured funding from the Industrial Strategy Challenge Fund, which
the UK Government sets up to address the most significant industrial and societal challenges
using research and development based in the UK. Jointly the three developments have received
GBP 229 million in public and private funding. Thus, as was the case with the Norwegian Longship
project state funding, is once again proven to be key to mobilise CCUS projects and further unlock
private investments.
Further, the UK Government has published a whitepaper on potential business models for CCUS in
which the Government indicates which ones they find most promising:
88
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
CO2 transport and storage:
a regulated T&S network where financing follows a RAB
business model
222
, in which there is an economic and market regulator, and the risks are
allocated to those who are best able to manage them.
Power CCUS:
a payment model with payment availability of low carbon generation
capacity (providing a known return of investment payment for investors)
223
, and a
variable payment
(to account for a power CCUS plant’s added costs, relative to those of
an equivalent unabated plant). This payment combination could allow a plant to operate
flexibly, provide value to a low carbon electricity system with increasing renewable
capacity, and yet provide certainty to investors.
Industrial CCUS:
a hybrid model comprising three phases. Phase one entails an industrial
contract for difference (CfD) with upfront capital support to assist with revenue support
for a set duration, and CfD payments would cover the operating cost of capture, recovery
of the CAPEX investment made by the owner of the plant, and costs for accessing the CO2
T&S infrastructure. Phase two entails a transition to competitively allocated CfD after the
risks and costs are reduced in phase one, whilst upfront investment funding from the
Government is phased out. Phase 3 is a market-based approach, where CCUS is sustained
by the CO2 price alone, based on the assumption that as the market matures, costs of
CCUS technologies will come down, and pass-through costs will increase with a more
developed market for low-carbon industrial products along with policies allowing efficient
competition.
Together with the CCS Infrastructure Fund, the business models shall incentivise decarbonisation
and cost reductions while minimising the risk of market distortions. The Government recognises
the inherent market failures and emphasises the need for their involvement, primarily to support
the value chain interfaces and fund the initial clusters to help unlock capital investments.
However, it is important the financing model reflects the large upfront capital investments and
that the operational costs are expected to be lower, and thus supports investment and returns
across the asset’s lifetime.
The UK Government’s preferred model for CO2 transport and storage is further elaborated upon
below to highlight the importance of state involvement both in terms of funding but also in terms
of financial regulatory oversight and the need for risk allocation in order for the CCS market to
function efficiently. The CO2 transport and storage model shall incorporate the following pivotal
aspects:
The Government supports and incentivises the investment in CO2 infrastructure,
especially for the first developments
CO2 transport and storage regulated by an
independent body
to oversee the industry and
deploy Government policies to address natural monopolies issues linked to regional T&S
networks
Finance and funding through a
RAB model
222
consisting of regulated revenue streams
determined by a building block approach (representing a category of costs incurred by the
project company, which are scrutinised by the economic regulator to ensure costs are
efficient) paid by the users of the T&S network determined by an
economic regulator
to
mimic the incentives similar in a competitive market. The economic regulator and market
regulator would oversee the interface of capture plants to the T&S network, similar to the
Oil & Gas
Authority’s role in awarding CO2 storage licenses offshore. This role could be
performed by a single entity
T&S
risk shall be allocated to the party that is best able to manage them,
however, no risk
model has been developed. The Government will work with the CCUS T&S Expert Group to
develop an understanding of the risks
224
222
RAB is short for Regulated Asset Base: “The T&S company
would receive a licence from an economic regulator, which grants it the right to
charge a regulated price to users in exchange for delivering and operating the T&S network. To prevent monopolistic disadvantages, the charge is
set by an independent regulator who considers allowable expenses, over a set period of time, to ensure costs are necessary and reasonable.
Model variants could include the provision of financial support to decrease
the upfront capital expenditure.”, p 21. Source:
UK, Department for
Business, Energy & Industrial Strategy
– “A Government Response on potential business models for Carbon Capture, Usage and Storage”
223
The availability payment could be a stable ongoing payment from a counterparty to the generator. This could be paid based on the availability
of low carbon generation plant, could be set relative to the cost of the generation and capture plant, taking into account capture rate availability,
and could be indexed to inflation.
224
UK, Department for Business, Energy & Industrial Strategy
– “A Government Response on potential business
models for Carbon Capture, Usage
and Storage”
89
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0090.png
Ramboll - ccccc
The UK Government’s whitepaper
on CCUS business models illustrates not only the need for state
funding. Still, it emphasises the need for the Government to propose and establish business
models and act as the intermediary as with the Longship case.
5.5.1.3 The Netherlands: The Porthos project
Porthos
225
CCS project is developed in the Netherlands to transport CO2 from industrial activities
in the Port of Rotterdam and store the emissions in empty gas fields (P18-2, P18-4 and P18-6)
below the North Sea. Over 15% of the Netherland’s
CO2 emissions are emitted in the Rotterdam
Port area. Various industry companies will capture the CO2, and they will supply it to an existing
pipeline that runs through the Rotterdam port area and is approximately 30 km. The CO2 will
then be transported through a 19 km-long offshore pipeline to a platform laid beneath the North
Sea, approximately 20-25 km off the coast. The project infrastructure is proposed to be
developed
as “open access” to capture, transport and store CO2 from industry
companies in the
Port of Rotterdam, such as refineries, chemical producers, and hydrogen plants. Companies will
be subject to pay a fee for having their carbon emissions transported and stored by the Porthos.
It is expected that the project will be operational from 2024, and during the first years, it is
estimated that 2.5 MtCO2 can be stored per year
226
.
The Porthos project is mapped below.
Figure 17: The Porthos project map
Source: Porthos CO2 transport and storage website
The key stakeholders in the project are the following three main parties:
The joint venture amongst the
Port of Rotterdam Authority, Gasunie
and
EBN,
who are all
state-owned and will be responsible for the transport and storage of CO2. The Port of
Rotterdam Authority contributes to the project with its experience and expertise in the
local situation and market, Gasuine has experience and knowledge within gas
infrastructure and transport, and EBN contributes with its expertise within offshore
infrastructure and has expertise within the field of deeper soil layers
parties contribute the following
The
Dutch government
who provides funding and mandate
225
226
Porthos stands for Port of Rotterdam CO₂ Transport Hub and Offshore Storage.
Porthos CO2 transport and storage website
90
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0091.png
Ramboll - ccccc
Private companies
that will supply CO2 invest in carbon capture and pay for storage.:
The joint venture wanted to build the infrastructure, and to build it, they needed private
companies to commit as clients, however, while the clients also wanted the infrastructure, they
needed funding for capture infrastructure and storage fees. Meanwhile, the Dutch Government
wanted to ensure the infrastructure before providing funding to the private companies
227
. The
solution to this was to establish agreements with both the Government and companies supplying
CO2. Thus, so-called Joint Development Agreements (JDAs) has been signed between Porthos and
four companies: Air Liquide, Air Products, ExxonMobil and Shell, although the agreements are not
binding. The JDAs underlie that Porthos and the companies collectively work towards definite
transport and storage contracts
228
.
An important development to enable these companies and others to make investments within
decarbonisation has been the Dutch sustainable energy transition subsidy scheme (SDE++),
which was updated in 2020 from SDE+ to SDE++ to broaden the scope and provide funding for
CCS projects and other decarbonisation technologies. In 2021, the four private companies: Air
Liquide, Air Products, ExxonMobil and Shell, applied for EUR 2 billion from SDE++, which is
expected to be granted in the spring of 2022.
229
The SDE++ also provides funding for transport
and storage infrastructure. The subsidy scheme builds on a CO2 premium, which is based on the
cost (CAPEX and OPEX over a 15-year period) and revenues, as per the existent ETS scheme. The
SDE++ only provides a subsidy for the profitable part of the project (see the illustrative graph of
this), and the subsidy is adjusted on a yearly basis based on the ETS price. Since CCS is viewed
as a relatively complex technology, the subsidy rounds are conducted on an open book basis.
Receivers of the subsidy must report the costs incurred to avoid over subsidy. They are also
subject to completing feasibility studies, and the projects must be realised within a 5-year period.
The SDE++ funds the most competitive technologies, and the estimated costs of applications are
calculated by the Dutch Environment Agency, which provides a maximum subsidy. For CCS, the
maximum is EUR 62 per tCO2, but it can exceed EUR 100 per tCO2 depending on the project
(e.g., considering capture methods for hydrogen production in terms of methane).
230
Figure 18: The SDE++ provides subsidy only for the profitable part of the project
Source: Porthos CO2 transport and storage website
Funding for Porthos has also been collected from several other sources; for the feasibility studies,
Porthos was granted EUR 1.2 million from RVO (Netherlands Enterprise Agency) in 2018 and EUR
6.5 million from the European Commission in 2019, as well as a subsidy of EUR 102 million from
Brussels for the construction of the infrastructure in 2021. In 2020, Porthos was deemed a
“Project of Common Interest (PCI)” by the EU, which are cross border infrastructure projects
deemed pivotal and they link energy systems of EU countries.
The final investment decision is expected in 2022. It is dependent on technical development
infrastructure, Environmental Impact Assessment and permits, the securing of agreements with
227
The Dutch Ministry of Economic Affairs & Climate Policy: Clean Energy Solutions Center
– “Carbon Capture, Utilization and Storage in
The
Porthos CO2 transport and storage website
Offshore Energy website
–” Porthos CCS project: Industry targets €2 billion in Dutch subsidies”
The Dutch Ministry of Economic Affairs & Climate Policy: Clean Energy Solutions Center
– “Carbon Capture, Utilization and Storage in The
Netherlands (Webinar)”
228
229
230
Netherlands (Webinar)”
91
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
companies to supply CO2, as well as the Dutch government’s continued support to enable CCUS.
After the final investment decision, the construction of the project can be initiated.
226
The Porthos case outlines once again strong representation from state-owned entities,
Government intervention, especially to get the project started and to incentivise and enable the
private companies to commit to CCS ventures. Further, this case also importantly portrays
European funding to support site preparations.
5.5.2
Lessons learnt
There are three main takeaways from the cases presented above regarding institutional set-ups:
1.
The necessity of
state involvement
in terms of funding (upfront capital expenditure), risk
management and supporting the initiatives
2.
The need for a
body that acts on behalf of the state
and administers and maintains the
strategic overview of the project progress and follow-up
3.
The need for parties who possess
operational and technical expertise
All three country cases highlight
the importance of state involvement
since other actors do not
have the capacity or economic incentive at present to drive the development for CCS on their
own. Thus, there is most likely a need for state-aid and state involvement in Denmark as well,
and the Danish Government will probably need to take a supportive role in the CCS initiative.
Further, the cases illustrate the
need for an organisation to take the overall lead and oversight
role;
One that will act on behalf of the state to ensure the project is progressing accordingly and
that the incentive structures that are in place are working efficiently to demonstrate market-based
success, e.g., in the Longship case this role is held by Gassnova. To this, a possible existent
candidate could be the Danish North Sea Fund
(“Nordsøfonden”), Energinet
or its subsidiary Gas
storage Denmark to take on this lead administrative and oversight role of CCS in a Danish
context. Another candidate to take on this role is the Danish Energy Agency. Alternatively, a new
entity might need to be established. It is also important to consider that the candidate covering
this role has the necessary expertise in the varying set-ups between onshore, nearshore, offshore
or a combination of these.
Additionally, an entity or a
group of entities representing the state to some extent in the
operational role of CO2 transport and storage
has also been identified in all cases. In Longship,
Equinor (state-owned) has the lead role of operating and overseeing the transportation and
storage of CO2, whereas, in Porthos, this role is held by three companies in a joint venture who
are all state-owned. Similarly, the regulated T&S network business model that the UK
Government is favouring is also comprising a state-economic regulatory body that can oversee
transport and storage interfaces of CO2. In Denmark, there is a limited number of companies that
are state-owned and would be suitable for this role. However, one candidate could be Energinet or
its subsidiary Gas storage Denmark might be candidates to take this responsibility. However,
these entities do not encompass offshore geological knowledge, so they would be more suitable in
a business model set-up comprising an onshore and possibly nearshore solution. In an offshore
set-up, this transport and storage operating role could also be a constellation comprising oil and
gas companies (e.g., Ineos, Total) underlying a model where there is a competition to ensure
costs are kept efficient, and revenues are allocated.
The cases also portray the
importance of involving parties with technical knowledge
about
geological storage, capture technology etc. Additionally, as EBN in the Porthos case possesses
knowledge about deeper soil levels, it can be necessary to involve this type of organisation in the
institutional set-up in Denmark (e.g. GEUS that has geological expertise).
It is essential to consider an appropriate institutional setup to incentivise the deployment of CCS
projects and to plan a constellation of value chain partners who can work seamlessly between the
interfaces of the value chain segments. It is also pivotal to tailor the institutional set-up so it fits
the chosen project location and infrastructure set-up (e.g., offshore, onshore, nearshore or a
hybrid of these) since the entities will need to possess expertise suitable to this.
92
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0093.png
Ramboll - ccccc
6.
PROFITABILITY ASSESSMENT OF CO2 STORAGE IN
DENMARK
6.1
INTRODUCTION TO BUSINESS CASES
The business cases in this chapter are developed to assess the return on investment of different
feasible set-ups for the transport and storage of CO2 in Denmark. An important distinction is
made between the business case set-ups and the business models. Business case set-ups bring
forth the most relevant market-based cases for which the profitability and break-even are
calculated, whereas business models incorporate the organisational aspects; In this case, pivotal
institutional considerations necessary to develop CCS infrastructure and operate it. This chapter
outlines the selected business case set-ups.
Box 6
– A note on the business cases’
profitability and underlying revenue
It is important to clearly state that all business cases assume state-aid in order to become
profitable. The reference price applied underlies state-aid, i.e. the price will be a combination
of e.g., CO2 prices, CO2 taxes, grants etc. Without these support mechanisms the CCS
business cases will neither result in the net present values (NPV) nor the payback periods
presented.
It is difficult to estimate a precise price for CO2 transport and storage since the market is
immature and there exists no defined market price at present. CO2 prices and subsidies are
potential ways to construct the price, however, it is highly uncertain to what extent, who and
how these will be allocated in the future (e.g., income from CO2 pricing will also cover other
technologies than CCS). Thus, we have instead developed an alternative reference price,
which is based on a feasible competing set-up in the countries that are the main competitors
to Denmark: UK and Norway.
Based on the assessment of Denmark’s competitive traits in section
1 three overarching business
cases are presented:
Case 1):
Small-scale - Denmark to become a domestic CO2 storage provider purely with sea
transportation only
This case is purely focused on the national market of CO2 transport and storage. Denmark will
store 5 MtCO2 from domestically sourced CO2 volumes at an offshore storage site in the Northern
fields, to which 3 Mt will be shipped with vessels from Copenhagen and 2 Mt from Aalborg. In
practice, CO2 can be picked up by vessels from any location, also from abroad and also depending
on market supply. However, this case assumed only Danish CO2 for the business case
calculations.
This case is appropriate if the intention is to have more flexibility and establish a starting point for
CO2 transport and storage in Denmark. This case can offer more flexibility in that it provides a
platform to get started with CO2 transport and storage while it does not necessarily limit the
option to expand the infrastructure later. However, it could limit
Denmark’s unique opportunity to
offer CO2 storage internationally and take on a leading CO2 storage provider role, which might be
difficult to claim later when competing countries have developed their infrastructure. Moreover,
since this case takes a point of departure in vessel transport as well as offshore storage, it is the
most expensive case in terms of cost per ton of CO2 (particularly demonstrated by the need for
higher operational expenditures due to a higher number of wellhead platforms, standby vessels as
well as mooring and loading systems required).
Note that small-scale cases could also be developed for onshore and nearshore storage, and these
solutions could potentially have similar advantages and lower costs than the offshore solution in
case 1. However, the scope of this report only comprises the offshore storage for the small-scale
solution.
Case 2):
Medium-scale - Denmark to become a domestic CO2 storage provider primarily while
serving the international market to some extent
In this case, Denmark is storing CO2 for 10 MtCO2/y and will still focus primarily on storing
domestic CO2 volumes; 5 MtCO2/y will be reserved for Danish CO2 volumes (3 MtCO2/y from
Copenhagen and 2 MtCO2/y from Aalborg), while also providing 5 Mt storage capacity for CO2
93
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
volumes coming from Germany, Sweden, Finland, Poland and/or the Netherlands. As such, the
primary focus will be to serve the national market while also entering the international market at
some scale.
This provides a starting point for becoming an internationally claimed player within CO2 transport
and storage in Northern Europe. This case is suitable if the intention is to enter the international
market from the beginning and take on less risk and limit the up-front capital investments than
comparing to case 3 (large-scale international CCS solution). All of the options, in this case, have
a lower cost per ton of CO2 than case 1 while being higher than case 3. Further, the options, in
this case, provides the opportunity to expand the CO2 transport and storage later. However, as
with case 1,
these options limit Denmark’s possibilities to offer CO2 storage internationally
on a
large scale and take on a leading CO2 storage provider role, which might be challenging to claim
later when competing countries have developed their infrastructure. Additionally, while the
solutions in case 2 require less complexity and investments in CCS infrastructure than case 3,
they will also result in a smaller number of market players. Thus, there is less competition and
potential for the case to become more market-oriented.
There are three different storage placement options for this case:
2A) Onshore CO2 storage,
2B) Nearshore CO2 storage, and
2C) Offshore CO2 storage
The onshore CO2 storage scenario includes a planned 10 MtCO2/y storage in Havnsø with a
pipeline from Copenhagen to Kalundborg and shuttle tanker transport to Havnsø harbour from
international countries. As previously demonstrated, the onshore possibility is the most affordable
option, and thus, Denmark can provide a cost-effective solution for potential export countries.
However, there might be some public opposition since there are housing areas onshore (and the
general opposition against onshore storage observed in some other countries).
The nearshore option includes a planned 10 MtCO2/y storage in Hanstholm about 50 km from
shore, a pipeline from Copenhagen to Hanstholm (partly onshore and partly offshore, via
Fredericia), one onshore pipeline from Aalborg to Hanstholm and one shorter, offshore pipeline
from Hanstholm port to the storage site. Furthermore, shuttle tanker transport is assumed to
Hanstholm harbour from international countries. This scenario is more expensive than the onshore
scenario yet less expensive than the offshore scenario.
The offshore scenario includes a CO2 storage site in the North Sea fields with a planned capacity
of 10 MtCO2/y, a pipeline from Copenhagen to Esbjerg (partly onshore and partly offshore, via
Fredericia), as well as shuttle tanker transport to Esbjerg harbour from international countries.
CO2 is then transported from Esbjerg to the offshore site via an offshore pipeline (the case
assumes reuse of the existing gas pipeline). This scenario is more expensive than 2A and 2B.
Furthermore, for many of the source countries, the distance to this storage by ship is not
significantly different from the offshore storage possibilities that UK or Norway is providing. Thus,
there will be a potentially lower incentive for export countries to opt for storing their CO2 in
Danish offshore storage comparing to Norwegian storages or even CO2 storages provided by the
UK, compared to the onshore and nearshore solutions.
Case 3):
Large-scale - Denmark to become an established large-scale international CO2 storage
provider while serving the domestic market simultaneously
In this case, Denmark is a large-scale CO2 storage provider for international markets. Denmark
has a competitive advantage in terms of its location, as Denmark is strategically located in close
proximity to Germany
the largest CO2 emitter in Europe and Sweden, Finland, Poland, and The
Netherlands. Denmark can provide an attractive and cost-effective pipeline solution for German
CO2 volumes, a pipeline spanning from Northern Germany to Esbjerg serving 20 MtCO2/y. In
total, Denmark will store 40 MtCO2/y; 20 MtCO2/y from Germany; 15 MtCO2/y in total from
Sweden, Finland and Poland, as well as 5 MtCO2/y domestically from Denmark. In this case, the
Netherlands is not accounted for since the case will mainly focus on serving pipeline and shipping
solutions for Germany and the countries located East of Denmark. However, this option does not
exclude any potential CO2 volumes coming from the Netherlands, e.g. by ships, and these
volumes would be considered as an additional upside.
This case includes storages in Havnsø (10 MtCO2/y), Hanstholm (10 MtCO2/y) and two offshore
storages in the Northern fields (20 MtCO2/y in total). It would also include a pipeline from
94
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0095.png
Ramboll - ccccc
Copenhagen to Esbjerg (partly onshore and partly offshore, via Fredericia), Hamburg to Esbjerg,
Esbjerg to Hanstholm, and from Hanstholm to Aalborg, one shorter offshore pipeline from
Hanstholm port to the Hanstholm site and two offshore pipelines from Esbjerg to the offshore
sites (the case assumes reuse of the existing gas pipeline in one case).
The advantage of this case is that Denmark will take on a leading CO2 storage provider role in
Europe by providing a unique CCS solution, which the other countries do not have the capacity or
possibility to offer. It will also commit Germany to store its CO2 volumes in Denmark through a
convenient and cost-efficient pipeline solution. Further, Denmark will make it favourable for
Sweden and Finland to store their CO2 in Denmark
by providing a pipeline connection from
Kalundborg to a mix of onshore, nearshore and offshore CO2 storage sites. This would make it
considerably more convenient for these countries to store CO2 in Denmark instead of shipping it
to the UK or Norway.
This case will also entail that various public and private bodies are involved and are responsible
for different parts of the value chain. Since there are so many transport infrastructures laid out, it
might involve more competition between players, and as such, CCS might become more market-
oriented.
The potential disadvantages are that this solution will require extensive state involvement and
investments in widespread CCS infrastructure. It will also require the EU to cooperate to support
and pass policies that will aid the CCS market.
6.2
OVERVIEW OF ANALYSED BUSINESS MODELS
The scope of the business cases comprises the nationally focused business case 1 and the
overarching nationally and partly internationally focused business cases 2A, 2B, 2C and the
internationally-focused business case 3:
Table 46: Overview of business cases 1, 2A, 2B, 2C and 3
Shuttle tanker
Port
Pipeline
Well pad
Well head platform
Vessel
Case
Storage
type
Potential
site name
(and
capacity)
Assumed
max.
injection
capacity/
year
CO2
Transport
from source
Intermediat
e storage
and
preparation
facilities
Transport
from
intermediat
e storage to
well
Injection
site
Depleted oil
and gas field
1
Offshore
in the North
Sea
(estimated
~2,000 Mt)
10 MtCO2
2A
Onshore
Havnsø
(927 Mt)
10 MtCO2
From DK/CPH
2B
Nearshore
Hanstholm
(2,753 Mt)
10 MtCO2
From DK/CPH
2C
Offshore
Depleted oil
and gas field
in the North
10 MtCO2
95
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0096.png
Ramboll - ccccc
Sea
(estimated
~2,000 Mt)
From DK/CPH
Onshore
Havnsø
(927 Mt)
10 MtCO2
From DK/CPH
(Kalundborg)
Offshore
3
Depleted oil
and gas field
in the North
Sea
(estimated
~2,000 Mt)
10 MtCO2
From DK/
Kalundborg
(Esbjerg)
From DE/
Hamburg
Nearshore
Hanstholm
(2,753 Mt)
10 MtCO2
From
DK/Esbjerg
(Hanstholm)
Onshore
Gassum
(630 Mt)
5 MtCO2
From
DK/Esbjerg
(Aalborg)
Note:
Shuttle tankers
are considered pure transport vehicles, meaning they do not have cooling equipment and storage
preparation equipment needed to connect directly to an injection site. As a result, shuttle tankers need to unload CO2 into
intermediate storage near refrigeration and storage preparation equipment before it can be transferred to an injection site;
Vessels
can be used for transport and carry cooling and storage preparation equipment. This means they can connect directly
to injection sites;
Permanently moored FSU
stations are considered stationary and cannot be moved. Shuttle tankers will
transport CO2 to the station, which will prepare the CO2 for storage before sending it to the injection site;
Source: Ramboll analysis
Box 7
A note on specific storage locations
All storage and transport set-ups presented in this chapter are potential illustrative scenarios
only. This also pertains to the suggested storage and pipeline locations as well as the shipping
routes. Thus, the business cases are not to be regarded as definitive rather as potential
suggestions for feasible scenarios.
6.3 BUSINESS CASE ASSUMPTIONS
The below table summarises the assumptions applied in all four business cases. It is important to
note that all individual costs inputs, i.e. transportation and storage costs presented in this chapter
and utilised in the business cases, are not levelized costs.
Table 47: Input assumptions
231
Data input
Descripti
on
Assumptions comments
Alternative
reference
price
Revenue
It is difficult to estimate a precise price for CO2 transport and storage since the market is
immature, and there exists no defined market price at present. CO2 prices and subsidies
are potential ways to construct the price, however, it is highly uncertain to what extent,
who and how these will be allocated in the future (e.g. income from CO2 pricing will also
cover other technologies than CCS). Thus, we have instead developed an alternative
reference price based on a feasible competing set-up in the countries that are the main
competitors to Denmark: UK and Norway. Nevertheless, the alternative reference price
underlies state-aid, e.g., CO2 prices, CO2-taxes, grants etc., the constellation of them is
not known in developing the alternative reference price. Both UK and Norway are
developing CCS offshore storage sites solely, so a reference price reflecting this type of
storage is appropriate. Further, applying a transport cost for a shipping distance to a
location in these countries would also reflect a ballpark estimate of the transportation
costs. The below explains the price in more detail.
231
Ramboll experts
96
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0097.png
Ramboll - ccccc
The reference price used in this case has been based on the average cost of the Danish
offshore storage site since the competing alternatives in both the UK and Norway are
offshore options and, thus, considered direct competitors and alternatives to the Danish
storages. Further, Edinburgh (Scotland) has been chosen as a reference storage location
since it is considered a feasible direct alternative for countries exporting CO2 in Europe.
Thus, the reference price also includes the shipping cost of transporting CO2 from the
emitting countries (Germany, Sweden, Finland, Poland, Denmark and the Netherlands) to
Edinburgh; The distances and volumes from each country are adjusted accordingly, and a
weighted average of these is calculated. The price has also been discounted according to
the 30-year technical lifetime.
The price estimate applied is subject to uncertainty, as the CCS market is in its early
stages, and the cost of CCS infrastructure is subject to technology developments and a
learning curve. However, the chosen methodology is deemed most reliable for the reasons
stated above, compared to alternative methods.
CO2
volume
Revenue
The volumes for each business case are based on the expected volumes coming from both
domestic CO2 streams and international CO2 streams in each business case. Case 1
assumes 5 MtCO2/y, and cases 2A, 2B and 2C, as demonstrated previously, all assume 10
MtCO2/y, whereas case 3 assumes 40 MtCO2/y.
Storage CAPEX is based on 5 MtCO2/y for case 1, while this is 10 MtCO2/y capacity for
business cases 2A, 2B and 2C. For business case 3, this is assumed to be 40 MtCO2/y, in
which costs for business model set-up 2, 4 and 5 have been combined. The storage CAPEX
comprises storage pre-FID costs (final investment decision), Storage instalment costs
232
and in the final year of the storage plant’s lifetime (year 30), storage abandonment costs
(ABEX) and storage post-closure costs are applied. ABEX is assumed to be 17.5% of total
storage instalment costs.
The operational expenditures for case 1 storage comprise the base organisation, injection
plant, injection wells, monitoring, power, wellhead platform, standby vessel as well as
mooring and loading system for storage capacity of 5 Mt. Business case 2A has the same
OPEX storage costs as set-up 2 for 10 Mt storage capacity (see chapter 5); Base
organisation, intermediate storage, injection plant, injection wells as well as monitoring
and power. Business case 2B has similar OPEX storage costs as set-up 4; Base
organisation, intermediate storage, injection plant, injection wells, monitoring, power and
wellhead platform. While business case 2C has the same OPEX storage as set-up 8; Base
organisation, intermediate storage, injection plant, injection wells, monitoring, power and
wellhead platform. Business case 3 storage OPEX is calculated based on costs combined
from set-up 2 (one for storage capacity of 5 Mt and one for storage capacity of 10 Mt), set-
up 4 and set-up 5.
Pipeline CAPEX comprises the cost of constructing pipelines and the number of pumping
stations needed to transport the CO2 volumes. Pipeline cost varies depending on the
length and rated capacity. Pumping stations are placed every 200 km for onshore pipelines
and at both ends of offshore pipelines, independent of length. Regarding case 1, 2C and
case 3, we are reusing the existent gas pipeline, and thus, costs for these are assessed to
be zero. However, since the pipeline starts in Nybro (a short distance from Esbjerg), a new
short, onshore pipeline will transport the aggregated CO2 from Esbjerg port to Nybro.
Pipeline OPEX comprises power, fixed O&M from transport pipeline as well as a pipeline
from port to storage site. Fixed O&M calculations are based 1% of CAPEX pertaining to
each business case and the technical lifetime value.
Shuttle tanker/vessels CAPEX comprises acquisition price and export intermediate storage
costs. For case 1, the acquisition price is based on a vessel of 20,000 t capacity in which 3
vessels are required. For the other cases, shuttle tankers of 20,000 t capacity are
assumed. For business case 2B 3 shuttle tankers are needed. For 2A and 2C 4 shuttle
tankers are required, while business case 3 requires 10 shuttle tankers.
The additional capital expenditures attributed to the injection systems and intermediate
storage onboard the vessels are covered in the storage CAPEX.
Shuttle tanker/vessels OPEX comprise fixed operations, maintenance, and fuel costs. The
fixed O&M costs are based on 5% of shuttle tanker/vessel CAPEX pertaining to each
business case and EUR 75/tCO2 export intermediate storage capacity. Fuel costs are based
on the number of loading/unloading cycles, days per cycle, fuel consumption per day, cost
of fuel and technical lifetime values.
The additional operational expenditures attributed to the injection systems and
intermediate storage onboard vessels are covered in storage OPEX.
It is assumed that the CO2 transport and storage projects have an operational lifetime of
30 years
233
.
2030 is the assumed start year of operation. CAPEX occurs in year 0, i.e. 2030, and in
year 1, i.e. 2031, OPEX and revenues are applied.
CAPEX
Storage
OPEX
CAPEX
Pipeline
OPEX
CAPEX
Shuttle
tanker/
vessel
OPEX
Operations
time period
Operation
start year
Years of
operation
Year
232
For case 1 storage instalment CAPEX comprise: Intermediate storage, Injection plant, Injection wells, Wellhead platform as well as Mooring and
loading system. For case 2A this includes: Intermediate storage, Injection plant and Injection wells. For case 2B and 2C: Intermediate storage,
Injection plant, Injection wells and Wellhead platform. For case 3: Intermediate storage, Injection plant, Injection wells as well as wellhead
platform for nearshore and offshore storages.
233
Ramboll expert
97
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0098.png
Ramboll - ccccc
WACC
Financial
costs
The WACC applied in all business cases are based on the European Commission’s guide to
cost-benefit analysis indicative benchmark value of investment projects, which is 4%.
234
CO2 transport costs from shuttle tankers, vessels and pipelines are included in business cases 1,
2 and 3, although this could potentially be paid by the emitter or split between the emitter and
the CO2 storage solution provider. If Denmark pays
for the export countries’ transport of CO2, the
export countries will receive favourable conditions
especially in the less expensive onshore
storage solution
option. The cost of covering export countries’ transport might be transferred to
Danish emitters, which makes it more expensive for them, and Danish emitter might end up
choosing storage solutions in competing countries. If CO2 is imported at a large scale it could be
more feasible to cover the export countries’ transport costs, since,
with economies of scale, the
price could come down.
Additionally, no liquefaction is assumed in any of the calculations of the cost of sea transportation.
Liquefaction is a high cost, but if it is excluded in both our cost calculation and the references
price (i.e. the applied revenue), then it matters not so much. Also, the cost for transportation by
the sea does not include harbour fees. Liquefaction and harbour fees are typically included at the
CO₂ capture plant. However, as both
liquefaction and harbour fees are particular to sea transport,
this could potentially enhance the business case for using pipeline transport.
6.4
KEY CONCLUSIONS ON THE PROFITABILITY OF THE CO2 STORAGE IN DENMARK
Four out of five cases result in positive NPV values within a 30-year lifetime and range from a
payback period between 8-25 years. However, it is
pivotal to note that the assessed business
cases take a point of departure in the assumption that there will be a business case for
CO2 storage providers and the price will be a combination of, e.g., CO2 prices, CO2
taxes, grants etc.
However, the way in which the price is subsidised is not deemed necessary to
assess the profitability and break-even of the business cases. Rather, it is important to forecast a
price that is representative of a feasible market-based (i.e. competitive) scenario, and thus, we
have developed a reference price for transport and storage, which is based on what it would cost
for the export countries to export their CO2 to an offshore UK storage, which is deemed a
representative, competitive and feasible alternative to Danish CO2 storage solutions. The
reference price is based on an average of the various Danish offshore storage alternatives
presented in the set-ups (Chapter 5.3), which is based on what it would cost for the export
countries to export their CO2 to an offshore UK storage, which is deemed a representative,
competitive and feasible alternative to Danish CO2 storage solutions. Further, utilising a reference
price is seen as the most representative methodology, since forecasting the CO2 price and
subsidy mechanisms includes high uncertainty and an array of the possible pathway (e.g.,
uncertainty around how income from CO2 prices, taxes and grants are allocated, since they are
not solely allocated to CCS).
(large-scale international CCS solution), mainly due to the high revenue volumes per year (40
MtCO2/y), economies of scale from large-scale operations and from combining solutions, e.g.,
pipelines utilised for different types of storages. Furthermore, this case includes all types of
storages, meaning that CAPEX is lower than if only offshore storage was applied. Although case 3
has a significantly higher total cost than the domestic cases, the investment payback (payback
period is 11 years)
is expected sooner than for case 1, 2B and 2C, again due to expected large
CO2 volumes combined with economies of scale/ use of price-effective storage and transport
solutions.
Although providing a clear advantage in the form of flexibility, Case 1
(small-scale,
domestically focused case with sea transportation only)
results in a negative NPV (DKK ~
(2.0) billion)
and the
longest payback period (25 years).
The main reason is that this case
has a considerable higher OPEX than the rest of the domestically focused cases, and the highest
cost per ton CO2 among all cases. However, it is important to note that the case is built on the
assumption that only vessels will be used for the transportation of CO2 (which is the most
expensive transportation solution) during the 30-year business case period. If the transportation
is optimised during the ramp-up, by e.g. adding a pipeline of permanently moored FSU, the
business case could potentially improve. At the same time, the revenue applied in the model is
234
European Commission - Guide to cost-benefit analysis of investment projects
98
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
difficult to determine, and there is therefore associated uncertainty with regards to business case
results
i.e. business case would improve at higher revenue.
Case 2C
(medium-scale, domestically focused case, with offshore storage)
also an offshore
option in case 2 -
posts an NPV of DKK ~2.1 billion
and a
payback period of 15 years.
While
this is a positive NPV, it is more expensive than 2A, and 2C since offshore storage sites are more
expensive than onshore and nearshore solutions.
Case 2A
(medium-scale, domestically focused case, with onshore storage)
results in the
second-highest NPV of DKK ~11.5 billion
and has the
shortest payback period (8 years).
Case 2B
(medium-scale, domestically focused case, with nearshore storage) has an
NPV of DKK
~5.5 billion and a payback period of 13 years.
This case has the highest CAPEX of all
medium-size cases (i.e. 2A, 2B, 2C), however, OPEX is the second-lowest.
The results above are
based on a number of prerequisites,
including expected CO2 volumes,
strong project management and identification of qualified, responsible parties, financial support
(both nationally and in case 3 also internationally), that necessary permits are obtained without
major delays, technological enhancement and ability to start the operations no later than 2030 (or
at least in line with the volume uptake). Furthermore, some case-specific prerequisites apply, e.g.
that the reservoirs (especially the less known onshore and nearshore storages) can be used for
storage of CO2 and availability of the existing offshore pipeline infrastructure in time for the start
of constructions works (and that it is possible to fully retrofit it to handle the large CO2 volumes)
and that necessary international agreement, e.g. with German companies and state are secured
up-front before the pipeline is constructed. For case 1 (small-scale and domestically focused
case), one important prerequisite is that oil and gas companies possessing the concession rights
are willing to switch from oil & gas activities to CO2 storage.
Furthermore,
pro’s and con’s have been compiled
for both domestically focused cases (case 1
and 2) and the case with international solution (case 3). It is important to highlight that the
domestic-oriented solutions are less complex and more affordable options (especially case 2A,
which offers a highly price competitive option, with the highest IRR and with the shortest pay-
back period). However, when starting at a smaller scale, it can, in many cases, be more
challenging to move towards large-scale and international market solutions than starting at a
large scale from the beginning. On the other hand, the small-scale domestic case with vessel
transportation (case 1) is the one providing the highest degree of flexibility, as it can be ramped
up to the medium-size solution (or even large-scale, although choosing this way around can lead
to lost opportunities), and modified into other solutions stepwise. Consequently, this case gives
the possibility to explore the market before making the final decision on the strategic direction.
However, this case has also the highest total cost per ton of CO2.
The internationally oriented solution (case 3) enables full utilisation of the market potential (and
Denmark’s strategic location, with close proximity to DE, SE, FI and PL)
by offering a price
competitive, convenient, and potentially
binding solution. This solution can also play into the EU’s
plan to reach ambitious CO2 reduction targets and thus secure international financing and
cost/risk-sharing. On the other hand, this solution is significantly more complex (however not
unrealistic, as proven by the recent Baltic Pipe project), would imply a need for extensive state
involvement and investments in widespread CCS infrastructure, and also require EU to cooperate
in continuing to support and pass policies that will aid the CCS market. Furthermore, this solution
is the most meaningful if planned at a large scale from the beginning - adding storages or
infrastructure at a later time can impair this system's competitiveness and expected CO2
volumes.
The detailed cash flow results for each business case scenario are shown in the figures and tables
in the following sub-sections, with a corresponding summary description of the results.
99
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0100.png
Ramboll - ccccc
Table 48: Overview of the results from the assessment of the different business cases
CO2 Pipelines
Nearshore storage site
Onshore storage site
Offshore storage site
Case 1:
Small-scale domestically
focused case with sea transportation
Category
Repurposed pipelines
CO2 Shipping routes
Harbour
Case 2A:
Medium-scale, domestically
Case 2B:
Medium-scale, domestically
Case 2C:
Medium-scale, domestically
focused case, with onshore storage
focused case, with nearshore storage focused case, with offshore storage
Case 3:
Large-scale international CCS
solution
Illustration
of business
case
(see
appendix for
full size)
NPV (DKK)
and IRR
DKK/ton
Break-even
year
NPV:
~ (2.0) bn
172
2055
IRR:
~0.2%
NPV:
~11.5 bn
82
2038
IRR:
~12%
NPV:
~5.5 bn
7 bn
109
2043
IRR:
~7%
NPV:
~2.1 bn
bn
132
2045
IRR:
~5%
NPV:
~26.6 bn
bn
101
2041
IRR:
~9%
The source countries will capture CO2 with the intention for storage and choose Denmark as the storage destination
It is possible to identify and appoint parties with operational and technical CCS expertise to represent the state in order to secure fair competition (i.e. to avoid monopolisation of the market)
Likewise, all of the cases will require financial aid in order to be operational, as none of the solutions can operate without subsidies and grants
All necessary permits can be obtained without major delays
Required technology developments are achieved. For both cases, it is, e.g. assumed that shuttle tankers up to at least 20,000 tonnes will become available in the future
Operations start in 2030. The payback period assumes that the CCS systems (both storages and transport infrastructure) can be built in time to start operations no later than 2030, or at least
in line with the volume uptake
Especially for case 2A, there is a prerequisite that all necessary permits
can be obtained without major delays. Due to the onshore location of the
site, there is a risk of public opposition and difficulty obtaining necessary
permits.
Both for case 2A and 2B, it is a prerequisite that the reservoirs can be
used for the storage of CO2. None of these sites has been drilled yet,
and it will therefore be necessary to carry out seismic surveys as well as
appraisal drilling
The existent gas pipeline can be
reused for CCS purposes
The existent gas pipeline can be
reused for CCS purposes
EU and/or individual collaboration
countries will provide support for
the development of a CCS system
Agreements with German
companies and state are secured
upfront before the pipeline is
constructed
Pre-
requisites
Interest and willingness from the
oil & gas companies with
concession rights to switch from
gas/oil to CO2 operations
Pumping technology on vessels are
is proven to work efficiently and
commercialised
Existing injection wells can be
reused (other cases assume that
new wells will be built)
This case assumes focus on
domestic activities only and CO2
import from abroad is not
comprised; In practice, once on
vessels, CO2 can be transported
100
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0101.png
Ramboll - ccccc
from different locations (both
domestically and internationally)
Pro’s
This model gives a high degree of
flexibility, as it can be re-evaluated
and potentially changed/adjusted
underway to match changing
conditions and market needs. E.g.
it is possible to switch to or add-on
other solutions (e.g. a
permanently moored FSU or
pipeline that can optimise costs
but also reduce flexibility) over
time, when the market has been
tested. It is also possible to add
international markets any time, as
the vessels can pick-up CO2 from
various sources, also abroad
Relatively short construction time
(~ 5 years) allows starting some
operations already in 2026 (given
that construction works start no
later than in 2022)
Abandonment costs for existing oil
& gas infrastructure can be
postponed if it is reused for CO2
operations
Less complex and affordable option: Especially case 2A offers a highly price competitive option, with the highest
IRR and the shortest pay-back period
The domestically oriented solutions are more flexible with regards to a gradual build-up than the international
case (as long as the focus remains on the domestic CO2 volumes). I.e. it is possible for this solution to start at a
smaller scale and then add capacity as needed
CO2 transported via pipelines does not need to be liquefied. Although liquefaction is not included in this report
(as it is considered to be part of carbon capture systems at source), it can be significant and result in additional
costs for emitters
Case with the highest NPV
Full utilisation of the market
potential (and
DK’s strategic
location, with close proximity to
DE, SE, FI and PL) by offering a
price competitive, convenient, and
potentially binding solution
Ambitious EU targets for
decarbonisation will most probably
require CSS to close any potential
gap in CO2 reductions, meaning
that the project can receive
financial support from EU and/or
collaboration countries
A complex solution might imply
more competition between players,
and as such, the CCS might
become more market-oriented
CO2 transported via pipelines does
not need to be liquefied. Although
liquefaction for sea transport is not
included in this report (as it is
considered to be part of carbon
capture systems at source), it can
be significant and result in higher
costs for emitters
High project complexity meaning
the risk to the timeline. However,
the recent project experiences
within the gas industry (Baltic
Pipe) prove such complex solutions
realistic
Need for extensive state
involvement and investments in
widespread CCS infrastructure. It
will also require EU to cooperate in
continuing to support and pass
policies that will aid the CCS
market
Only meaningful if the full
infrastructure is planned from the
beginning. Adding storages or
infrastructure afterwards can
impair the competitiveness of this
system and also expected CO2
volumes
Con’s
Case 1 has the highest cost per
ton among all cases, although it
can be potentially improved over
time if it is expanded to include
more cost-efficient solutions
Likewise, in case 1, CO2
emitters/sources are not
committed to Denmark (which
would be the case with pipeline),
implying a potentially higher risk of
losing these customers to
competition (especially given
relatively high costs, which will
presumably impact the price on
CO2 transport and storage as well)
Vessels in case 1 are built for the
purpose and can potentially
become sunk cost if this solution is
dropped or changed over time (i.e.
are more difficult to retrofit to
other purposes, than, e.g. shuttle
tankers)
Particularly onshore and nearshore solution can be difficult and potentially unprofitable to expand to the
international scale later in time
Risk for public opposition against the onshore storage
101
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0102.png
Ramboll - ccccc
6.5
6.5.1
BUSINESS CASE DEEP-DIVES
Case 1
Small-scale, domestically focused case, with offshore CO2 storage, but
sea transportation only (no pipeline or ports assumed)
Case 1 posts a negative
NPV of DKK ~ (2.0) billion
and a
payback time of 25 years.
Thus,
this case has the lowest NPV of all cases and the longest payback period due to the high OPEX,
although this case does not have costs related to pipeline transport. The operational expenditure
for vessels and storage (most significant contributors to this are the OPEX of wellhead platforms,
standby vessels, and mooring and loading systems) are higher than the rest of case 2 options.
The IRR is positive at
~ 0.2%.
Figure 19: Cash flow case 1
Source: Ramboll analysis
Figure 20: Business case overview 1
YEAR
Year
Revenue
Reference price
CO2 volume
Total revenue
OPEX
Storage
Vessels
Pipeline
Total operating expenditures
EBITDA
CAPEX
Storage, Pre-FID cost (one-time cost)
Storage, Instalment costs
Storage, Abandonment cost (ABEX)
Storage, Post-Closure Cost/Monitoring
Vessels, acquisition cost
Export intermediate storage
Pipeline, Instalment costs
Total capital expenditures
Depreciations
mDKK
EBIT
Cash flow
Discounted cash flow
Accumulated cash flow
Present value (PV), mDKK
Net present value (NPV), mDKK
IRR
WACC
mDKK
mDKK
mDKK
mDKK
DKK
DKK
3.647
(1.989)
0,2%
4%
0 kr.
-5.637 kr.
-5.637 kr.
-5.637 kr.
188 kr.
43 kr.
231 kr.
222 kr.
-5.406 kr.
188 kr.
43 kr.
231 kr.
213 kr.
-5.175 kr.
188 kr.
43 kr.
231 kr.
205 kr.
-4.944 kr.
188 kr.
43 kr.
231 kr.
90 kr.
-95 kr.
188 kr.
43 kr.
231 kr.
87 kr.
136 kr.
188 kr.
43 kr.
231 kr.
83 kr.
367 kr.
188 kr.
43 kr.
231 kr.
80 kr.
598 kr.
188 kr.
43 kr.
231 kr.
77 kr.
829 kr.
188 kr.
43 kr.
231 kr.
74 kr.
1.060 kr.
1.309 kr.
-1.078 kr.
-891 kr.
-275 kr.
169 kr.
Unit
0
2030
169 kr.
5
843 kr.
1
2031
169 kr.
5
843 kr.
2
2032
169 kr.
5
843 kr.
3
2033
169 kr.
5
843 kr.
24
2054
169 kr.
5
843 kr.
25
2055
169 kr.
5
843 kr.
26
2056
169 kr.
5
843 kr.
27
2057
169 kr.
5
843 kr.
28
2058
169 kr.
5
843 kr.
29
2059
169 kr.
5
843 kr.
30
2060
169 kr.
5
843 kr.
DKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
490 kr.
122 kr.
0 kr.
612 kr.
231 kr.
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
300 kr.
2.980 kr.
522 kr.
600 kr.
1.419 kr.
938 kr.
0 kr.
5.637 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
1.122 kr.
Source: Ramboll analysis
6.5.2
Case 2A
Medium-scale, domestically focused case, with onshore storage
Case 2A has an
NPV of DKK ~11.5 billion
and a
payback time of 8 years
in
2038.
The NPV is
the highest of all business cases in the medium-scale option, whereas the payback period is the
lowest of all business cases and is mainly due to OPEX and CAPEX for the onshore option being
the lowest and the reference price applied is the same for all cases (except the price for case 3,
which is slightly lower). The IRR also reflects these results and posts
~12%.
102
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0103.png
Ramboll - ccccc
Figure 21: Cash flow 2A
Source: Ramboll analysis
Figure 22: Business case overview 2A
YEAR
Year
Revenue
Reference price
CO2 volume
Total revenue
OPEX
Storage
Shuttle tanker/vessels
Pipeline
Total operating expenditures
EBITDA
Unit
0
2030
166 kr.
10
1.663 kr.
1
2031
166 kr.
10
1.663 kr.
2
2032
166 kr.
10
1.663 kr.
3
2033
166 kr.
10
1.663 kr.
4
2034
166 kr.
10
1.663 kr.
5
2035
166 kr.
10
1.663 kr.
6
2036
166 kr.
10
1.663 kr.
7
2037
166 kr.
10
1.663 kr.
8
2038
166 kr.
10
1.663 kr.
28
2058
166 kr.
10
1.663 kr.
29
2059
166 kr.
10
1.663 kr.
30
2060
166 kr.
10
1.663 kr.
DKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
188 kr.
209 kr.
16 kr.
413 kr.
1.250 kr.
CAPEX
Storage, Pre-FID cost (one-time cost) mDKK
Storage, Instalment costs
mDKK
Storage, Abandonment cost (ABEX)
mDKK
Storage, Post-Closure Cost/Monitoring mDKK
Shuttle tankers, acquisition cost
mDKK
Export intermediate storage
mDKK
Pipeline, Instalment costs
mDKK
Total capital expenditures
mDKK
Depreciations
mDKK
EBIT
Cash flow
Discounted cash flow
Accumulated cash flow
Present value (PV), mDKK
Net present value (NPV), mDKK
IRR
WACC
mDKK
mDKK
mDKK
mDKK
DKK
DKK
21.213
11.540
12,49%
4,0%
308 kr.
4.170 kr.
730 kr.
566 kr.
1.892 kr.
2.625 kr.
679 kr.
9.674 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
1.295 kr.
322 kr.
0 kr.
-9.674 kr.
-9.674 kr.
-9.674 kr.
-9.674
927 kr.
1.250 kr.
1.202 kr.
-8.424 kr.
-8.424
322 kr.
927 kr.
1.250 kr.
1.156 kr.
-7.174 kr.
-7.174
322 kr.
927 kr.
1.250 kr.
1.111 kr.
-5.924 kr.
-5.924
322 kr.
927 kr.
1.250 kr.
1.068 kr.
-4.674 kr.
-4.674
322 kr.
927 kr.
1.250 kr.
1.027 kr.
-3.424 kr.
-3.424
322 kr.
927 kr.
1.250 kr.
988 kr.
-2.174 kr.
-2.174
322 kr.
927 kr.
1.250 kr.
950 kr.
-925 kr.
-925
322 kr.
927 kr.
1.250 kr.
913 kr.
325 kr.
325
322 kr.
927 kr.
1.250 kr.
417 kr.
25.323 kr.
322 kr.
927 kr.
1.250 kr.
401 kr.
26.572 kr.
1.618 kr.
-368 kr.
-46 kr.
-14 kr.
26.527 kr.
Source: Ramboll analysis
6.5.3
Case
2B
Medium-scale, domestically focused case, with nearshore storage
Case 2B has an
NPV of DKK ~5.5 billion
and a
payback time of 13 years
in
2043.
Thus, this
case has a lower NPV and longer payback period than case 2A since the nearshore solution is
more expensive than an onshore solution. This case has the second-highest total CAPEX of all
options in case 2, however, OPEX is the second-lowest of all cases. The IRR is at
~7%.
Figure 23: Cash flow 2B
Source: Ramboll analysis
103
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0104.png
Ramboll - ccccc
Figure 24: Business case overview
YEAR
Year
Revenue
Reference price
CO2 volume
Total revenue
OPEX
Storage
Shuttle tanker/vessels
Pipeline
Total operating expenditures
EBITDA
Unit
0
2030
166 kr.
10
1.663 kr.
1
2031
166 kr.
10
1.663 kr.
2
2032
166 kr.
10
1.663 kr.
3
2033
166 kr.
10
1.663 kr.
4
2034
166 kr.
10
1.663 kr.
5
2035
166 kr.
10
1.663 kr.
6
2036
166 kr.
10
1.663 kr.
7
2037
166 kr.
10
1.663 kr.
8
2038
166 kr.
10
1.663 kr.
9
2039
166 kr.
10
1.663 kr.
10
2040
166 kr.
10
1.663 kr.
11
2041
166 kr.
10
1.663 kr.
12
2042
13
2043
30
2060
166 kr.
10
1.663 kr.
DKK
mDKK
166 kr.
166 kr.
10
10
1.663 kr. 1.663 kr.
mDKK
mDKK
mDKK
mDKK
mDKK
0 kr.
1.663 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
276 kr.
164 kr.
48 kr.
488 kr.
276 kr.
164 kr.
48 kr.
488 kr.
276 kr.
164 kr.
48 kr.
488 kr.
1.175 kr.
1.175 kr. 1.175 kr.
CAPEX
Storage, Pre-FID cost (one-time cost) mDKK
Storage, Instalment costs
mDKK
Storage, Abandonment cost (ABEX)
mDKK
Storage, Post-Closure Cost/Monitoring mDKK
Shuttle tankers, acquisition cost
mDKK
Export intermediate storage
mDKK
Pipeline, Instalment costs
mDKK
Total capital expenditures
mDKK
Depreciations
mDKK
EBIT
Cash flow
Discounted cash flow
Accumulated cash flow
Present value (PV), mDKK
Net present value (NPV), mDKK
IRR
WACC
mDKK
mDKK
mDKK
mDKK
DKK 19.678
DKK 5.502
7,1%
4,0%
658 kr.
7.086 kr.
1.240 kr.
849 kr.
1.419 kr.
2.063 kr.
2.950 kr.
14.175 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
2.089 kr.
473 kr.
1.663 kr.
-14.175 kr.
-14.175 kr.
-14.175 kr.
703 kr.
1.175 kr.
1.130 kr.
-13.000 kr.
473 kr.
703 kr.
1.175 kr.
1.087 kr.
-11.825 kr.
473 kr.
703 kr.
1.175 kr.
1.045 kr.
-10.650 kr.
473 kr.
703 kr.
1.175 kr.
1.005 kr.
-9.475 kr.
473 kr.
703 kr.
1.175 kr.
966 kr.
-8.299 kr.
473 kr.
703 kr.
1.175 kr.
929 kr.
-7.124 kr.
473 kr.
703 kr.
1.175 kr.
893 kr.
-5.949 kr.
473 kr.
703 kr.
1.175 kr.
859 kr.
-4.774 kr.
473 kr.
703 kr.
1.175 kr.
826 kr.
-3.599 kr.
473 kr.
703 kr.
473 kr.
703 kr.
473 kr.
703 kr.
473 kr.
703 kr.
2.561 kr.
-1.386 kr.
-913 kr.
-282 kr.
18.992 kr.
1.175 kr. 1.175 kr.
794 kr.
763 kr.
-2.424 kr. -1.248 kr.
1.175 kr. 1.175 kr.
734 kr.
706 kr.
-73 kr. 1.102 kr.
Source: Ramboll analysis
6.5.4
Case
2C
Medium-scale, domestically focused case, with offshore storage
Case 2C has an
NPV of DKK ~2.1 billion
and a
payback time of 15 years
in
2045.
Thus, this
case has a lower NPV and longer payback period than case 2A and case 2B. This case has the
second-highest total CAPEX of
all options in case 2,
however, OPEX is the second-lowest of all
cases. The IRR is at
~6%.
Figure 25: Cash flow 2C
Source: Ramboll analysis
Figure 26: Business case overview 2C
YEAR
Year
Revenue
Reference price
CO2 volume
Total revenue
OPEX
Storage
Shuttle tanker/vessels
Pipeline
Total operating expenditures
EBITDA
CAPEX
Storage, Pre-FID cost (one-time cost)
Storage, Instalment costs
Storage, Abandonment cost (ABEX)
Storage, Post-Closure Cost/Monitoring
Shuttle tankers, acquisition cost
Export intermediate storage
Pipeline, Instalment costs
Total capital expenditures
Depreciations
mDKK
EBIT
Cash flow
Discounted cash flow
Accumulated cash flow
Present value (PV), mDKK
Net present value (NPV), mDKK
IRR
WACC
mDKK
mDKK
mDKK
mDKK
DKK
DKK
14.514
2.115
5,4%
4%
0 kr.
-12.400 kr.
-12.400 kr.
-12.400 kr.
413 kr.
458 kr.
872 kr.
838 kr.
-11.528 kr.
413 kr.
458 kr.
872 kr.
806 kr.
-10.656 kr.
413 kr.
458 kr.
872 kr.
775 kr.
-9.784 kr.
413 kr.
458 kr.
872 kr.
589 kr.
-3.681 kr.
413 kr.
458 kr.
413 kr.
458 kr.
413 kr.
458 kr.
413 kr.
458 kr.
872 kr.
503 kr.
-194 kr.
413 kr.
458 kr.
872 kr.
484 kr.
678 kr.
2.234 kr.
-1.362 kr.
-948 kr.
-292 kr.
11.935 kr.
Unit
0
2030
166 kr.
10
1.663 kr.
1
2031
166 kr.
10
1.663 kr.
2
2032
166 kr.
10
1.663 kr.
3
2033
166 kr.
10
1.663 kr.
10
2040
166 kr.
10
1.663 kr.
11
2041
166 kr.
10
1.663 kr.
12
2042
166 kr.
10
1.663 kr.
13
2043
166 kr.
10
1.663 kr.
14
2044
166 kr.
10
1.663 kr.
15
2045
166 kr.
10
1.663 kr.
30
2060
166 kr.
10
1.663 kr.
DKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
547 kr.
210 kr.
34 kr.
791 kr.
872 kr.
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
170 kr.
5.552 kr.
972 kr.
849 kr.
1.892 kr.
2.625 kr.
2.160 kr.
12.400 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
1.820 kr.
872 kr.
872 kr.
872 kr.
566 kr.
545 kr.
524 kr.
-2.810 kr. -1.938 kr. -1.066 kr.
Source: Ramboll analysis
104
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0105.png
Ramboll - ccccc
6.5.5
Case 3
Large-scale international CCS solution
Case 2 has an
NPV of DKK ~26.6 billion
and a
payback time of 11 years
in
2041.
Thus, this
case has the highest NPV of all cases, while the payback period is the second shortest (after case
2A). Naturally, this case it the most expensive in terms of both CAPEX and OPEX, however, the
volumes are four times higher (40 MtCO2/y) than the options in case 2 and eight times higher
than case 1 (although the reference price is just slightly lower than the other cases), which results
in the case having the highest NPV. Further, this solution combines onshore, nearshore and
offshore storages, as well as pipeline (including the assumption that existing gas pipelines can be
utilised) and shuttle tanker transportation and this, results in a combination of solutions that
provides economies of scale as well as synergies (e.g., the same pipeline can be used for more
than one storage solution). The IRR is at
~9%.
Figure 27: Cash flow 3
Source: Ramboll analysis
Figure 28: Business case overview 3
YEAR
Year
Revenue
Reference price
CO2 volume
Total revenue
OPEX
Storage
Shuttle tanker/vessels
Pipeline
Total operating expenditures
EBITDA
Unit
0
2030
159 kr.
40
6.367 kr.
1
2031
159 kr.
40
6.367 kr.
2
2032
159 kr.
40
6.367 kr.
3
2033
159 kr.
40
6.367 kr.
4
2034
159 kr.
40
6.367 kr.
5
2035
159 kr.
40
6.367 kr.
6
2036
159 kr.
40
6.367 kr.
7
2037
159 kr.
40
6.367 kr.
8
2038
159 kr.
40
6.367 kr.
9
2039
159 kr.
40
6.367 kr.
10
2040
159 kr.
40
6.367 kr.
11
2041
159 kr.
40
6.367 kr.
30
2060
159 kr.
40
6.367 kr.
DKK
mDKK
mDKK
mDKK
mDKK
mDKK
mDKK
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
1.518 kr.
437 kr.
222 kr.
2.176 kr.
4.191 kr.
CAPEX
Storage, Pre-FID cost (one-time cost)
mDKK
Storage, Instalment costs
mDKK
Storage, Abandonment cost (ABEX) mDKK
Storage, Post-Closure Cost/Monitoring
mDKK
Shuttle tankers, acquisition cost
mDKK
Export intermediate storage
mDKK
Pipeline, Instalment costs
mDKK
Total capital expenditures
mDKK
Depreciations
mDKK
EBIT
Cash flow
Discounted cash flow
Accumulated cash flow
Net present value (NPV), mDKK
IRR
WACC
mDKK
mDKK
mDKK
mDKK
DKK 26.577
8,7%
4%
1.500 kr.
22.882 kr.
4.004 kr.
3.014 kr.
4.730 kr.
2.813 kr.
11.799 kr.
43.725 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
0 kr.
7.019 kr.
1.457 kr.
0 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
1.457 kr.
2.733 kr.
4.191 kr.
2.722 kr.
2.373 kr.
8.476 kr.
-4.285 kr.
-2.828 kr.
-872 kr.
74.978 kr.
-43.725 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
4.191 kr.
-43.725 kr.
4.030 kr.
3.875 kr.
3.726 kr.
3.582 kr.
3.444 kr.
3.312 kr.
3.185 kr.
3.062 kr.
2.944 kr.
2.831 kr.
-43.725 kr. -39.534 kr. -35.343 kr. -31.152 kr. -26.962 kr. -22.771 kr. -18.580 kr. -14.390 kr. -10.199 kr.
-6.008 kr.
-1.818 kr.
Source: Ramboll analysis
105
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
6.6
BUSINESS CASE PREREQUISITES
All business cases presented in this chapter build on a number of prerequisites. Following
prerequisites pertain to
all cases:
-
The source countries will capture CO2 with the intention for storage and choose Denmark
as the storage destination
-
-
Particularly in Poland, there is a risk that the country might start storing CO2 on
national territories in the future instead of exporting abroad
Additionally, it also requires all countries to choose CCS as the technology to
remove these estimated capturable volumes instead of, e.g. CCU. Although the
capturable volumes consider only the volumes intended for CCS, this is based on
the current market, which can change over the years (due to technology
development in other areas, political focus changes, etc.).
Furthermore, there is a general risk that the countries will fully or partly abandon
the decarbonisation targets or incur serious delays in technology deployment due
to possible unforeseen events
Another important risk related to potential CO2 volumes is that the biogenic
emission will not be subject to carbon taxation, decreasing the incentives for
carbon capture of these emissions
-
-
-
It is possible to identify and appoint parties with operational and technical CCS expertise
to represent the state in order to secure fair competition
(i.e. to avoid monopolisation of
the market). As mentioned in the chapter concerning institutional considerations, all cases
will most likely require state involvement, a state-run body that upholds the strategic and
administrative oversight of the project and parties (which to some degree represent the
state/state-owned) with operational and technical expertise within CCS. Particularly case
2, which combines onshore, nearshore and offshore storage solutions, require increased
governmental involvement
Likewise,
all of the cases will require financial aid in order to be operational,
as none of
the solutions can operate without subsidies and grants.
In case of the large,
internationally oriented solution (case 2), it is expected that EU and/or individual
collaboration countries will provide support for the development of a CCS system,
especially in a case, where a potential emission gap will be needed to be closed in order to
reach the ambitious decarbonisation target set by EU for 2030 (reduction of the
greenhouse gas emissions to at least 55% below 1990 levels by 2030). Furthermore, all
cases outlined in this report comprise costs for the full infrastructure (i.e. both storage
and transport of CO2 from source countries). Here it is also possible that transportation
costs can be potentially shared with the emitters (e.g. cost for the pipeline from Germany
or construction/acquisition of shuttle tankers). With reference to the bullet above,
securing of the financing and potential cost-sharing requires
proper and professional
project management
The offshore cases (2C and 3) underlie that an existent gas pipeline can be reused for
CCS purposes.
This means that the offshore pipeline infrastructure is available at the time
constructions works to start and that retrofitting to handle the large CO2 volumes is
possible
Required technology developments are achieved.
For both cases, it is, e.g. assumed that
shuttle tankers up to at least 20,000 tonnes would become available in the future
All necessary permits can be obtained without major delays.
Especially the onshore
storage can meet public opposition, resulting in the extended and potentially more
uncertain permitting process than for the offshore storage
Operations start no later than in 2030.
The payback period assumes that the CCS systems
(both storages and transport infrastructure) can be built in time to start operations no
later than 2030, or at least in line with the volume uptake. In case of large delays, the
risk is not only that the payback period will be longer, but also that volumes can be lost to
competing storages. In practice, the full uptake of the CO2 volumes is not expected from
year 1, and smaller delays or that only a share of operations can be carried during the
first couple of years will not necessarily imply significant complications. Furthermore,
-
-
-
-
-
106
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0107.png
Ramboll - ccccc
based on recent experience with the Baltic Pipe project, it is possible that all of the
systems can be finalised even before 2030 (given that construction works can start
already in 2022, the onshore and nearshore solutions could be completed in 2027
(expected timeline of ~6 years) and the offshore solution in 2026 (expected timeline of
~5 years; the shorter timeline is due to the possibility to reuse of some equipment and
the geological structures being already known).
Other,
case-specific
prerequisites:
Case 1:
Oil & gas companies with concession rights need to have interest and be willing to switch
from gas/oil to CO2 operations.
A potential challenge could arise if oil and gas prices
increase significantly, which can impact the willingness of these companies to stop
exploiting before the governmentally set deadline. This could potentially require an
incentive system
By the time operations start, the onboard pumping technology has been fully developed
and tested (and proven to work efficiently) and has been commercialised.
Case 2:
Both for case 2A and 2B, it is a prerequisite that the reservoirs can be used for the
storage of CO2.
None of these sites has been drilled yet, and it will therefore be necessary
to carry out seismic surveys as well as appraisal drilling
Case 3:
-
In order to be fully efficient, the solution outlined in case 3 requires that the full-scale
infrastructure is constructed from the start
(i.e. it is not meaningful to start small and
expand later on). If a more gradual start is needed for this solution, then it is
recommended to start with the offshore site, as it can be built fastest, and to avoid that
price offered to customers increase significantly. Offshore solutions are assessed to be
more expensive than onshore and nearshore solutions and will thus probably result in
higher prices. High prices are expected to be more acceptable in the early stages of CCS,
and the price is expected to become more competitive over time (which can be obtained
by expanding with more price-competitive solutions).
Collaboration and agreements with German companies and potentially state can be
secured up front before the pipeline is constructed,
i.e. the pipeline form source (e.g.
Germany) will require some pre-work
-
107
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0108.png
Ramboll - ccccc
6.7
PRO’S AND CON’S FOR THE ASSESSED BUSINESS
CASES
The table
below summarizes the key pro’s and con’s
for case 1, 2 and 3, based on the insights
gained in this chapter.
Table 49:
Overview of pro’s and con’s for the assessed business
cases
Case 1 & 2 (A, B & C)
Pro’s
Less complex and affordable option:
Especially case 2A offers a highly price
competitive option, and with the shortest
pay-back period
All of the domestically oriented solutions
are more flexible with regards to a gradual
build-up than the international case (as
long as the focus remains on the domestic
CO2 volumes). I.e. it is possible for this
solution to start at a smaller scale and then
add capacity as needed in line with the
market development
Especially case 1 gives a high degree of
flexibility, as it can be re-evaluated and
potentially changed/adjusted underway to
match changing conditions and market
needs. E.g. it is possible to switch to or
add-on other solutions (e.g. a permanently
moored FSU or pipeline that can optimise
costs but also reduce flexibility) over time,
when the market has been tested. It is
also possible to add international markets
any time, as the vessels can pick-up CO2
from various sources.
Relatively short construction time (~ 5
years) allows starting some operations
already in 2026 (given that construction
works start no later than in 2022)
Abandonment costs for existing oil & gas
infrastructure can be postponed if it is
reused for CO2 operations
Medium-scale solution (case 2, particularly
2A, onshore and 2B, nearshore) can be
difficult and potentially unprofitable to
expand to the international scale
afterwards, as moving towards more
expensive solutions can impair the
competitiveness of the system (especially
given that the market will move the
opposite way, i.e. towards more price
efficient solutions)
Risk for public opposition against onshore
storage
In the case of 2C (offshore solution), the
distance to the storage by ship is not
significantly different from the offshore
storage possibilities that UK or Norway is
providing. Thus, there will be a potentially
lower incentive for export countries to opt
for storing their CO2 in Denmark.
Case 1 has the highest cost per ton among
all cases, although it can be potentially
improved over time if it is expanded to
include more cost-efficient solutions
Likewise, in case 1, CO2 emitters/sources
are not committed to Denmark (which
would be the case with pipeline), implying
a potentially higher risk of losing these
customers to competition (especially given
relatively high costs, which will presumably
impact the price of CO2 transport and
storage as well)
Vessels in case 1 are built for the purpose
and can potentially become sunk cost if
this solution is dropped or changed over
time (i.e. are more difficult to retrofit to
other purposes, than, e.g. shuttle tankers)
Case 3
Case with the highest NPV
Denmark has a competitive advantage in terms of its
location, being strategically located in close proximity to
Germany, Sweden, Finland and Poland, to which it can
offer both a convenient and price competitive solution,
and thus secure CO2 volumes (especially from Germany
via a pipeline)
Denmark is beside the NL, the only EU country which has
shown willingness to develop storage capacity to store
CO2 from other EU countries. The ambitious EU targets
for decarbonisation will most probably require CSS to
close any potential gap in CO2 reductions, meaning that
the project can receive financial support from EU and/or
collaboration countries
This case will entail that various player from both public
and private bodies are involved and are responsible for
different parts of the value chain. Since there are so
many transport infrastructures laid out, it might involve
more competition between players, and as such, CCS
might become more market-oriented
CO2 transported via pipelines does not need to be
liquefied. Although liquefaction is not included for sea
transport in this report (as it is considered to be part of
carbon capture systems at source), it can be significant
and result in additional costs for emitters; Note that this
advantage also applies to some degree for case 2
Con’s
High project complexity meaning risk to the timeline.
However, the recent project experiences within gas
industry (Baltic Pipe) provide a steppingstone for the
development of such complex solutions. The Baltic pipe is
expected to be completed in 2022, and thus only after a
5-year process, showcasing that timely completion of
such projects is realistic
It will potentially require extensive state involvement and
investments in widespread CCS infrastructure. It will also
require the EU to cooperate in continuing to support and
pass policies that will aid the CCS market
The international solution will be meaningful only in case
when the full infrastructure is planned from the
beginning. Adding storages or infrastructure afterwards
can impair competitiveness of this system and the
expected CO2 volumes
108
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0109.png
Ramboll - ccccc
7.
APPENDIX
7.1
GRAPHICAL OVERVIEW OF BUSINESS MODEL SET-UPS
Figure 29: Set-up #1
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
Figure 30: Set-up #2
Source: Ramboll analysis; Ramboll & the Danish Energy
Agency, “Catalogue of Geological CO2 Storage in Denmark”
109
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0110.png
Ramboll - ccccc
Figure 31: Set-up #3
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
Figure 32: Set-up #4
Source: Ramboll analysis;
Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
110
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0111.png
Ramboll - ccccc
Figure 33: Set-up #5
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue
of Geological CO2
Storage in Denmark”
Figure 34: Set-up #6
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
111
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0112.png
Ramboll - ccccc
Figure 35: Set-up #7
Source: Ramboll analysis; Ramboll & the Danish
Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
Figure 36: Set-up #8
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
112
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0113.png
Ramboll - ccccc
Figure 37: Set-up #9
Source: Ramboll analysis; Ramboll & the Danish Energy Agency
7.2
GRAPHICAL OVERVIEW OF BUSINESS CASES
Figure 38: Business case 1
Source: Ramboll analysis; Ramboll
& the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
113
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0114.png
Ramboll - ccccc
Figure 39: Business case 2A
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
Figure 40: Business case 2B
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
114
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0115.png
Ramboll - ccccc
Figure 41: Business case 2C
Source: Ramboll analysis; Ramboll & the Danish
Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
Figure 42: Business case 3
CASE 2:
40 MT CO2 PA
2 MT FROM CPH VIA PIPELINE, 20 MT FROM
DE VIA PIPELINE, 2 MT FROM AALBORG VIA PIPELINE, 16 MT SE/FI/PL
Nearshore storage site
Onshore storage site
Offshore storage site
CO2 Pipelines
CO2 Shipping routes
Harbour
Repurposed gas pipelines
for CO2 transport
Hanstholm
Aalborg
harbour
Gassum
Havnsø
Esbjerg
harbour
Northern
fields
Hanstholm
harbour
Source: Ramboll analysis; Ramboll & the Danish Energy Agency, “Catalogue of Geological CO2 Storage in Denmark”
115
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
7.3
OVERVIEW OF COSTS AND ASSUMPTIONS PER BUSINESS MODEL SET-UP
This appendix section provides an overview of the cost for establishing and operating nine
different CO2 transportation and storage set-ups based in Denmark.
Storage cost covers the cost of establishing, maintaining, and monitoring CO2 injection facilities
and CO2 storage sites.
Transport cost covers the cost of transporting CO2 from ports near emission sources in five
Northern European countries and domestically in Denmark to a Danish intermediate storage
facility near a storage site. The costs are provided for the nine proposed setups identified in
chapter 5.
Mapping of available options for transport and storage in Denmark, as well as cost estimates, is
based on Catalogue of Geological Storage of CO2 in Denmark (to be published by Danish Energy
Agency and Ramboll in 2021) and Catalogue on Technology Data for Energy Transport published
by the Danish Energy Agency and Energinet (2017). Cost estimates from these sources have been
supplemented by Ramboll’s technical
and commercial insights in connection with applying the
costs to specific set-ups and scaling up.
The cost estimates follow the general assumptions outlined below:
The technical project lifetime
is assumed to be 30 years. While some equipment may
have shorter lifetimes and some may have longer lifetimes, the average lifetime of
equipment is expected to be 30 years. As a result, the accumulated OPEX of the project
should supposedly cover 30 years of full operational expenditures. However, since
ramping of injection rates to the assumed capacities is expected to take some years, the
lifetime of the project at full operational capacity is expected to be effectively 27 years. As
the operational expenditures are expected to ramp with the injection rate, the
accumulated OPEX for the project will be reduced from covering 30 years to covering 27
years of full operational expenditures
Upgrading or retrofitting existing facilities
have not been included in the cost
estimates of the set-ups, meaning all infrastructure associated with the project must be
built from new
OPEX
o
Storage:
Covers storage facilities, injection facilities, wellhead platforms, wells,
pipelines, mooring/loading systems, and FSUs which are based on offshore oil and
gas industry norms, effectively percentages of CAPEX. This also includes
monitoring, energy, standby vessels, base organisation, and staff
Transport:
Covers fixed O&M for shuttle tankers, vessels, intermediate storage at
export sites, onshore and offshore pipelines. It also includes fuel used during
transportation
o
CAPEX
o
Storage:
Covers storage facilities, wellhead platforms, wells, pipelines,
mooring/loading systems, and FSUs which are based on standards from the oil
and gas industry and the size of the main components. This also covers any
support systems for the facilities
o
Transport:
Covers shuttle tankers, vessels, onshore and offshore pipeline, and
any pumping stations associated with the pipelines
Pre-FID cost for storage
are incurred prior to final investment decision and are required
to ensure the geological structures can store CO2 and to obtain the necessary approvals
for establishing CO2 storage sites
116
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0117.png
Ramboll - ccccc
Intermediate storage
is used at the port receiving the CO2 as a buffer for delays. A
capacity of 50,000 t of intermediate storage was adequate for a 5 MtCO2/y scenario,
which, assuming the logistics are well optimised, will also be adequate for the 10 MtCO2/y
scenarios presented below. Capacity is considered to cost 2,500 EUR/t.
Ships (shuttle tankers and vessel)
for CO2 transport of the proposed size (20,000 t
net capacity) have not yet been developed but is widely expected to be, and as a result,
costs have been extrapolated using the cost of smaller ships as a basis
o
Shuttle tankers
carry equipment for loading and unloading to and from
intermediate storage facilities
Vessels
carry injection and intermediate storage capabilities
o
A floating storage unit (FSU)
is a permanently moored vessel with injection and
intermediate storage facilities where costs have been benchmarked against similar LNG
FSUs. It only applies to offshore storage
Energy consumption
at onshore injection facilities is expected to be covered by
electricity from the grid, where the cost of connection is included in the CAPEX of storage,
pipeline, and injection facilities. Nearshore injection facilities are assumed to be connected
by an AC electricity cable to the onshore grid, which will cover energy consumption. The
cost of the AC cable is included in the CAPEX cost of the nearshore pipeline. Offshore
operations (injection and intermediate storage) are assumed to connect to existing energy
providing infrastructure in the North Sea. This means the cost of constructing the
infrastructure that provides energy to the offshore operations is not included
Distances from exporting countries
are estimated based on the positions of ports near
the largest emission clusters in a given country
Abatement expenditures ABEX
includes the port-to-storage pipelines, but not the
transport pipelines, which are assumed can be repurposed after end-of-service, similarly
to current oil and gas pipelines
Cost estimates do not consider
compensation to the local community for the loss of
property value in the vicinity of the CO2 storage site or facilities. Furthermore, costs
related to upgrading of port facilities (jetty, quayside, etc.), liquefaction of CO2 at export
ports and any harbour fees related to docking have not been included
Table 50: Specific assumptions table
Overview of specific assumptions
Name
CO2 pipeline flow power
Cost, heavy fuel oil (HFO)
Cost, intermediate storage
capacity
Cost, shuttle tanker/vessel
Energy consumption,
shuttle tankers/vessels
Loading/unloading time per
cycle, shuttle tanker
Loading/unloading time per
cycle, vessel
Unit
kW/km/(t CO2/h)
EUR/ton
EUR/t
MDKK
MWh/day
Days
Days
Value
0.02
270
2500
473
256
1
2
Comments
The amount of power it takes to pump a certain mass of
CO2 a certain flow rate
Assumed average price of HFO
CAPEX cost of establishing intermediate storage capacity
Cost of acquiring a CO2 shuttle tanker/vessel with
20,000 t net capacity
The assumed energy consumption of a ship transporting
20,000 net ton of CO2 when at sea
The accumulated time it takes to load and unload a
shuttle tanker per cycle
The accumulated time it takes to load and unload a
vessel per cycle
117
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0118.png
Ramboll - ccccc
Lower calorific value, heavy
fuel oil (HFO)
Pipeline, onshore,
3 MtCO2/y
Pipeline, onshore,
5 MtCO2/y
Pipeline, onshore,
10 MtCO2/y
Pipeline, onshore,
20 MtCO2/y
Pipeline, offshore, long
5 MtCO2/y
Pipeline, offshore, long
10 MtCO2/y
Pipeline, offshore, short
5 MtCO2/y
Pipeline, offshore, short
10 MtCO2/y
Pumping station, 3 MtCO2/y
MJ/kg
MDKK/km
MDKK/km
MDKK/km
MDKK/km
39.0
2.9
3.5
5.3
7.0
Amount of energy assumed to be extracted from HFO in
a marine ICE engine
Assumed cost of onshore pipeline with 3 MtCO2/y
capacity, based on oil and gas industry standards
Assumed cost of onshore pipeline with 5 MtCO2/y
capacity, based on oil and gas industry standards
Assumed cost of onshore pipeline with 10 MtCO2/y
capacity, based on oil and gas industry standards
Assumed cost of onshore pipeline with 20 MtCO2/y
capacity, based on oil and gas industry standards
Assumed cost of an offshore pipeline with 5 MtCO2/y
capacity and no electricity cable, based on oil and gas
industry standards
Assumed cost of an offshore pipeline with 10 MtCO2/y
capacity and no electricity cable, based on oil and gas
industry standards
Assumed cost of an offshore pipeline with 5 MtCO2/y
capacity laid nearshore with an AC electricity cable, based
on oil and gas industry standards
Assumed cost of an offshore pipeline with 5 MtCO2/y
capacity laid nearshore with an AC electricity cable, based
on oil and gas industry standards
The pumping stations are placed every 200 km onshore
transport pipelines or at each end of offshore transport
pipelines
Pumping stations are placed every 200 km onshore
transport pipelines or at each end of offshore transport
pipelines
Pumping stations are placed every 200 km onshore
transport pipelines or at each end of offshore transport
pipelines
Pumping stations are placed every 200 km onshore
transport pipelines or at each end of offshore transport
pipelines
Expected rate of utilisation of the shuttle tankers, due to
maintenance and routine inspections
Expected rate of utilisation of the vessels, due to
maintenance and routine inspections
MDKK/km
7.0
MDKK/km
11.0
MDKK/km
7.0
MDKK/km
11.0
MDKK
Pumping station, 5 MtCO2/y
MDKK
Pumping station, 10
MtCO2/y
Pumping station, 20
MtCO2/y
Utilisation rate, shuttle
tankers
Utilisation rate, vessel
70
117
MDKK
233
MDKK
467
%
%
95
90
More details regarding specific assumptions and methodology for cost estimation are available in
the Catalogue of Geological Storage of CO2 in Denmark published by the Danish Energy Agency
and Ramboll in 2021 and the Catalogue on Technology Data for Energy Transport published by
the Danish Energy Agency and Energinet (2017).
Estimated costs for each set-up are presented below. Note
that the numbers do not include
levelized cost of storage.
118
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0119.png
Ramboll - ccccc
OPTION #1: Onshore, shuttle tanker to Kalundborg harbour, then to Havnsø via pipeline
Table 51: Overview option #1
Cost category
Pre-FID
2D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
90
20
55
127
28
110
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
The number of appraisal wells
increases linearly with the size of
the area to be appraised
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
10
20
195
14
28
308
MDKK
MDKK
MDKK
180
420
140
180
840
212
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
The pipeline between storage and
injection site; cost is based on
the length and industry-standard
per km cost
The number of injection wells
scales linearly to accommodate
natural injection rate limitations
of the storage site
The offshore structure that
supports injection wells and
associated support systems
System for mooring and/or
unloading CO2 offshore
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,575
3,150
Wellhead platform
MDKK
n/a
n/a
Mooring/loading system
Purpose built CO2 carrier /
FSU
MDKK
MDKK
n/a
n/a
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
2,315
4,382
MDKK
MDKK
175
223
247
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
The accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
The accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Injection plant
MDKK
521
1,042
Pipeline
MDKK
38
57
Injection wells
MDKK
427
854
119
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0120.png
Ramboll - ccccc
Monitoring
Power
MDKK
MDKK
670
884
948
1,768
Post-injection monitoring is only
evaluated over a 20-year period
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Wellhead platform
Standby vessel
MDKK
MDKK
n/a
n/a
n/a
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total acc. OPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
2,938
5,139
MDKK
MDKK
MDKK
405
400
805
767
566
1,333
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
1,419
2,365
Import via shuttle tankers is
assumed to be 100% of the
import volume
The additional cost of equipment
for the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
3,669
4,990
3,738
5,319
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
673
1,347
Total acc. OPEX
MDKK
4,412
6,666
120
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0121.png
Ramboll - ccccc
CAPEX
Onshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of the offshore pipeline
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
n/a
n/a
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
n/a
n/a
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
n/a
n/a
106
46
60
n/a
n/a
85
41
43
Other case-specific assumptions:
Transport pipelines are not included in this set-up
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
121
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0122.png
Ramboll - ccccc
OPTION #2: Onshore, shuttle tanker to Kalundborg harbour and pipeline from
Copenhagen to Kalundborg harbour, then to Havnsø via pipeline
Table 52: Overview option #2
Cost category
Pre-Fid
2D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
90
20
55
127
28
110
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
The number of appraisal wells
increases linearly with the size of
the area to be appraised
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
10
20
195
14
28
308
MDKK
MDKK
MDKK
180
420
140
180
840
212
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
The pipeline between storage and
injection site; cost is based on
the length and industry-standard
per km cost
The number of injection wells
scales linearly to accommodate
natural injection rate limitations
of the storage site
The offshore structure that
supports injection wells and
associated support systems
System for mooring and/or
unloading CO2 offshore
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,575
3,150
Wellhead platform
MDKK
n/a
n/a
Mooring/loading system
Purpose built CO2 carrier /
FSU
MDKK
MDKK
n/a
n/a
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
2,315
4,382
MDKK
MDKK
175
223
247
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Injection plant
MDKK
521
1,042
Pipeline
MDKK
38
57
122
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0123.png
Ramboll - ccccc
Injection wells
MDKK
427
854
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over a 20-year period
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Monitoring
Power
MDKK
MDKK
670
884
948
1,768
Wellhead platform
Standby vessel
MDKK
MDKK
n/a
n/a
n/a
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total acc. OPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
2,938
5,139
MDKK
MDKK
MDKK
405
400
805
767
566
1,333
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
473
1,419
Import via shuttle tankers is
assumed to increase from 20% of
the import volume to 60%
between the 5 and 10 MtCO2/y
scenarios
Additional cost of equipment for
the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
2,723
4,044
MDKK
2,461
4,042
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
have been assumed to consume
256 MWh per day, which drives
fuel costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
146
875
Total acc. OPEX
MDKK
2,607
4,917
123
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0124.png
Ramboll - ccccc
CAPEX
Onshore pipeline
MDKK
350
350
Normally cost would be 5,3
MDKK/km for 10MT/y, but this is
adjusted as the same amount
goes through the pipeline from
CPH-Kalundborg as in 5Mt/y
scenario
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of an offshore pipeline
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
117
117
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
467
467
MDKK
95
95
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
108
203
108
203
91
46
44
77
41
36
Other case-specific assumptions:
A 100 km CO2 transport pipeline from CPH to Kalundborg harbour is included in this set-
up carrying 4 MtCO2/y
Additional import volume between the 5 and 10 MtCO2/y cases is assumed to be
transported using only shuttle tankers
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
124
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0125.png
Ramboll - ccccc
OPTION #3: Nearshore, shuttle tanker to Hanstholm harbour, then to Hanstholm
storage site via pipeline
Table 53: Overview option #3
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
90
20
230
127
28
460
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
The number of appraisal wells
increases linearly with the size of
the area to be appraised
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline and power cable
MDKK
MDKK
MDKK
10
20
370
14
28
658
MDKK
MDKK
MDKK
180
420
350
180
840
550
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
The pipeline between storage and
injection site; cost is based on
the length and industry-standard
per km cost; includes an AC cable
providing power to injection
operations
The number of injection wells
scales linearly to accommodate
natural injection rate limitations
The offshore structure that
supports injection wells and
associated support systems
System for mooring and/or
unloading CO2 offshore
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
2,835
5,670
Wellhead platform
MDKK
280
396
Mooring/loading system
Purpose built CO2 carrier /
FSU
MDKK
MDKK
n/a
n/a
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
4,065
7,636
MDKK
MDKK
350
223
495
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as a 1% of
CAPEX per year for the full
technical lifetime period
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Injection plant
MDKK
521
1,042
Pipeline and power cable
MDKK
95
149
Injection wells
MDKK
825
1,650
125
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0126.png
Ramboll - ccccc
Monitoring
Power
MDKK
MDKK
920
884
1,301
1,768
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Wellhead platform
Standby vessel
MDKK
MDKK
694
n/a
981
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total acc. OPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
4,512
7,609
MDKK
MDKK
MDKK
711
600
1,311
1,336
849
2,185
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
1,419
2,838
Import via shuttle tankers is
assumed to be 100% of the
import volume
Additional cost of equipment for
the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
3,669
5,463
MDKK
3,738
5,958
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
have been assumed to consume
256 MWh per day, which drives
fuel costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
761
1,522
Total acc. OPEX
MDKK
4,499
7,480
Pipeline
CAPEX
Onshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
126
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0127.png
Ramboll - ccccc
Offshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Pumping station
MDKK
n/a
n/a
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
n/a
n/a
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
n/a
n/a
136
76
61
n/a
n/a
115
67
48
Other case-specific assumptions:
Transport pipelines are not included in this set-up
50% of German CO2 exports is expected to come from Rostock (East of Jutland), and the
remaining 50% is expected to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Energy is provided to the injection site via an AC electricity cable from the onshore grid to
the nearshore injection operations
127
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0128.png
Ramboll - ccccc
OPTION #4: Nearshore, shuttle tanker to Hanstholm harbour and pipeline from
Copenhagen to Hanstholm harbour, then to Hanstholm storage site via pipeline
Table 54: Overview option #4
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
90
20
230
127
28
460
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
The number of appraisal wells
increase linearly with the size of
the area to be appraised
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline and power cable
MDKK
MDKK
MDKK
10
20
370
14
28
658
MDKK
MDKK
MDKK
180
420
350
180
840
550
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
The pipeline between storage and
injection site; cost is based on
the length and industry-standard
per km cost; includes an AC cable
providing power to injection
operations
The number of injection wells
scales linearly to accommodate
natural injection rate limitations
The offshore structure that
supports injection wells and
associated support systems
System for mooring and/or
unloading CO2 offshore
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
2,835
5,670
Wellhead platform
MDKK
280
396
Mooring/loading system
Purpose built CO2 carrier /
FSU
MDKK
MDKK
n/a
180
n/a
180
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
4,065
7,636
MDKK
MDKK
350
223
495
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Injection plant
MDKK
521
1,042
Pipeline and power cable
MDKK
95
149
Injection wells
MDKK
825
1,650
128
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0129.png
Ramboll - ccccc
Monitoring
Power
MDKK
MDKK
920
884
1,301
1,768
Post-injection monitoring is only
evaluated over a 20-year period
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Wellhead platform
Standby vessel
MDKK
MDKK
694
n/a
981
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
4,512
7,609
MDKK
MDKK
MDKK
711
600
1,311
1,336
849
2,185
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
473
1,892
Import via shuttle tankers is
assumed to increase from 20% of
the import volume to 60%
between the 5 and 10 MtCO2/y
scenarios
The additional cost of equipment
for the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 100,000 t and 110,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
1,875
2,063
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
2,348
3,955
2,157
4,225
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
have been assumed to consume
256 MWh per day, which drives
fuel costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
159
952
Total acc. OPEX
MDKK
2,316
5,177
129
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0130.png
Ramboll - ccccc
CAPEX
Onshore pipeline
Offshore pipeline
MDKK
MDKK
1,050
700
1,050
700
Cost of pipeline from CPH to
Hanstholm is split into two parts,
onshore part and offshore part;
throughput of 4 MtCO2/y is
assumed the same for both
scenarios meaning no change in
price
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of an offshore pipeline
Pumping station
MDKK
350
350
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
2,100
2,100
MDKK
284
284
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
189
297
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
432
905
133
76
57
432
1,013
112
67
45
Other case-specific assumptions:
A 400 km CO2 transport pipeline from CPH to Hanstholm harbour is included in this set-
up, consisting of 300 km onshore pipeline and 100 km offshore pipeline, assumed to
transport 4 MtCO2/y for both the 5 and 10 MtCO2/y scenarios. Additional import volume
for the 5 and 10 MtCO2/y scenarios is assumed to be transported from emission sources
to Hanstholm harbour using shuttle tankers
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Energy is provided to the injection site via an AC electricity cable from the onshore grid to
the nearshore injection operations
130
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0131.png
Ramboll - ccccc
OPTION #5: Offshore, shuttle tanker to Esbjerg harbour, then to the North Sea offshore
storage site via pipeline
Table 55: Overview option #5
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
70
20
n/a
99
28
n/a
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
Appraisal wells are not included
as the geological structures of the
offshore storage sites are
assumed to be well known due to
prior mapping by the oil and gas
industry
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
10
20
120
14
28
170
MDKK
MDKK
MDKK
180
390
1,750
180
780
2,750
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
The pipeline between storage and
injection site; does not include
the cost of electricity cable; cost
is based on the length and
industry-standard per km cost
The number of injection wells
scales linearly to accommodate
natural injection rate limitations
The offshore structure that
supports injection wells and
associated support systems
System for mooring and/or
unloading CO2 offshore
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,925
3,850
Wellhead platform
MDKK
525
742
Mooring/loading system
Purpose built CO2 carrier /
FSU
MDKK
MDKK
n/a
n/a
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
4,770
8,302
MDKK
MDKK
525
223
742
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Injection plant
MDKK
967
1,934
Pipeline
MDKK
473
743
131
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0132.png
Ramboll - ccccc
Injection wells
MDKK
527
1,054
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Monitoring
Power
MDKK
MDKK
920
3,036
1,301
6,072
Wellhead platform
Standby vessel
MDKK
MDKK
2,430
n/a
3,437
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
9,101
15,506
MDKK
MDKK
MDKK
835
600
1,435
1,453
849
2,301
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
1,419
2,838
Import via shuttle tankers is
assumed to be 100% of the
import volume
Additional cost of equipment for
the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
3,669
5,463
3,738
5,958
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
848
1,697
Total acc. OPEX
MDKK
4,587
7,655
132
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0133.png
Ramboll - ccccc
CAPEX
Onshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and 1 at each end of
the offshore pipeline
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
n/a
n/a
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
n/a
n/a
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
n/a
n/a
175
114
61
n/a
n/a
146
97
49
Other case-specific assumptions:
Transport pipelines are not included in this set-up
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Infrastructure for providing energy offshore is assumed to already be installed and has
not been included in the above estimates
Injection wells are placed in the Northern part of the North Sea oil and gas fields as the
geological structure of these sites means fewer wells are needed for the same injection
rate compared to the remaining Danish oil and gas fields
133
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0134.png
Ramboll - ccccc
OPTION #6: Offshore, vessel to North Sea offshore storage site, then direct injection of
CO2 into storage site using onboard equipment
Table 56: Overview option #6
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
150
60
n/a
250
100
n/a
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
Appraisal wells are not included
as the geological structures of the
offshore storage sites are
assumed to be well known due to
prior mapping by the oil and gas
industry
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
30
60
300
50
100
500
MDKK
MDKK
MDKK
n/a
340
n/a
n/a
680
n/a
Intermediate storage is included
in the cost of the vessel
Includes booster pumps, heat
exchangers and boiler system
Pipeline between storage and
injection site; does not include
cost of electricity cable; cost is
based on length and industry-
standard per km cost
Number of injection wells scale
linearly to accommodate natural
injection rate limitations
The offshore structure that
supports injection wells and
associated support systems
Includes a SAL system allowing
vessels to attach themselves to
wells and start injection of the
transported CO2
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,960
3,920
Wellhead platform
MDKK
275
550
Mooring/loading system
MDKK
405
675
Purpose built CO2 carrier /
FSU
MDKK
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
2,980
5,825
MDKK
MDKK
525
n/a
525
n/a
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Injection plant
MDKK
844
1.688
134
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0135.png
Ramboll - ccccc
Pipeline
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Injection wells
MDKK
608
1.216
Monitoring
Power
MDKK
MDKK
920
3,450
1.840
6,900
Wellhead platform
Standby vessel
MDKK
MDKK
4,650
1,240
9,300
2,480
Mooring/loading system
MDKK
1,005
1,675
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
13,242
25,624
MDKK
MDKK
MDKK
522
600
1,122
1,019
849
1,868
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
n/a
n/a
Import via shuttle tankers is
assumed to be 0% of the import
volume
Import via vessels is assumed to
be 100% of the import volume;
the additional cost of equipment
for the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
2,292
4,584
Shuttle tanker/ Vessel
Export intermediate storage
MDKK
2,250
2,625
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
4,542
7,209
n/a
n/a
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
Vessels fixed O&M
MDKK
4,917
8,315
Fuel
MDKK
843
1,686
135
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0136.png
Ramboll - ccccc
MWh per day, which drives fuel
costs
Total acc. OPEX
CAPEX
Onshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of the offshore pipeline
MDKK
5,759
10,000
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
n/a
n/a
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
n/a
n/a
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
n/a
n/a
207
131
76
n/a
n/a
189
125
64
Other case-specific assumptions:
Transport pipelines are not included in this set-up
All transport of CO2 happens via vessels with onboard intermediate storage and injection
capabilities, meaning no intermediate storage near the storage site is needed for the set-
up
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Appraisal wells are not included as the geological structures of the offshore storage sites
are assumed to be well known due to prior mapping by the oil and gas industry
Infrastructure for providing energy offshore is assumed to be already installed and has
not been included in the above estimates
Injection wells are placed at five different injection clusters with two platforms at each
cluster. The clusters will be found in the Northern part of the North Sea oil and gas fields
as the geological structure of these sites means fewer wells are needed for the same
injection rate compared to the remaining Danish oil and gas fields
The cost of pipelines between the clusters has not been included as no pre-existing cost
estimates have been found. Construction of these pipelines might be necessary if this set-
up structure will be used as the.
This set-up is the most expensive due to increased cost for Wellhead platform, standby
vessels, mooring/loading system, CAPEX and OPEX for vessels, which is caused by a
decrease in utilisation rate and increase in loading/unloading time per cycle
136
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0137.png
Ramboll - ccccc
OPTION #7: Offshore, shuttle tanker to offshore FSU near North Sea storage site, then
to North Sea storage site using FSU onboard injection equipment
Table 57: Overview option #7
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
70
20
n/a
99
28
n/a
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
Appraisal wells are not included
as the geological structures of the
offshore storage sites are
assumed to be well known due to
prior mapping by the oil and gas
industry
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
MDKK
MDKK
MDKK
10
20
120
14
28
170
MDKK
MDKK
n/a
n/a
Intermediate storage is included
in the cost of the FSU
Includes booster pumps, heat
exchangers and boiler system
390
780
n/a
Pipeline between storage and
injection site; does not include
cost of electricity cable; cost is
based on length and industry-
standard per km cost
Number of injection wells scale
linearly to accommodate natural
injection rate limitations
Offshore structure that supports
injection wells and associated
support systems
The estimated cost is based on
industry standards from the oil
and gas industry
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Pipeline
MDKK
n/a
Injection wells
MDKK
1,925
3,850
Wellhead platform
MDKK
525
742
Mooring/loading system
MDKK
375
530
Purpose built CO2 carrier /
FSU
MDKK
640
905
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
3,855
6,808
MDKK
MDKK
525
n/a
742
n/a
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Injection plant
MDKK
967
1,934
137
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0138.png
Ramboll - ccccc
Pipeline
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Injection wells
MDKK
527
1,054
Monitoring
Power
MDKK
MDKK
920
3,036
1,301
6,072
Wellhead platform
Standby vessel
MDKK
MDKK
2,430
620
3,437
1,240
Mooring/loading system
MDKK
831
1,662
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
1,587
2,244
MDKK
11,443
19,686
MDKK
MDKK
MDKK
675
600
1,275
1,191
849
2,040
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
1,419
2,838
Import via shuttle tankers is
assumed to be 100% of the
import volume unloading at an
FSU near the storage site
The additional cost of equipment
for the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
3,669
5,463
MDKK
3,738
5,958
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
837
1,675
138
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0139.png
Ramboll - ccccc
Total acc. OPEX
CAPEX
Onshore pipeline
MDKK
4,575
7,632
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of the offshore pipeline
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
n/a
n/a
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
n/a
n/a
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
n/a
n/a
n/a
n/a
185
124
61
155
106
49
Transport pipelines are not included in this set-up
All transport of CO2 happens via transport shuttles which unload to a permanent floating
storage unit (FSU) with intermediate storage and injection capabilities near offshore
storage sites
50% of German CO2 exports are assumed to come from Rostock (East of Jutland), and
the remaining 50% is assumed to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Appraisal wells are not included as the geological structures of the offshore storage sites
are assumed to be well known due to prior mapping by the oil and gas industry
Infrastructure for providing energy offshore is assumed to already be installed and has not
been included in the above estimates
Injection wells are placed in the Northern part of the North Sea oil and gas fields as the
geological structure of these sites means fewer wells are needed for the same injection
rate compared to the remaining Danish oil and gas fields
139
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0140.png
Ramboll - ccccc
OPTION #8: Offshore, shuttle tanker to Esbjerg harbour and pipeline from Hamburg to
Esbjerg harbour, then to the storage site via pipeline
Table 58: Overview option #8
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
70
20
n/a
99
28
n/a
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
Appraisal wells are not included
as the geological structures of the
offshore storage sites are
assumed to be well known due to
prior mapping by the oil and gas
industry
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
10
20
120
14
28
170
MDKK
MDKK
MDKK
180
390
1,750
180
780
2,750
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
Pipeline between storage and
injection site; does not include
the cost of electricity cable; cost
is based on length and industry-
standard per km cost
Number of injection wells scale
linearly to accommodate natural
injection rate limitations
The offshore structure that
supports injection wells and
associated support systems
The estimated cost is based on
industry standards from the oil
and gas industry
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,925
3,850
Wellhead platform
MDKK
525
742
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
MDKK
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
4,770
8,302
MDKK
MDKK
525
223
742
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Injection plant
MDKK
967
1,934
Pipeline
MDKK
473
743
140
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0141.png
Ramboll - ccccc
Injection wells
MDKK
527
1,054
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Monitoring
Power
MDKK
MDKK
920
3,036
1,301
6,072
Wellhead platform
Standby vessel
MDKK
MDKK
2,430
n/a
3,437
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
9,101
15,506
MDKK
MDKK
MDKK
835
600
1,435
1,453
849
2,301
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
473
1,419
Import via shuttle tankers is
assumed to increase from 20% of
the import volume to 50%
between the 5 and 10 MtCO2/y
scenarios
The additional cost of equipment
for the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
2,723
4,517
2,461
4,680
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
198
991
Total acc. OPEX
MDKK
2,659
5,672
141
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0142.png
Ramboll - ccccc
CAPEX
Onshore pipeline
MDKK
875
1,325
Based on industry-standard price
per km for pipelines of the
assumed capacity
Based on industry-standard price
per km for pipelines of the
assumed capacity
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of the offshore pipeline
Offshore pipeline
MDKK
n/a
n/a
Pumping station
MDKK
233
233
Pipeline
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
506
695
MDKK
236
358
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
n/a
n/a
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
270
506
166
114
52
338
695
139
97
42
Other case-specific assumptions:
A 250 km CO2 transport pipeline from Hamburg to Esbjerg harbour is included in this set-
up carrying 4 MtCO2/y in the 5 MtCO2/y scenarios and 5 MtCO2/y in the 10 MtCO2/y
scenarios. Additional imported CO2 volume between the 5 and 10 MtCO2/y scenarios is
assumed to be transported from the emission source to Esbjerg harbour using shuttle
tankers
50% of German CO2 exports is expected to come from Rostock (East of Jutland), and the
remaining 50% is expected to come from Hamburg (West of Jutland)
100% of exports from NL is assumed to come from Rotterdam harbour
Appraisal wells are not included as the geological structures of the offshore storage sites
are assumed to be well known due to prior mapping by the oil and gas industry
Infrastructure for providing energy offshore is assumed to already be installed and has
not been included in the above estimates
Injection wells are placed in the Northern part of the North Sea oil and gas fields as the
geological structure of these sites means fewer wells are needed for the same injection
rate compared to the remaining Danish oil and gas fields
142
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0143.png
Ramboll - ccccc
OPTION #9: Offshore, shuttle tanker to Esbjerg harbour, then to the storage site via
pipeline and two separate pipelines from Hamburg and Rotterdam to North Sea storage
site
Table 59: Overview option #9
Cost category
Pre-Fid
3D seismic
Baseline studies
Appraisal well
MDKK
MDKK
MDKK
70
20
n/a
99
28
n/a
Based on the size of the area to
be assessed
Surveys all relevant pre-injection
data
Appraisal wells are not included
as the geological structures of the
offshore storage sites are
assumed to be well known due to
prior mapping by the oil and gas
industry
Front end engineering design
Regulatory approvals for
establishing CO2 storage sites
Unit
5
MtCO2/y
10
MtCO2/y
Comment
FEED studies
Approvals
Total pre-FID costs
CAPEX
Intermediate storage
Injection plant
Pipeline
MDKK
MDKK
MDKK
10
20
120
14
28
170
MDKK
MDKK
MDKK
180
390
1,750
180
780
2,750
Assumed storage size of 50,000 t
Includes booster pumps, heat
exchangers and boiler system
Pipeline between storage and
injection site; does not include
cost of electricity cable; cost is
based on length and industry-
standard per km cost
Number of injection wells scales
linearly to accommodate natural
injection rate limitations
Offshore structure that supports
injection wells and associated
support systems
The estimated cost is based on
industry standards from the oil
and gas industry
Permanently moored FSUs near
offshore storage site have
intermediate storage and
injection capabilities
STORAGE
Injection wells
MDKK
1,925
3,850
Wellhead platform
MDKK
525
742
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
MDKK
n/a
n/a
Total CAPEX
Acc. OPEX
Base organisation
Intermediate storage
MDKK
4,770
8,302
MDKK
MDKK
525
223
742
223
Covers day-to-day operations of
the organisation
Facility size remains constant as
additional buffer size does not
provide value
Accumulated variable cost for
operating the injection plant
systems
Injection plant
MDKK
967
1,934
143
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0144.png
Ramboll - ccccc
Pipeline
MDKK
473
743
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime period
Accumulated variable cost of
operating wells for injection of
CO2 into subsurface reservoirs
Post-injection monitoring is only
evaluated over 20 years
Power scales linearly with the
project size and is based on 0.5
DKK/KWh pricing
Accumulated variable cost for
operating the wellhead platform
Scales linearly with the number
of vessels expected to be near
the storage site
Accumulated variable cost for
operating the mooring/loading
system offshore
Accumulated variable cost for
operating the FSU offshore
Injection wells
MDKK
527
1,054
Monitoring
Power
MDKK
MDKK
920
3,036
1,301
6,072
Wellhead platform
Standby vessel
MDKK
MDKK
2,430
n/a
3,437
n/a
Mooring/loading system
MDKK
n/a
n/a
Purpose built CO2 carrier /
FSU
Total CAPEX
Closure costs
Abandonment cost
Post-Closure cost
Total closure costs
CAPEX
Transport shuttle
MDKK
n/a
n/a
MDKK
9,101
15,506
MDKK
MDKK
MDKK
835
600
1,435
1,453
849
2,301
Evaluated as 17,5% of total
storage CAPEX
Cost of monitoring the storage
site post-closure
MDKK
473
1,419
Import via shuttle tankers is
assumed to decrease from 80%
of the import volume to 60%
between the 5 and 10 MtCO2/y
scenarios
Additional cost of equipment for
the vessels is included in the
CAPEX and OPEX for storage
Total export intermediate storage
is 120,000 t and 140,000 t for
each scenario, respectively, split
between the exporting countries
relative to their expected export
volume
Vessel
MDKK
n/a
n/a
Export intermediate storage
MDKK
2,250
2,625
Shuttle tanker/ Vessel
CO2 TRANSPORT
Total CAPEX
Acc. OPEX
Transport shuttle fixed O&M
MDKK
MDKK
MDKK
2,723
4,044
2,461
4,042
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
5% of CAPEX + 75 EUR/ton
export intermediate storage per
year over the full technical
project lifetime
Shuttle tankers during transport
are assumed to consume 256
MWh per day, which drives fuel
costs
Vessels fixed O&M
MDKK
n/a
n/a
Fuel
MDKK
207
827
144
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0145.png
Ramboll - ccccc
Total acc. OPEX
MDKK
2,668
4,869
CAPEX
Onshore pipeline
MDKK
n/a
n/a
Based on industry-standard price
per km for pipelines of the
assumed capacity
The offshore pipeline is a
combination of the Hamburg and
Rotterdam pipelines, both
transporting CO2 directly to the
North Sea storage sites; does not
include electricity cable cost;
pipelines with the same capacity
is assumed to be used in both
scenarios causing cost to stay the
same
One pumping stations is added
for every 200 km of pipeline
commenced and one at each end
of the offshore pipelines; it does
not include electricity cable cost
Offshore pipeline
MDKK
5,950
5,950
Pipeline
Pumping station
MDKK
467
467
Total CAPEX
Acc. OPEX
Onshore pipeline fixed O&M
MDKK
6,417
6,417
MDKK
n/a
n/a
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Costs are evaluated as 1% of
CAPEX per year for the full
technical lifetime
Based on 0.5 DKK/KWh pricing
Offshore pipeline fixed O&M
MDKK
1,607
1,607
Power
Total acc. OPEX
Total cost/t
*hereof
storage
*hereof transport
MDKK
MDKK
DKK/t
DKK/t
DKK/t
1,020
2,627
221
114
107
1,530
3,137
166
97
68
Other case-specific assumptions:
A 400 km CO2 offshore transport pipeline from Hamburg to the North Sea storage sites is
included in this set-up carrying 2 MtCO2/y in the 5 MtCO2/y scenario and 3 MtCO2/y in
the 10 MtCO2/y scenario
A 450 km CO2 offshore transport pipeline from Rotterdam to the North Sea storage sites
is included in this set-up carrying 2 MtCO2/y in the 5 MtCO2/y scenario and 3 MtCO2/y in
the 10 MtCO2/y scenario
The remaining increase in import volume between the 5 and 10 MtCO2/y cases is
assumed to be transported using shuttle tankers to Esbjerg harbour and transported via
pipeline to the North Sea storage site
German CO2 exports not included in the pipeline is assumed to come from Rostock (East
of Jutland)
No CO2 export other than export via pipeline is expected from the Netherlands
Appraisal wells are not included as the geological structures of the offshore storage sites
are assumed to be well known due to prior mapping by the oil and gas industry
Infrastructure for providing energy offshore is assumed to already be installed and has
not been included in the above estimates
145
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
Ramboll - ccccc
Injection wells are placed in the Northern part of the North Sea oil and gas fields as the
geological structure of these sites means fewer wells are needed for the same injection
rate compared to the remaining Danish oil and gas fields
146
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0147.png
Ramboll - ccccc
7.4
OVERVIEW OF ESTIMATED CCS SHARE BY COUNTRY
Table 60: Estimated CCS share; Finland
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if
relevant)
Power and heat
generation
Thermal power and heat generation
16,9
90%
N/A Thermal power and heat generation are not
considered relevant, since Finland will employ
electrification and other initatives to make up for
emissions.
90% Finland has one large WtE facility that is
considered relevant if Finland chooses to deploy
BECCS, which the country has indicated in its
Government strategies that it might.
60% Finland has two large iron and steel facilities,
which have potential for carbon capture.
N/A
50% CO2 prduction from refineries using fossil fuels
have a potential to utilise CCS.
50% One petrochemical plant in operation, however,
reduction of CO2 emission can also be achieved
by easier mesasures (widely available in Finland),
i.e., recycling of chemicals and electrification.
N/A
N/A
N/A
WtE plants
0,2
90%
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
1,5
-
3,1
60%
N/A
50%
Chemicals production
0,7
50%
Chemicals production (fertiliser/ammonia production)
Industrial plants
Pulp & paper
-
20,3
50%
80%
Mineral production (cement)
1,3
90%
80% If Finland chooses to implement BECCS into their
climate strategy, the pulp & paper industry is
highly suitable;
Large volumes of CO2 from biomass in pulp &
paper production facilities could be counted as
negative emissions if captured and stored, the
large factories are often located near rivers,
90% making transport ofin operations; use of facilities
Two cement plants CO2 away from the biofuels
can reduce some emissions, however CCS would
be highly relvant to achieve carbon neutrality.
N/A
N/A
N/A
N/A
N/A
N/A
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
Total
Other
-
-
2,9
46,8
90%
90%
N/A
147
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0148.png
Ramboll - ccccc
Table 61: Estimated CCS share; Sweden
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if relevant)
Power and heat
generation
Thermal power and heat generation
11,7
90%
N/A The majority of fossil plants are expected to be phased out
by 2050, making any CCS retrofit a less attractive option
compared to alternatives such as electrification.
90% WtE plants in Sweden is considered relevant as Sweden has
openly cpmmunicated a strategy to deploy BECCS.
0% Fossil free production using green hydrogen expected by
2035.
N/A
N/A
50% To minimise CO2 emissions, Sweden is expected to retrofit
any refinery with carbon capture technologies if the
economic return is positive.
25% The chemical industry is expected to rely roughly 50% on
N/A CCS, and 50% on CCU.
80% Large volumes of CO2 from biomass could be captured in
the pulp & paper production facilities and counted as
negative emissions if stored, the large factories are often
located near rivers, making transport of CO2 away from
the facilities cheaper and more convenient.
90% To minimise CO2 emissions, Sweden is expected to retrofit
most cement plants with carbon capture technologies if it
economically viable.
N/A
N/A
N/A
N/A
N/A
N/A
WtE plants
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
4,8
4,1
0,7
2,7
90%
60%
N/A
50%
Chemicals production
Chemicals production (fertiliser/ammonia production)
Industrial plants
Pulp & paper
1,0
-
22,8
50%
50%
80%
Mineral production (cement)
2,8
90%
Other
Total
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
-
-
0,7
51,3
90%
90%
N/A
148
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0149.png
Ramboll - ccccc
Table 62: Estimated CCS share; Norway
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
(From EU-ETS)
Technically
capturable share
Estimated CCS share
Comments on estimated CCS share (if relevant)
(what is actually expected
for CCS given alternatives
etc)
50% Presumably mainly related to oil & gas activities,
energy majors are expected to prioritise CCS due to
governmental focus on decarbonisation.
N/A
N/A
50% Fossil-reliant industries, such as steel, could choose
to use CCS rather than invest in options like
hydrogen.
N/A
N/A
75% Energy majors see CCS as a way of protecting a
chunk of their existing extraction and refining
business, because if the technology is proven to work
at scale it can potentially offset the CO2 emissions
from their operations.
25% The chemical industry is expected to rely roughly
50% on CCS and 50% on CCU.
N/A
N/A
50% The pulp & paper industry in Norway is estimated to
implement some CCS to achieve negative emissions.
90% To minimise CO2 emissions, Norway is expected to
retrofit most cement plants with carbon capture
technologies if it is technologically possible.
90% Due to the large support towards CCS from the
government, carbon capture technologies are
expected to be widely installed in any industry where
economically viable.
N/A
N/A
N/A
N/A
Power and heat
generation
Thermal power and heat generation
14,2
WtE plants
Steel & iron production/ferrous metals
-
2,5
90%
90%
60%
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
2,7
2,6
N/A
50%
Chemicals production
Industrial plants
Chemicals production (fertiliser/ammonia production)
Pulp & paper
1,5
-
0,2
50%
50%
80%
Mineral production (cement)
1,2
90%
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
0,5
90%
Other
Total
Food processing
Other
-
-
25,4
90%
N/A
149
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0150.png
Ramboll - ccccc
Table 63: Estimated CCS share; UK
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if relevant)
Power and heat
generation
Thermal power and heat generation
99,7
90%
10% The UK plans to develop a hydrogen economy to supply
industrial processes, long-distance HGVs and ships, and
for electricity and heating. For heating, by 2035, existing
homes should replace their heating systems for it to be
low-carbon or ready for hydrogen, so that the share of
low-carbon heating increases from 4.5% today to 90% in
2050. The hydrogen used in the CCC scenarios are
assumed to come mainly from steam methane reforming
with CCS in the UK.
80% Expected to be prioritised highly and that any WtE plant
built, after 2040, will have the technology deployed from
the beginning.
50% Carbon capture is the only current technology that abates
carbon emissions at scale for the steel & iron industry,
and CCS is expected to be highly prioritised compared to
CCU within the industry.
N/A
N/A
25% CCS faces competiton in this industry from electrification,
and hydrogen and thus, a 50% allocation towards CCS is
expected.
25% CCS faces competiton in this industry from electrification,
hydrogen and CCU, a 50% allocation towards CCS is
25% expected.
N/A
N/A
90% Carbon capture is the only current technology that can
abate carbon emissions at scale for the cement industry,
and thus, CCS is expected to be highly prioritised.
90% Carbon capture is the only current technology that abates
carbon emissions at scale for the mineral industry, and
CCS is expected to be highly prioritised compared to CCU
and other abatement technolgies within the industry.
50% Carbon capture is the only current technology that abates
carbon emissions at scale for the food processing
industry, however CCS is expected to be prioritised
equally with other developing abatement technolgies like
N/A CCU within the industry.
N/A
WtE plants
9,9
90%
Steel & iron production/ferrous metals
6,7
60%
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
-
10,8
N/A
50%
Chemicals production
Chemicals production (fertiliser/ammonia production)
Industrial plants
Pulp & paper
Mineral production (cement)
4,8
0,6
-
7,2
50%
50%
80%
90%
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
1,0
90%
Food processing
1,2
90%
Other
Total
Other
4,4
146,3
N/A
150
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0151.png
Ramboll - ccccc
Table 64: Estimated CCS share; Germany
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if
relevant)
Power and heat
generation
Thermal power and heat generation
263,8
90%
WtE plants
16,4
90%
Steel & iron production/ferrous metals
28,6
60%
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
1,7
21,1
N/A
50%
Chemicals production
24,6
50%
5% Germany has a cliamte neutrality target in
2050 and aims to reduce emissions by 95%
and the last 5% will need to be removed with
technology such as CCS.
50% BECCS is listed by the goverment as one of
the CCS focus areas, and WtE is possibly the
largest BECCS applications.
20% Green hydrogen is prioritised, however,
Germany cannot produce all the green
hydrogen they need by itself, and is, therfore,
expected to collaborate with other countries.
However, blue hydrogen is expected to be a
transitional solution.
N/A
N/A
30% High priority due to the long-term
commitment made to natural gas via the Nord
Stream pipeline.
30% CCS is not expected to be prioritised as highly
as in other industries due to a focus on CCU.
0% Expected to be replaced entirely with zero-
carbon technologies.
N/A
N/A
50% Most new cement plants are expected to
implement carbon capture technologies for the
purpose of storage, however as there are
currently a lot of cement factories in DE which
are either old or small, only around 50% of the
total emissions from the cement industry is
expected to be captured and stored.
N/A
N/A
N/A
N/A
N/A
N/A
Industrial plants
Chemicals production (fertiliser/ammonia production)
Pulp & paper
Mineral production (cement)
-
-
25,0
50%
80%
90%
Other
Total
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
0,9
0,8
23,3
406,2
90%
90%
N/A
151
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0152.png
Ramboll - ccccc
Table 65: Estimated CCS share; The Netherlands
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if
relevant)
Power and heat
generation
Thermal power and heat generation
55,7
90%
5% Small part of the energy mix is renewable, which is
expected, due to the high population density and
thus low room for renewable energy generation
technology. NL had problems reaching their 2020
goals and is expected to continue using gas fired
power plants for some time.
90% WtE plants are expected to be used long-term and
thus, makes for an obvious choice to retrofit
carbon capture equipment and reach negative
emissions by storing it afterwards.
N/A
N/A
N/A
N/A
90% CCS will be prioritised highly as it is the only current
technology that can abate emissions at the
expected scale of the mineral oil and gas refinery
industry in the Netherlands.
75% In general, in the chemical industry in the NL CCS is
expected to be prioritised over CCU or other
emission abatement technologies
75%
N/A
N/A
90% High priority as current emissions from the cement
production process are hard to abate with any
other current technology.
N/A
N/A
N/A
N/A
N/A
N/A
WtE plants
8,9
90%
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
-
-
10,6
60%
N/A
50%
Chemicals production
Industrial plants
Chemicals production (fertiliser/ammonia production)
Pulp & paper
Mineral production (cement)
16,9
-
-
0,5
50%
50%
80%
90%
Other
Total
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
0,1
0,9
1,4
95,0
90%
90%
N/A
152
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0153.png
Ramboll - ccccc
Table 66: Estimated CCS share; Poland
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if relevant)
Power and heat
generation
Thermal power and heat generation
121,2
90%
30% Decarbonisation of the Polish power & heat generation
sector will be driven by electrification, but some newer
coal plants, upcoming natural gas plants and CPH plants
will be relevant for CCS.
There are currently 4 coal plants, 7 MSW/CPH plants and
2 natural gas plants that are newer and relevant: Total
emissions at 28Mt/y. Furthermore, 5 natural gas plants
are planned (all planned at around 2025) with total
emissions at 6Mt/y. Therefore, total emissions at these
plants are ~30Mt/y, of which 10Mt/y (30%) estimated
to have CCS potential.
N/A
N/A
30% Due to fossil industry dominance, blue hydrogen is
expected to play key role as a transistional technology,
therfore a high CCS potential is expected.
N/A
N/A
50% CCS is a last resort technology at scale in Poland,
however, there is a potential for blue hydrogen to
become a transistional fuel in Poland, making CCS
necessary.
10% CCU expected to be prioritised over CCS in Poland.
10%
N/A
N/A
50% CCS considered a relevant option. Some of the industry is
looking intro RDF (Refused-derived fuel) instead of fossil
fuels, however, also here BECCS could be relevant to
obtain negative emissions and compensate for other
industries that are hard to abate.
40% CCS is a last resort technology for emissions abatement
at scale in Poland, so other technologies like CCU and
electrification will be explored first.
N/A
N/A
N/A
N/A
WtE plants
Steel & iron production/ferrous metals
-
7,1
90%
60%
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
1,2
1,7
N/A
50%
Industrial plants
Chemicals production
Chemicals production (fertiliser/ammonia production)
Pulp & paper
Mineral production (cement)
1,0
1,7
-
6,8
50%
50%
80%
90%
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
2,1
90%
Other
Total
-
23,8
166,7
90%
N/A
153
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0154.png
Ramboll - ccccc
Table 67: Estimated CCS share; Estonia
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS share (if
relevant)
Power and heat
generation
Thermal power and heat generation
7,9 (20,7)
90%
5% The number (20.7 Mt in 2017) is outdated since a
number of fossil fuel driven plants were close in
the past couple of years. Therefore a more
represenative number is 7.9 Mt than as provided
by the E-PRTR in 2017. Since Estonia closed
down oil-shale driven plants quite rapidly in the
past couple of years, the country's energy supply
security has been at risk. For this reason, the
existent oil-shale plants will need to keep running
until at least 2035 to secure the country's energy
supply, which is why 5% is assumed to be
potential for CCS in these fossil fuel driven plants.
The oil-shale plants will be phased-out after 2035
according to strategy plans.
N/A
N/A
N/A
N/A
N/A
N/A
N/A
90% High priority as current emissions from the
cement production process are hard to abate
with any other current technology.
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Industrial plants
WtE plants
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
Chemicals production
Chemicals production (fertiliser/ammonia production)
Pulp & paper
Mineral production (cement)
-
-
-
-
-
-
-
0,6
90%
60%
N/A
50%
50%
50%
80%
90%
Other
Total
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
-
-
3,4
11,9
90%
90%
N/A
N/A
N/A
N/A
154
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0155.png
Ramboll - ccccc
Table 68: Estimated CCS share; Lithuania
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated
CCS share (if relevant)
Power and heat
generation
Thermal power and heat generation
WtE plants
-
0,1
90%
90%
N/A
N/A
20% WtE plants considered relevant
for CCS in general, however,
Lithuania has not
communicated any strategy to
deploy BECCS in this sector.
N/A
N/A
N/A
N/A
0% Expected to be replaced
entirely with green hydrogen
N/A
N/A
30% CCU is preferred over CCS;
however it is still unproven at
scale compared with CCS. CCS
expected to me a medium-
term solution at best.
N/A
N/A
90% CCS is expected to take the
majority share in the cement
industry in Lithuania as it is
expected to be the cheapest
abatement option.
N/A
N/A
N/A
N/A
N/A
N/A
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
Chemicals production
Chemicals production (fertiliser/ammonia production)
-
-
1,7
-
2,6
60%
N/A
50%
50%
50%
Industrial plants
Pulp & paper
Mineral production (cement)
-
0,7
80%
90%
Other
Total
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
-
-
-
5,2
90%
90%
N/A
155
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0156.png
Ramboll - ccccc
Table 69: Estimated CCS share; Latvia
Industry
Sub-industry
CO2 Emissions
(2017) [Mt]
Technically
capturable share
Estimated CCS share
(what is actually expected
for CCS given alternatives
etc)
Comments on estimated CCS
share (if relevant)
Power and heat
generation
Thermal power and heat generation
1,0
90%
Industrial plants
Other
Total
WtE plants
Steel & iron production/ferrous metals
Non-ferrous metals (aluminium, copper and zinc etc)
Mineral oil and gas refineries
Chemicals production
Chemicals production (fertiliser/ammonia production)
Pulp & paper
Mineral production (cement)
Mineral production (lime and plaster, ceramics, glass
and mineral fibers etc)
Food processing
Other
-
-
-
-
-
-
-
-
-
-
-
1,0
90%
60%
N/A
50%
50%
50%
80%
90%
90%
90%
N/A
20% Low potential as the Latvian
Government will phase out
emissions in this sector and has
promoted the potential for CCS
in industrial activities and not
power and heat. However, no
industiral installations currently
produce more than 100
ktCO2/y.
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
156
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0157.png
OKTOBER 2021
KEFM
CCS - INTERNATIONALE
ERFARINGER - SIKKERHED,
NATUR OG MILJØ
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0159.png
ADRESSE
COWI A/S
Parallelvej 2
2800 Kongens Lyngby
TLF
FAX
WWW
+45 56 40 00 00
+45 56 40 99 99
cowi.dk
OKTOBER 2021
KEFM
CCS - INTERNATIONALE
ERFARINGER - SIKKERHED,
NATUR OG MILJØ
PROJEKTNR.
DOKUMENTNR.
A231499
A231499-01
VERSION
UDGIVELSESDATO
BESKRIVELSE
UDARBEJDET
KONTROLLERET
GODKENDT
04
15 oktober 2021
NMSC, LOVGX,
LNKR/CCRN
LOKL, EMJT, PEFI,
MMK
MMK
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0161.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
5
INDHOLD
1
2
2.1
2.2
3
3.1
3.2
3.3
3.4
3.5
4
5
5.1
5.2
5.3
5.4
6
6.1
6.2
6.3
7
7.1
Baggrund og formål
Metode, afgrænsning og struktur
Metode og afgrænsning
Struktur
Opsummering og perspektivering
Summary
CO₂-fangstanlæg –
sikkerhed, miljø og natur
CO₂-mellemlager
- sikkerhed, miljø og natur
CO₂ geologisk lagring –
sikkerhed, natur og
miljø
CO₂-transport
infrastruktur
Oversigt over relevante internationale projekter
Sikkerheds- og miljømæssige forhold
Kuldioxid (CO₂ )
Aminer
Ammoniak (NH₃)
Oxygen (O₂)
CO₂-fangstanlæg
- Vurdering af sikkerhed,
natur og miljø
Sikkerhed
Miljø
Natur
Mellemlager faciliteter - Vurdering af sikkerhed,
natur og miljø
Sikkerhed
7
9
9
11
12
12
15
17
18
21
24
30
30
34
34
35
37
37
38
43
44
44
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0162.png
6
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
7.2
7.3
8
8.1
8.2
8.3
9
9.1
9.2
9.3
10
Miljø
Natur
Geologisk lagring af CO₂ på land og til havs
-
Vurdering af sikkerhed, natur og miljø
Sikkerhed
Miljø
Natur
Transport
af CO₂ på land og til havs
- Vurdering
af sikkerhed, natur og miljø
Sikkerhed
Miljø
Natur
Referencer
45
46
48
48
49
53
63
63
64
66
68
BILAG
Bilag A
Teknisk beskrivelse af CCS anlæg
A.1
CO₂-fangstanlæg
A.2
Mellemlager-faciliteter
A.3
Geologisk lagring af CO₂ på land og til havs.
A.4
Transport af CO₂ på land og til havs
Bilag B
Opsummering af CCS erfaringer med
sikkerhed, miljø og natur
Longlist over litteratur gennemgået
Bilag C
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0163.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
7
1
Baggrund og formål
I klimaaftalen for energi og industri mf. (juni 2020) aftalte et bredt flertal af Fol-
ketingets partier, at der fremover skal være mulighed for fangst, transport og
lagring af CO₂ i Danmark og for at transportere indfanget CO₂ på tværs af lan-
degrænser under forudsætning af, at det foregår under forsvarlige sikkerheds-
og miljømæssige forhold.
Dette er i juni 2021 fulgt op af en bred aftale mellem regeringen og en lang
række partier i Folketinget om en køreplan for
lagring af CO₂.
En aftale, hvori
det af parterne anerkendes, at Carbon Capture and Storage (CCS) er et centralt
virkemiddel for at afbøde klimaforandringerne internationalt og som bakker op
om, at CCS skal spille en væsentlig rolle i bestræbelserne for at nå de nationale
klimamål. Aftalen understreger, at der skal skabes et grundlag for sikker og mil-
jømæssig forsvarlig lagring af CO₂ i undergrunden,
og at der skal sættes gang i
yderligere undersøgelse af lagringsfaciliteter i Danmark [1].
Formålet med denne rapport er at beskrive internationale erfaringer med CCS
med hensyn til sikkerheds-, natur- og miljømæssige forhold, således at dette
kan indgå i det videre arbejde med sikring af disse forhold i forbindelse med
dansk anvendelse af CCS som klimavirkemiddel. Rapporten skal dermed også
forholde sig til, hvorvidt de internationale erfaringer er relevante i en dansk
sammenhæng.
Rapporten skal indgå som baggrund og afgrænsning af det videre arbejde med
udvikling af CCS i Danmark, hvilket vil omfatte strategisk miljøvurdering af ud-
bud af arealer for injektion og geologisk lagring af
CO₂
i undergrunden samt mil-
jøvurdering og miljøgodkendelse af helt konkrete projekter for CCS.
CCS omfatter fangstanlæg på
CO₂
punktkilder, infrastruktur til transport, mel-
lemlagerfaciliteter samt permanent geologisk lagring i undergrunden.
CO₂-fangst
er velkendt teknologi som siden først i 1970'erne har været anvendt
i olieindustrien specielt USA til at forbedre indvindingspotentiale i olielagre (en-
hanced oil recovery (EOR)).
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0164.png
8
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Siden 1996 har CO₂-fangst
og lagring været anvendt i Norge til at reducere
CO₂-udledninger fra indvinding af gas i Nordsøen. Den opfangede CO₂ sendes til
permanent lagring i strukturer tæt på gasindvindingsområderne i Sleipner og
Snøhvitfelterne.
CO₂-fangst
anvendes i Danmark i forbindelse med opgradering af biogas og har
på forsøgsbasis være afprøvet på Esbjergværket. En mindre del af den opsam-
lede CO₂
anvendes i medicinal- og fødevareindustri.
Transport af
CO₂
mellem opsamlings- og anvendelsessted sker for nuværende i
Danmark primært med tankvogne. Der er endnu ikke foretaget geologisk lagring
af
CO₂
i Danmark.
På globalt plan opererer der i dag 27 kommercielle CCS-faciliteter med en sam-
let kapacitet til at fange og lagre ca. 40 mio. tons
CO₂
per år [2]. De er primært
baseret i USA altovervejende som en del af øget olieindvinding (EOR).
Herudover eksisterer en række pilot- og demonstrationsprojekter verden over,
med fokus på at udvikle og teste teknologi samt projekter i mere eller mindre
moden udvikling. Blandt andet er man i Norge påbegyndt et feasibility- og kon-
ceptstudie for Longship projektet. Det er en realisering af et fuldskala CCS pro-
jekt
med CO₂-fangst,
skibstransport, mellemlagring og transport til offshore la-
ger via rør.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0165.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
9
2
2.1
Metode, afgrænsning og struktur
Metode og afgrænsning
Udgangspunktet for rapporten har været tilgængelig litteratur, forskningsrappor-
ter, konsulentrapporter samt information fra diverse organisationer (f.eks.: Glo-
bal CCS Institute, IEA, UK EPA) vedr. internationale CCS-projekter inkl. eventu-
elle pilot- og testprojekter.
En komplet litteraturliste fremgår af bilag C.
For at indkredse relevante anlæg og projekter er der indledningsvis lavet en
oversigt over internationale CCS-anlæg inkl. pilot og testanlæg samt projekter
på bedding, hvorfra erfaringer kunne være relevante.
Rapporten beskriver, i det omfang de foreligger, internationale erfaringer for alle
de enkelte led i CCS-kæden, det vil sige: 1)
CO₂-fangst,
2) mellemlagring og 3)
lagring samt 4) infrastruktur til transport.
For hver af de forskellige led i kæden (1-4) er redegjort for erfaringer med hen-
syn til sikkerhed, miljø og natur ved forundersøgelser, anlæg og etablering, drift
og afvikling.
Der hvor det ikke har været muligt at identificere eksplicitte internationale erfa-
ringer er det anført.
2.1.1 Relevans for danske forhold
Der er i erfaringsopsamlingen fokuseret på de anlægstyper/metoder, som vurde-
res at være relevante i dansk sammenhæng, det vil sige, der er ikke medtaget
erfaringer fra
brug af CO₂ til
et øge olieudvinding (EOR), og der er fokuseret på
CO₂
fangstmetoder, som dels er teknisk modne, kommercielle samt relevante
for større danske punktkilder og biogasanlæg.
Yderligere er der i forbindelse med opsummering og perspektivering af de inter-
nationale erfaringer med sikkerhed, miljø og natur vurderet og taget stilling til
relevans i en dansk kontekst. Det kan f.eks. være, hvorvidt de beskrevne miljø-
påvirkninger er sammenlignelige eller hvorvidt påvirkede naturtyper og habitater
er relevante og sammenlignelige.
2.1.2 Tekniske anlæg
CO₂-fangst
vil kunne være relevant for større punktkilder, hvor der ønskes en
reduktion af den direkte udledning
af CO₂.
Det kan være fra eksempelvis ce-
mentproduktion, kraftvarmeanlæg (inklusiv de affalds- og biomasssefyrede an-
læg) samt biogasanlæg.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0166.png
10
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
CO₂-fangstteknologier
afgrænses specifikt til anlæg med højteknologisk moden-
hed, som allerede er eller er tæt på at være kommercielt tilgængelige, det vil
sige:
Rensning af røggas (post combustion) ved hhv. aminvask og nedkølet am-
moniak (oftest benævnt chilled ammonia)
Dannelse af røggas med høj CO₂-koncentration
ved forbrænding ved iltrige
betingelser (oxyfuel).
Mellemlagerfaciliteter vil omfatte lagring i tanke samt med stor sandsynlighed
kondensering / liquefaction-faciliteter.
Lagring af CO
2
finder sted i geologiske strukturer med stort porevolumen (f.eks.
i sandsten) overlejret af et impermeabelt lag (f.eks. lersten). Lagring vil under
danske forhold typisk skulle ske 1-2 km. under overfladen. Potentielt egnede
strukturer til lagring i Danmark findes både offshore, tæt på land og på land.
Der overvejes både
CO₂-lagring
i tidligere oliegasfelter og i nye uafprøvede
strukturer.
I Bilag A fremgår en mere detaljeret beskrivelse af de forskellige tekniske an-
læg. De er så vidt muligt beskrevet medhensyn til forundersøgelser, anlæg og
etablering, drift og afvikling.
2.1.3 Sikkerhed
Sikkerhed omfatter de aspekter ved CCS, som knytter sig til pludselige hændel-
ser, som specifikt har med håndteringen af CO₂ og tilknyttede
hjælpestoffer at
gøre, og som kan udgøre en fare for menneskers liv og helbred. Hændelserne
medfører enten udsættelse for farlige stoffer, fysiske påvirkninger eller for
begge dele. Påvirkning af natur og miljø ved pludselige hændelser behandles un-
der henholdsvis natur- og miljøafsnittene.
Generelle arbejdsmiljømæssige farer fra aktiviteter som konstruktionsarbejde på
store industriprojekter, herunder offshore installationer, transport af gods på
landevej, jernbane og skib og transport af stoffer i rørledninger, er ikke behand-
let, medmindre, der er forhold, som er specifikke for CCS.
2.1.4 Miljø
Under miljø indgår udledninger til luft, vand og jord. Herudover indgår energifor-
brug og CO₂ aftryk, brug af ressourcer samt affald.
2.1.5 Natur
Under natur indgår vurdering af inddragelse af arealer samt påvirkninger af ar-
ter, habitater og økosystemer som følge fysisk aktivitet, støj, emissioner til luft,
vand og jord og uheld med udledning af farlige stoffer. Der inkluderes både de
midlertidige og de mere langsigtede påvirkninger.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0167.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
11
2.2
Struktur
For at indkredse de internationale anlæg og projekter, hvorfra det vil være rele-
vant at indhente erfaringer er der i afsnit 3 lavet en oversigt over internationale
CCS-anlæg inkl. pilot og testanlæg samt projekter på bedding.
Med udgangspunkt i dels de projekter der findes internationalt samt de tekniske
anlæg og de forskellige faser (forundersøgelser, anlæg etablering, drift og afvik-
ling) beskrives ud fra relevante referencer og erfaringer de væsentligste sikker-
heds-, miljø- og naturmæssige forhold.
De sikkerhedsmæssige forhold er for alle de enkelte led i CCS-kæden relateret til
større udslip af farlige stoffer, f.eks.
CO₂.
For at undgå gentagelser er der i af-
snit 5 udarbejdet en generel beskrivelse af de relevante stoffer samt de sikker-
heds- og miljømæssige forhold i forbindelse med større udslip.
Rapporten er opbygget således, at der startes med erfaringer for
CO₂ fangst,
CO₂ mellemlager, CO₂ lagring og til
sidst medtager
CO₂ infrastruktur.
I Bilag A fremgår en beskrivelse af de tekniske anlæg fordelt på faserne forun-
dersøgelser, anlæg og etablering, drift og afvikling.
I Bilag B er lavet en opsummering af de væsentligste sikkerheds-, natur- og mil-
jømæssige forhold identificeret i undersøgelsen.
I Bilag C fremgår en "longlist" over den samlede litteratur, der er gennemgået i
forbindelse med udarbejdelse af rapporten.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0168.png
12
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
3
Opsummering og perspektivering
Nedenfor præsenterer vi opsummeringen af de væsentligste erfaringer vedrø-
rende sikkerhed, miljø og natur for CCS
1
. Erfaringerne er identificeret ved en
gennemgang af relevante internationale projekter og erfaringer. Erfaringerne er
opsummeret dels meget overordnet i afsnit 3.1, dels lidt mere i detalje for hvert
enkelt led i CCS-kæden i afsnit 3.2-3.5. Endvidere henvises til bilag B for en
samlet oversigtlig opsummering af sikkerheds-, miljø- og naturmæssige forhold
ved CCS.
Figur 1 giver et overblik over de enkelte led i CCS værdikæden. Den endelige
konfiguration kan se ud på mange måder og vil afhænge af det konkrete pro-
jekt.
Figur 1: Illustration af de enkelte led i en CCS værdikæde
3.1
Summary
Helt generelt og på tværs af de enkelte led og projekter er erfaringerne med
hensyn til CCS og sikkerheds-, miljø- og naturmæssige forhold:
Der er international erfaring med CCS omfattende både offshore og onshore
geologisk lagring af
CO₂
Langt de fleste kommercielle CCS projekter er etableret med henblik på En-
hanced Oil Recovery
CO₂-fangst
er en moden teknologi, og der er leverandører på markedet, der
kan levere anlæg, som efterlever krav til sikkerhed, miljø og natur
Der anvendes
meget energi til CO₂-fangst,
konditionering og transport, og
det er vigtigt at have fokus på energieffektivitet og optimering i hele kæden
1
CCS: Carbon Capture and Storage
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0169.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
13
Internationale projekter for CO₂ lagring
har tilknyttet et omfattende moni-
toreringsprogram både i forbindelse med forundersøgelse, drift og afvikling
af lageret
Overvågning udført i forbindelse med de internationale lagre har vist, at
CO₂ forbliver sikkert i lageret,
og der er ikke konstateret
CO₂-udslip
fra no-
gen af de eksisterende geologiske lagre.
Desuden viser erfaringerne at anlæg, etablering samt afvikling
af CO₂-
fangstanlæg og mellemlagerfaciliteter sker som for andre typiske industri-/pro-
cesanlæg og at de ikke medfører væsentlige specifikke sikkerheds-, miljø- og
naturmæssige påvirkninger. Påvirkningerne er primært relateret til et arealbe-
hov og eventuel inddragelse af beskyttede eller sårbare naturtyper samt til for-
styrrelser, som følge af fysiske indgreb, trafik og støj. Påvirkningerne af miljø og
natur vil afhænge af den konkrete placering i forhold til beskyttede områder og
nærhed til nærmeste naboer.
Under drift
af CO₂-fangstanlæg
er den væsentligste bekymring identificeret i de
internationale referencer, de aminbaserede anlægs udledninger til luft. En mål-
rettet indsats har ført til en udvikling af fangstanlæggene, de aminer der anven-
des samt metoderne til at vurdere den miljømæssige påvirkning. I Norge er man
langt fremme med etablering af større fangstanlæg på landbaserede kilder, som
er godkendt af de norske myndigheder.
I drift af anlæggene skal der ved
større oplag af CO₂
endvidere tages hensyn til
de risikomæssige forhold ved placering af anlæggene.
I forhold til sikkerhed og geologisk lagring
af CO₂
er erfaringerne positive. Der
er ikke fundet eksempler på uheld og større udslip af CO₂ fra geologiske CO₂
lagre, ej heller store udsivninger på grund af migrering af den oplagrede CO₂.
Det vurderes, at godt kendskab til lageret og dets egenskaber, løbende monito-
rering samt placering i områder med lav tektonisk aktivitet betyder, at der er lav
risiko for større udslip af CO₂.
Seismiske undersøgelser er en vigtig aktivitet i monitorering af lagrene og der er
i de internationale referencer fokus på denne aktivitet og de afledte påvirkninger
på fisk og marine pattedyr. Det er vurderet, at den skadelige påvirkning af fisk
og pattedyr som følge af seismiske undersøgelser og overvågning typisk medfø-
rer en lokal, midlertidig påvirkning, som kan reduceres med passende afværge-
foranstaltninger.
Påvirkningen skal dog ses i sammenhæng med øvrige aktiviteter og marine på-
virkninger i samme influensområde. Afværgeforanstaltninger som medfører, at
marine pattedyr skræmmes væk fra et område, forudsætter eksempelvis, at der
er upåvirkede områder i nærheden.
Ved seismiske undersøgelser på land anvendes store og tunge køretøjer, der kan
sætte aftryk i landskabet, beskadige vegetation og det øverste jordlag. Der kan
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0170.png
14
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
også være tale om forstyrrelser af fugle- og dyrevildt samt øvrige beskyttede ar-
ter. Påvirkningerne kan reduceres med afværgeforanstaltninger, som eksempel-
vis tidsmæssig planlægning af arbejdet for at undgå sårbare perioder, udlæg af
køreplader m.m.
I forbindelse med forundersøgelser og anlæg af de geologiske lagre beskrives
endvidere påvirkninger som fysiske forstyrrelser af havbund, udledninger til
vand af kemikalier, boremudder, borespåner og cement samt støj, emissioner og
energiforbrug fra skibe og borerig. Det er påvirkninger som er sammenlignelige
med dem som identificeres og håndteres i forbindelse med olie- og gasudvinding
i Nordsøen.
Påvirkningerne i forbindelse med anlæg og etablering af geologisk lager på land
vurderes at være mindre end for offshore lagre. Specielt seismiske undersøgel-
ser vil ikke have samme påvirkning på land, da lyd propagerer hurtigere og læn-
gere i vand end i atmosfærisk luft [3]. På land vil der endvidere i langt større
omfang være mulighed for at opsamle affald og udledninger.
Påvirkninger fra drift af et geologisk lager inkluderer diffus
udledning af CO₂ fra
ventilering, tryksatte koblinger mv, støj fra udstyr, udledning af kemikalier samt
energiforbrug og emissioner.
Væsentligheden af de miljø- og naturmæssige påvirkninger både offshore og på
land vil afhænge af den konkrete placering herunder nærheden til f.eks. § 3 lo-
kaliteter, truede arter, beskyttede områder samt områder med beboelse.
I forbindelse med transport af CO₂
er påvirkningerne fra skibs-, tog- og lastbils-
transport primært støj og emissioner. Ved etablering og placering af rørlednin-
ger, vil der være en permanent fysisk ændring og påvirkning langs tracé, både
hvis det sker offshore og på land. Herudover vil der være en række mere midler-
tidige påvirkninger i anlægsfasen som støj, energiforbrug og emissioner samt
lys. Etableres rørene til havs kan der endvidere opstå risiko for midlertidig
spredning af sediment samt midlertidig forstyrrelse af vandsøjlen.
De natur- og miljømæssige påvirkninger vil afhænge af den konkrete placering
af transportkorridoren herunder nærheden til f.eks. § 3 lokaliteter, truede arter
,beskyttede områder og boliger.
Nedenfor gennemgås de væsentligste sikkerheds-, miljø- og natur forhold i
hvert af de fire led i værdikæden vist i Figur 1:
CO₂-fangst,
mellemlager, geolo-
gisk lagring
og CO₂-transport.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0171.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
15
3.2
CO₂-fangstanlæg –
sikkerhed, miljø og natur
CO₂ fangstanlæg
vil typisk placeres i nærhed af en CO₂
punktkilde og er dermed
en del af et større industrielt anlæg. Både rensning af røggas (post combustion)
ved hhv. aminvask og nedkølet ammoniak samt oxyfuel processen kan etableres
som en del af nye anlæg eller etableres som retrofit på eksisterende punktkilder.
CO₂ fangst er kendt teknologi og de internationale erfaringer
med sikkerhed,
miljø og natur vil kunne bruges i dansk sammenhæng, da teknologien i hoved-
træk vil være ens.
For CO₂-fangstanlæg
vil de tekniske forundersøgelser typisk skulle afdække mu-
ligheder for udnyttelse af overskudsvarme, afdækning af kølebehov samt inte-
gration med damp- og fjernvarmesystemer for at sikre høj energieffektivitet.
Ved retrofit kan der være behov for, at der samtidig etableres yderligere rens-
ning af røggas for at få fangstanlægget til at fungere.
Forundersøgelser knyttet til fangstanlæg forventes ikke i sig selv at have væ-
sentlige sikkerheds-, miljø- og naturmæssige forhold. Det forventes,
at CO₂
fangstanlæggene også i dansk sammenhæng typisk vil etableres som en del af
et større industrianlæg.
Det skal i forbindelse med planlægning sikres, at den valgte placering sker under
hensyn til de risiko-, miljø- og naturmæssige forhold, som gælder på den en-
kelte lokalitet. Det nødvendige plangrundlag skal tilvejebringes, og de nødven-
dige tilladelser indhentes.
Anlæg og etablering af CO₂-fangstanlæg
vil foregå som for andre typiske indu-
stri-/procesanlæg. På basis af de internationale erfaringer vurderes anlæggene
ved anlæg og etablering ikke at omfatte væsentlige og specifikke sikkerheds-,
miljø- og naturmæssige forhold.
Under drift er den væsentligste bekymring, som er identificeret i de internatio-
nale referencer, de aminbaserede anlægs udledninger til luft. Med røggassen
kan der forekomme emissioner af amin, ammoniak (NH₃), flygtige organiske
stoffer (VOC) samt toksiske nitrosaminer og nitraminer fremkommet ved reak-
tion med NO
X.
For chilled ammonia processen er det primært udledning af am-
moniak, der nævnes.
Der er erfaringer fra Norge og England, som man med fordel kan drage nytte af i
en dansk sammenhæng.
I Norge har man udviklet en metode (toolbox) til at vurdere udledninger til luft,
herunder både den direkte emission, koncentrationer af forurenende stoffer i
omgivelserne (immissioner) samt deposition. Folkhelseinstituttet har i den for-
bindelse sat grænseværdier for koncentration af nedbrydningsprodukter i omgi-
velserne. Den løbende udvikling af
CO₂-fangstmetoder
og anlæg har betydet, at
flere leverandører i dag er i stand til at levere anlæg, som lever op til de norske
krav.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0172.png
16
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
I Storbritannien har Environment Agency i 2021 udgivet et BAT Review og en
vejledning for
CO₂-fangst
og i samme anledning defineret grænseværdier for luft
for både aminen MEA og nedbrydningsproduktet NDMA.
I dansk sammenhæng er der allerede i forvejen defineret B-værdier for enkelte
aminer, som kan bruges i forbindelse med godkendelse af anlæg. Der foreligger
dog p.t. ikke B-værdier for nedbrydningsprodukterne Nitrosaminer og Nitraminer
og ej heller for alle aminer, som erfaringsmæssigt anvendes
til CO₂-
fangstanlæg.
Der foreligger i dansk sammenhæng, som grundlag for godkendelser, generelle
metoder for beregning af immission og også deposition af udvalgte stoffer. Det
skal vurderes, hvorvidt disse er brugbare, eller om der skal udvikles nye meto-
der inkl. vejledninger. Der kan i den sammenhæng hentes inspiration i Norge,
som allerede har godkendt anlæg og i Storbritannien som via BAT-Review for
CO₂ fangstanlæg også har
sat grænseværdier for udvalgte stoffer.
For fangstanlæg med chilled ammonia skal der tilsvarende være foranstaltnin-
ger, der reducerer udledning af
ammoniak (NH₃),
og som sikrer, at anlægget le-
ver op til gældende grænseværdier. Ammoniak er et kendt stof, som der findes
gængse metoder og grænseværdier til at vurdere på basis af.
Der vil være behov for i de konkrete tilfælde at vurdere, om de aminbaserede
anlæg og anlæg med ammoniak bliver omfattet af Risikobekendtgørelsen.
Den primære problemstilling i forhold til et fangstanlæg baseret på oxyfuel er til-
stedeværelsen af rent ilt, idet ilt er brandnærende. Ved oplag af ilt i mængder
over 200 ton vil anlæg være kolonne 2 anlæg og dermed være omfattet af Risi-
kobekendtgørelsen.
I de internationale referencer nævnes energiforbrug og det relaterede CO₂-
footprint som faktorer, der potentielt kan udgøre en væsentlig miljøpåvirkning
for CO₂ fangstanlægget.
Energiforbruget vil afhænge dels af fangstmetoden,
men også af integrationen med øvrige processer samt muligheden for at komme
af med varme til f.eks. fjernvarme.
Der er ikke via de internationale referencer identificeret væsentlige påvirkninger
på natur af CO₂-fangstanlæg.
Og der er ikke fundet referencer, der meget speci-
fikt har redegjort for den naturmæssige påvirkning af emissioner og eventuelle
depositioner.
I en dansk sammenhæng vil anlæggets deposition af giftige stoffer skulle vurde-
res i forhold til en konkret placering, nærhed til sårbare naturområder samt
eventuelle tålegrænser.
Der er ikke fundet eksempler i de internationale referencer for
CO₂-fangstanlæg,
der ved uheld har resulteret i et større udslip
af CO₂, aminer eller andre forure-
nende stoffer.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0173.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
17
Den stående mængde CO₂ i et fangstanlæg
vurderes at være forholdsvis lille, da
CO₂ først i forbindelse med mellemlagring komprimeres og evt. køles.
Muligt ud-
slip af CO₂ fra fangstanlæg
i forbindelse med lækage vurderes derfor typisk at
være begrænset. Det bør dog også vurderes for de konkrete anlæg.
For de fangstanlæg, hvor der sker en kondensering af CO₂, kan køleenheden in-
deholde ammoniak (NH₃), hvilket i dansk sammenhæng kan betyde,
at anlæg-
get bliver omfattet af Risikobekendtgørelsen.
Afvikling
af et CO₂ fangstanlæg
vil skulle forberedes og effektueres som for an-
dre typiske industri-/procesanlæg, og der er ikke via de internationale erfaringer
identificeret væsentlige specifikke sikkerheds-, miljø- og naturmæssige forhold.
3.3
CO₂-mellemlager
- sikkerhed, miljø og natur
Mellemlager-faciliteter vil typisk skulle
etableres i nærheden af CO₂-punktkilder
og -fangstanlæg og på eller i umiddelbar nærhed af havne- og/eller industriom-
råder, hvor transport med skib er mulig. Mellemlager-faciliteter vil formentlig
omfatte kondensering / liquefaction-faciliteter og lagring i tanke.
Lagerkapaciteten på mellemlageret vil typisk afhænge af lastbilernes eller skibe-
nes cyklustid.
Det skal i forbindelse med planlægning sikres, at den valgte placering sker under
hensyn til de risiko-, miljø- og naturmæssige forhold, som gælder på den en-
kelte lokalitet. Det nødvendige plangrundlag skal tilvejebringes, og de nødven-
dige tilladelser indhentes.
Specielt de sikkerhedsmæssige forhold, det vil sige risiko for større udslip af
CO₂,
skal vurderes. I det norske Northern Lights projekt
2
er der for mellemlage-
ret beregnet stedbunden risiko for området omkring, som er holdt op imod ac-
ceptkriterier for forskellig anvendelse. Det vil være relevant at udføre noget til-
svarende for fremtidige, større mellemlagre i Danmark.
Det skal anføres, at der ikke i de internationale referencer er fundet eksempler
på uheld med
større udslip af CO₂ fra CO₂-mellemlagre.
Anlæg, etablering, drift og afvikling af CO₂-mellemlagre
vil foregå som andre ty-
piske industri-/procesanlæg. I drift vurderes de væsentligste miljømæssige for-
hold at være støj og trafik til og fra anlægget.
Northern Lights Projektet (NLP) er en del af det norske Langskip CCS projekt.
NLP omfatter skibstransport
af CO₂
fra punktkilder til mellemlager,
CO₂-
mellemlager i tanke, en offshore rørledning ud til en undersøisk satellit, hvor der
sker injektion
af CO₂
i undersøisk lager.
2
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0174.png
18
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
For de mellemlagre, hvor der
sker en kondenseringen af CO₂, kan køleenheden
indeholde ammoniak (NH₃), hvilket i dansk sammenhæng kan betyde at anlæg-
get bliver omfattet af Risikobekendtgørelsen og at der herudover kan være risiko
for spild, eller udslip af ammoniak.
Naturpåvirkningen ved etablering og drift af mellemlagerfaciliteter vil afhænge
af anlæggets placering i forhold til eksisterende sårbar natur og vil primært
være relateret til et arealbehov og eventuel inddragelse af beskyttede eller sår-
bare naturtyper samt til forstyrrelse af beskyttede arter, som følge af fysiske
indgreb, trafik og støj.
3.4
CO₂ geologisk lagring –
sikkerhed, natur og
miljø
Et geologisk lager består af en række elementer:
et reservoir, dvs. et geologisk lag/ bjergart med en vis porøsitet, f.eks. en
sandsten
en "cap rock"/forsegling, dvs. en impermeabel bjergart som f.eks. lersten
og
en lukning, dvs. en afgrænsning af reservoiret i geologiske strukturer som
f.eks. antiklinaler/ domer, forkastningsblokke (forskudte jordlag) eller stra-
tigrafiske afgrænsede lag.
Når CO₂ injiceres i et reservoir,
vil det presse formationsvandet væk og bevæge
sig ind i porerummet på bjergarten.
For at sikre at CO₂ forbliver i væskefase må det opbevares ved tryk
større end
dets kritiske tryk som er 73,9 bar, hvilket vil sige i en minimumsdybde på ca.
800 m.
I reservoiret er der 4 mekanismer,
der arbejder sammen for at "fange" CO₂.
1) en strukturel fælde,
2)
kapillær fangst dvs. CO₂ bliver immobiliseret i porerummet,
3)
opløsning af CO₂ i formationsvandet,
samt
4)
reaktion mellem opløst CO₂ og bjergartsmineralerne, hvorved nye mineraler
dannes.
CO₂ lagrene
ved
Sleipner Vest og Snøhvit i Norge er eksempler på offshore CO₂
sandstenslagre, som er sammenlignelige med nogle af de potentielle danske
lagre i Nordsøen.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0175.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
19
Udtømte olie- og gasfelter kan potentielt
også anvendes som kommende CO₂-
lagre. Fordelen ved dem er, at det allerede er bevist, at forseglingen virker over
geologisk tid, og at der eksisterer en stor mængde data og viden om reservoiret.
Yderligere er der et potentiale for brug af eksisterende infrastruktur.
Indsamling af seismiske data og boringer er en fundamental del af forundersø-
gelserne for at forstå tilstedeværelsen, udbredelsen og kvaliteten af geologiske
lagre.
Offshore foregår seismisk dataindsamling med specialbyggede seismiske skibe.
Til lands benyttes typisk vibratorlastbiler til at udsende lydbølger, som opsamles
af geofoner på overfladen. For at påvise type af bjergart og undersøge egenska-
berne af reservoir og forsegling kræves tillige boring af en brønd.
I forbindelse med injektion skal en ny brønd bores eller en eksisterende boring
konverteres til CO₂-injektion.
CO₂ er korrosiv og
internationale erfaringer viser, at den vigtigste grund til at in-
jektionsbrønde fejler skyldes, at der er brugt konstruktionsmaterialer, som ikke
er tilpasset CO₂.
Bekymringerne er typisk rettet mod cementen og eventuel re-
aktion med CO₂.
Risikofaktorer ved boring er også, at man ved boring rammer lommer af kulbrin-
ter i form af olie eller gas eller lommer af naturligt forekommende
CO₂,
som kan
resultere i et blowout. Sandsynligheden vurderes som lav, og der er ikke identi-
ficeret internationale eksempler på sådanne uheld i forbindelse med boring til
geologisk CO₂ lagring.
Samtidig vil der i dansk sammenhæng forud for eventu-
elle boringer skulle udføres seismiske undersøgelser, som vil give information
om eventuel forekomst af olie, gas
og CO₂
i undergrunden. Yderligere er der
ikke kendskab til naturligt
forekommende CO₂ i dansk undergrund.
Driften af selve CO₂ lageret består af injektion af CO₂ og monitering af reservoi-
ret både til havs og på land. For selve reservoiret og forseglingsbjergarten gøres
det med seismiske undersøgelser. Også andre metoder benyttes, f.eks. mikro-
gravimetriske undersøgelser, hvor ændringer af tyngdeforholdene måles, idet
CO₂ er lettere end det saline vand.
På land er monitering
af CO₂'s
mulige indtrængning i grundvandet også nødven-
digt. Monitoreringen består typisk af et antal overvågningsboringer, hvorfra der
kan indsamles flowdata og tages jævnlige vandprøver.
Der er ikke fundet eksempler på uheld og større udslip af CO₂ fra geologiske
CO₂ lagre,
ej heller store udsivninger på grund af migrering af den oplagrede
CO₂.
Det vurderes, at netop godt kendskab til lageret og dets egenskaber, lø-
bende monitorering samt placering i områder med lav tektonisk aktivitet bety-
der, at der er meget lav risiko for større
udslip af CO₂.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0176.png
20
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Internationale erfaringer rapporterer om fortsat overvågning efter injektions-
brønden er afviklet.
Monitorering udført fra 1996 og frem til 2017 af CO₂ udled-
ning fra Sleipner og også på andre lagre har alle vist,
at CO₂ forbliver sikkert i
lageret.
De væsentligste miljømæssige påvirkninger identificeret via de internationale er-
faringer for geologisk lagring offshore omfatter udledninger til vand af kemika-
lier, boremudder, borespåner og cement mv. i forbindelse med boring og etable-
ring af brønde samt støj, emissioner og energiforbrug fra skibe og borerig i for-
bindelse med forundersøgelser og anlæg og etablering.
De miljømæssige forhold i forbindelse med anlæg og etablering af geologisk la-
ger på land vurderes ikke at være meget anderledes end de forhold, som er be-
skrevet for et offshore lager. Den store forskel er, at anlæg og etablering sker
på land med landgående maskiner og transportmetoder. Det betyder, at der i
langt højere grad vil være risiko for påvirkning af mennesker i umiddelbar nær-
hed af site. Samtidig vurderes f.eks. affald og spild at udgøre en mindre miljø-
mæssig påvirkning, idet der på land kan ske en kontrolleret opsamling og hånd-
tering.
Drift af geologisk lager indbefatter injektion af CO₂ i lageret, vedligehold af
brønd samt monitorering af lageret. De væsentligste miljømæssige påvirkninger
fra drift inkluderer: Diffus udledning af CO₂ fra ventilering, tryksatte koblinger
mv, støj fra udstyr, udledning af kemikalier samt energiforbrug og emissioner.
I forhold til påvirkning af natur er der i de internationale referencer fokus på ud-
førelse af seismiske undersøgelser, specielt offshore. På land anvendes store og
tunge køretøjer, der kan sætte aftryk i landskabet, beskadige vegetation og det
øverste jordlag. Der kan også være tale om forstyrrelser af fugle- og dyrevildt
samt øvrige beskyttede arter. Påvirkningerne er midlertidige og kan undgås eller
mindskes ved planlægning af undersøgelserne og passende afværgeforanstalt-
ninger.
Seismiske undersøgelser på havet kan påvirke fisk og marine pattedyr i form af
høreskader og forstyrrelser, som kan medføre undvigeadfærd eller påvirke fø-
desøgning. Det vurderes, at den skadelige påvirkning af fisk og pattedyr som
følge af seismiske undersøgelser og overvågning medfører en lokal, midlertidig
påvirkning, som kan reduceres med passende afværgeforanstaltninger.
Ud over de seismiske undersøgelser giver øvrig støjpåvirkning, f.eks. fra skibs-
trafik og anlægsarbejde en tilsvarende påvirkning af fisk og marine pattedyr. På-
virkningen fra seismiske undersøgelser i et konkret projekt, skal derfor vurderes
kumulativt med øvrig støjpåvirkning og ses i sammenhæng med øvrige marine
påvirkninger i samme influensområde. Afværgeforanstaltninger som medfører,
at marine pattedyr skræmmes væk fra et område, forudsætter eksempelvis, at
der er upåvirkede områder i nærheden.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0177.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
21
Ved etablering og placering af anlæg, brønde og rørledninger, vil der yderligere
være en permanent påvirkning af havbunden og mere midlertidige påvirkninger
af marin natur som følge af sedimentspredning, støj, lys, udledning af kemikalier
og andre fysiske forstyrrelser.
Herudover afhænger de naturmæssige påvirkninger både offshore og på land af
en konkret vurdering og af lokaliteten. Herunder nærheden til f.eks. § 3 lokalite-
ter, truede arter og beskyttede områder.
Studier vedr. konsekvenser af CO₂-udslip i havet konkluderer, at CO₂ gasbobler
opløses inden for et par meter og at forsuring/fald i pH-værdi forsvinder inden
for 1 km. Fisk og skaldyr kan blive påvirket ved konstante udledninger og lav
pH-værdi, som over tid kan opløse kalkskaller og muslinger. De natur- og miljø-
mæssige påvirkninger af udslip vurderes samlet set som små, også ved potenti-
elle udslip fra flere CO₂-lagre.
Det understøttes også af vurderinger lavet i forbindelse med norske projekter,
hvor det er vurderet at et større udslip vil give en ubetydelig påvirkning af det
marine miljø. Dette er begrundet i typen af uheld, hvor der er tale om et akut
udslip med begrænset spredningsområde, og at CO₂ forventes at blive fortyndet
hurtigt i vandmasserne.
I konkrete vurderinger af udsivning og udslip af CO₂ fra lagring eller transport til
havs, vil det skulle indgå i vurderingen, at CO₂ i forvejen findes i havet i fluktue-
rende koncentrationer, og at de marine økosystemer derfor er forholdsvis robu-
ste over for mindre udsving. Samtidig optages i havene fortsat CO₂ fra atmo-
sfæren i så store mængder, at der sker en løbende forsuring. Vurderingen af et
konkret projekt vil derfor både skulle indeholde en vurdering af risikoen for en
lokal marin påvirkning
og en vurdering af formålet og effekten af CO₂-lageret,
som er med til at mindske stigningen af CO₂ i atmosfæren og dermed mindske
omfanget af den generelle forsuring.
Ved udsivning og udslip af CO₂ på land kan det forventes, at der vil være den
samme risiko for toksisk påvirkning af pattedyr, som for mennesker, ved indån-
ding af høje koncentrationer af CO₂
som beskrevet i afsnit 5.1. Konsekvensaf-
standene er lokale, men kan dog variere afhængig af giftigheden for de enkelte
arter. Ekstreme kuldepåvirkninger som følge af et uheld, kan også ramme andre
levende organismer end mennesker og vil kunne medføre alvorlig skade og død.
Kuldepåvirkninger vurderes ikke at være en relevant effekt ved udslip under
vand.
3.5
CO₂-transport
infrastruktur
Transport af CO₂ kan ske som en komprimeret gas eller på væskeform. CO
2
transporteres som gas under højt tryk i rørledninger, samt ved mellemtryk og
nedkølet som væske i tanke.
Der findes mere end 3.000 km CO
2
-rørledninger i Nordamerika, ca. 135 km fler-
fase rørledning til Snøhvit feltet i den norske del af Nordsøen og ca. 80-100 km
CO
2
-rørledning på land mellem Rotterdam og Amsterdam. Rørledningstransport
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0178.png
22
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
af CO
2
og andre gasser under tryk er således en moden kommercielt tilgængelig
teknologi.
Rørledninger vil være relevant ifm. transport af store mængder CO₂, f.eks. fra
større punktkilder til eksportterminaler samt fra mellemlager videre til lagring i
undergrunden. Der findes flere
designstandarder for CO₂-rørledninger,
se blandt
andet DNV-RP-J202 og ISO 27913:2016.
Skibe vil være relevant for transport af
større mængder CO₂
på flydende form,
over længere afstande. Dette kan f.eks. være transport fra store punktkilder til
mellemlagringsfaciliteter eller fra mellemlagringsfaciliteter videre til offshore lag-
ring.
Transport af CO₂ på lastbil
eller i godsvogne sker i flydende form svarende til
skibstransportforholdene. Vej- og banetransport
af CO₂ vil være relevant for
små til mellemstore
mængder, f.eks. fra små punktkilder til CO₂-
anvendelsesfaciliteter eller eksportterminaler. Typisk kapacitet for en lastbil er
25–30
ton CO₂.
Ved transport med lastvogn, tog eller skib gælder de internatio-
nale transportregler for CO₂ i henhold til ADR
3
, RID
4
og IMDG
5
.
Der er via en artikel på en amerikansk nyhedsplatform identificeret et uheld med
udslip fra en
CO₂-rørledning
i USA i februar 2020. Ud fra artiklen er der tilsyne-
ladende tale om et rørbrud på en nedgravet rørledning forårsaget af forskydnin-
ger i jorden efter meget regn. Uheldet har angiveligt ikke forårsaget dødsfald.
Der er ikke fundet internationale referencer, der specifikt beskriver de miljø-
mæssige påvirkninger under anlæg, etablering og drift
af ny rørledning for CO₂.
De miljømæssige forhold vurderes at være tilsvarende dem, som identificeres
for typiske øvrige rørledninger anvendt til f.eks. transmission og distribution af
naturgas.
Dette dækker følgende miljøpåvirkninger, der skal overvejes i de konkrete til-
fælde: Støv og øvrige emissioner til luft knyttet til anlægsarbejdet, brug af res-
sourcer, eventuel udledning af overfladevand eller vand fra grundvandssænk-
ning (kun på land), brug og udledning af kemikalier ved klargøring og drift,
CO₂
aftryk samt generering af støj primært ved anlæg.
Ved etablering af CO₂-rørledninger
til havs, kan der endvidere være en fysisk
påvirkning af havbunden og mere midlertidige påvirkninger af marin natur som
følge af sedimentspredning, støj, lys, udledning af kemikalier og andre fysiske
forstyrrelser. Udledning af mindre mængder kemikalier i forbindelse med drift af
rørledninger er vurderet som ubetydelig i de udenlandske referencer.
ADR:
Konvention om International Transport af Farligt Gods ad Vej
4
RID:
Reglementet for international jernbanetransport af farligt gods
5
IMDG:
International Maritime Dangerous Goods Code
3
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0179.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
23
Miljø- og naturpåvirkninger fra skibstransport vil være relateret til støj og for-
styrrelser
samt energiforbrug og tilhørende forbrændingsemissioner og CO₂ af-
tryk. Herudover kan der
være mindre diffus udledning af CO₂ fra tanke og kob-
linger.
Der er ikke identificeret referencer, der specifikt beskriver miljøforhold ved last-
bil og godtogstransport af
CO₂.
Miljøpåvirkningen fra driftsfasen vil være relate-
ret til støj og forstyrrelser samt energiforbrug og tilhørende forbrændingsemissi-
oner og CO₂ aftryk. Herudover kan
der forekomme mindre diffus udledning af
CO₂ fra
tanke, koblinger mv.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0180.png
24
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
4
Oversigt over relevante internationale
projekter
For at indkredse relevante anlæg og projekter, hvorfra erfaringer kunne være
relevante er der nedenfor lavet en oversigt over internationale CCS-anlæg inkl.
pilot og testanlæg samt projekter på bedding.
I Tabel 1 er listet 27 CCS projekter som er i fuldskaladrift i 2021 inklusiv ét som
har været i drift, men er midlertidig nedlukket [2], [4], [5], [6]. I det omfang
oplysninger foreligger, fremgår fangstanlæggets størrelse, type af punktkilde,
fangstmetode samt transportmetode og lagertype af Tabel 1.
Tabel 1: Oversigt over fuldskala CCS-anlæg i kommerciel drift [2], [4], [5], [6], [7], [8]
Navn
Al Reyadah Carbon
Capture, Use, and
Storage (CCUS)
Project, Abu Dhabi,
UAE
Produktion/år
Jern og stålpro-
duktion /2016
Beskrivelse
Separation af CO₂ fra
røggas fra jern- og stål-
produktion. Separation sker vha. aminbasert
fangstmetode med aminen MDEA med en kapa-
citet på 0,8 Mtpa. CO₂ transporteres via rørled-
ninger til Abu Dhabi National Oil Company og
bruges til EOR.
Separation
af CO₂ fra
syngas ved SMR (steam
methane reforming) produktion af hydrogen.
CO₂-fangst
sker via ved hjælp af VSA (vacuum
swing adsorption) med en kapacitet på 1 Mtpa.
CO₂
transporteres via rørledninger til EOR i Te-
xas.
Separation
af CO₂ fra
HMU (hydrogen manufac-
turing unit) til produktion af hydrogen.
CO₂-
fangst sker via ADIP-X processen (amin absorp-
tion) med en kapacitet på 1 Mtpa. CO₂ trans-
porteres via rørledning til geologisk lagring on-
shore. I sommeren 2020 er 5 mill. ton injiceret.
Separation af CO₂ fra procesgas. CO₂-fangst
sker angiveligt vha. oxyfuel-processen (oplys-
ningerne er sparsomme), med en kapacitet på
0,1 Mtpa. CO₂
transporteres med lastbil til et
oliefelt og bruges til EOR.
Separation
af CO₂ fra procesgas. CO₂-fangst
sker sandsynligvis ved fysiske teknikker (kon-
densering/komprimering), men ingen sikre op-
lysninger, med en kapacitet på ca. 0,2 Mtpa.
Transporteres via rørledning og anvendes til
EOR.
Separation
af CO₂ fra procesgas. CO₂-fangst
sker vha. aminbaseret metode (Alstom) med en
kapacitet på ca. 1 Mtpa.
CO₂
injiceres i et on-
shore lager direkte under industriparken.
Lager: salin sandstens reservoir, dybde 1.980
m
Bonanza BioEnergy,
Kansas, USA
Ethanol produk-
tion /2011
Separation
af CO₂ fra procesgas. CO₂-fangst
sker sandsynligvis ved fysiske teknikker (kon-
densering/komprimering), men ingen sikre op-
lysninger, med en kapacitet på ca. 0,1 Mtpa.
Air Products Steam
Methane Reformer
ved Valero Refinery
i Port Arthur, Texas,
USA
Hydrogen produk-
tion /2013
Quest (Shell), Al-
berta, Canada
Hydrogen produk-
tion/ 2015
Karamay Dunhua
Oil Technology
CCUS, Xinjiang,
Kina
Methanol produk-
tion / 2015
Arkalon Ethanol,
Kansas, USA.
Ethanol produk-
tion / 2009
Illinois Industrial
Carbon Capture and
Storage, Decateur,
Illinois, USA
Ethanol produk-
tion / 2017
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0181.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
25
Navn
Produktion/år
Beskrivelse
CO₂
anvendes til EOR i Stewart Oil Field. Trans-
port via rørledning.
Core Energy,
Otsego County,
Michigan, USA.
Rensning af shale
gas /2016
Separation af CO₂ fra shale gas udvinding. CO₂-
fangst sker via amin adsorption med en kapaci-
tet på 0,5 Mtpa. CO₂ injiceres i et onshore lager
som tidligere var et EOR oliefelt (Niagaran Reef
Complex). Transport via rørledning.
Separation af CO₂
fra naturgas. CO₂-fangst
sker
med en kapacitet på 2.1 Mtpa.
Separation af CO₂ fra
naturgas.
CO₂-fangst
sker
vha. membranteknologi.
CO₂-fangst
sker på en
flydende produktionsenhed og anvendes i EOR i
Santos Basin Pre-Salt. Direkte injektion fra off-
shore produktionsfacilitet.
Separation af CO₂ fra procesgas. CO₂-fangst
med en kapacitet på op til 0,3 Mtpa. CO₂ an-
vendes til EOR. Transport er ikke oplyst.
Separation
af CO₂ fra naturgas. CO₂-fangst
med en kapacitet på 3,4-4
Mtpa. CO₂
er lagret i
et onshore lager på Barrow Island. Transport til
lager sker i rør.
Lager: salin sandstens reservoir, dybde 2.300m
Qatar Petroleum,
LNG CCS, Qatar
Petrobras Santos
Basin Pre-Salt Oil
Field CCS, Brasilien
Naturgas opgra-
dering /2019
Naturgas opgra-
dering /2011
PCS Nitrogen, Loui-
siana, USA
Gødningsproduk-
tion
Gorgon Carbon
Dioxide Injection,
Australien
Naturgas opgra-
dering /2019
Alberta Carbon
Trunk Line (ACTL)
with North West
Redwater Partner-
ship's Sturgeon Re-
finery CO₂ Stream,
Canada
Alberta Carbon
Trunk Line (ACTL)
with Nutrien
CO₂
Stream, Canada
Coffeyville Gasifica-
tion Plant, Kansas,
USA
Olieraffinering /
2020
Separation
af CO₂ fra
naturgas mv.
CO₂-fangst
med en kapacitet på 1,3-1,6
Mtpa. CO₂
anven-
des til EOR. Transport til lager sker i rør ACTL.
Gødningsproduk-
tion / 2020
Separation
af CO₂ fra procesgas. CO₂-fangst
med en kapacitet på 0,3
Mtpa. CO₂ anvendes til
EOR. Transport til lager sker i rør ACTL.
Gødningsproduk-
tion / 2013
Separation
af CO₂ fra procesgas. CO₂-fangst
med en kapacitet på 1
Mtpa. CO₂ anvendes til
EOR på North Burbank oil unit, Oklahoma, US.
Transport til lager ikke oplyst.
Separation
af CO₂ fra procesgas med en kapaci-
tet på 0,7
Mtpa. CO₂ anvendes til EOR
i oliefel-
ter i Oklahoma. Transport til lager sker i rør.
Separation
af CO₂ fra røggas. CO₂-fangst
sker
vha. Shell Cansolv teknologi som er aminbase-
ret med en kapacitet på 1 Mtpa. Hovedparten
anvendes til EOR i Weyburn Oil Unit. En mindre
dels sendes til geologisk lagring i det nærlig-
gende onshore lager Aquistore Project.
Separation
af CO₂ fra naturgas.
Kapacitet på 5-
8,4
Mtpa. CO₂
anvendes til EOR i Permian Ba-
sin. Transport til lager sker i rør.
Enid Fertilizer, Ok-
lahoma, USA
Gødningsproduk-
tion / 2013
Boundary Dam 3
Carbon Capture and
Storage Facility,
Saskatchewan,
Canada
Kulfyret energian-
læg/2014
Century plant, Den-
ver, USA
Naturgas opgra-
dering /2010
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0182.png
26
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Navn
Great Plains
Synfuels Plant and
Weyburn-Midale;
Saskatchewan,
Canada
Sinopec Zhongyuan
Carbon Capture Uti-
lization and Stor-
age, China
Sleipner, Norge
Produktion/år
Syntetisk natur-
gas/ 2000
Beskrivelse
Separation
af CO₂ fra
naturgas/procesgas.
CO₂-
fangst sker vha. Rectisol, proces med en kapa-
citet på 3
Mtpa. CO₂ anvendes til EOR
i Wey-
burn Oil Unit og Midale Oil Unit. Transport til la-
ger sker i rør.
Separation
af CO₂ fra naturgas/procesgas med
en kapacitet på 0,1 Mtpa. CO₂ anvendes til EOR
Zhongyuan oil field. Transport er ikke oplyst.
Petrokemisk pro-
duktion/ 2006
Naturgas opgra-
dering /1996
Separation af CO₂ fra naturgas. Fangstanlægget
er placeret på platform offshore. CO₂-fangst
sker vha. aminbaseret metode (MDEA) med en
kapacitet på 0,85 Mtpa. CO₂ injiceres
i et off-
shore geologisk sandstenslager ved Sleipner, ud
for Norge I alt 17 Mt er injiceret til lageret siden
1996.
Lager: salin sandstens reservoir på 1.000m
dybde.
Snøhvit, Norge
Naturgas opgra-
dering /2008
Separation
af CO₂ fra naturgas. Fangstanlægget
er placeret på øen Melkøya, hvor der sker en
opgradering af gas fra offshore installation.
CO₂-fangst
sker vha. aminbaseret metode med
en kapacitet på 0,7 Mtpa. CO₂ injiceres
i et off-
shore geologisk lager ved Snøhvit feltet. Trans-
port sker i rør.
I alt 4 Mt er injiceret til lageret siden 2008.
Lager: salin sandstens reservoir, dybde 2.550m
Terrell Natural Gas
Processing Plant ,
USA
Naturgas opgra-
dering /1970
Separation af CO₂
fra naturgas
med en kapaci-
tet på 0,4-0,5
Mtpa. CO₂ anvendes til EOR .
Transport sker via rørledning Canyon Reef Car-
riers CRC pipeline og Pecos pipeline.
Separation af
CO₂ fra naturgas med en kapaci-
tet på 0,8 Mtpa. CO₂ anvendes til EOR ved
Gha-
war oil field. Transport sker via rørledning.
Uthmaniyah CO₂
-
EOR Demonstration,
Kingdom of Saudi
Arabia
CNPC Jilin Oil Field
CO₂-EOR,
Kina
Naturgas opgra-
dering /2015
Naturgas opgra-
dering /2018
Separation
af CO₂ fra naturgas. CO₂-fangst
sker
vha. aminbaseret metode med en kapacitet på
ca. 1,2 Mtpa. CO₂ anvendes til EOR
i on-shore
ved Jilin oil field i det nordøst lige Kina. Trans-
port sker via rørledning.
Separation
af CO₂ fra naturgas. CO₂-fangst
sker
vha. Selexol med en kapacitet på ca. 7 Mtpa.
CO₂ anvendes til EOR
i en række felter i Wyo-
ming og Colorado. Transport sker via rørled-
ning.
Separation
af CO₂ fra røggas. CO₂-fangst
sker
vha. aminbaseret metode med en kapacitet på
1,4 Mtpa.
CO₂
anvendes til EOR i
West Ranch oil
field
nær Houston.
Shute Creek Gas
Processing Plant,
Wyoming, USA
Naturgas opgra-
dering /2018
Petra Nova Carbon
Capture, Texas USA
Kulfyret energian-
læg/ midlertidig
lukket i 2020
Som det fremgår af Tabel 1
sker CO₂-fangst
både på industrielle kilder, i forbin-
delse med naturgasopgradering og på energianlæg.
CO₂-fangst
sker vha. mange
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0183.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
27
forskellige metoder. De projekter som anvender aminvask og chilled ammonia
vil være relevante, at hente erfaring fra i denne sammenhæng.
I langt de fleste CCS projekter anvendes den opsamlede CO₂ til enhanced oil re-
covery (EOR) og bliver dermed sendt retur i eksisterende oliefelt med henblik på
at øge udvinding af olie. En del af den CO₂
der er injekseret vil blande sig med
råolien og dermed komme retur i forbindelse med den efterfølgende olieudvin-
ding.
Der er således ved EOR ikke tale om en permanent lagring af CO₂. Erfaring
fra projekter med EOR kan dog være relevant i forhold til andre led i CCS kæden
f.eks. i forhold til
CO₂-fangst
og -transport.
Transport
af CO₂
sker i langt overvejende grad via rørledning på land. Det er
ikke altid helt klart om rørene i de specifikke projekter
er lagt specifikt til CO₂
transport, eller om det er rør, som tidligere har været anvendt til transport af
f.eks. gas. Kun i et tilfælde (Snøhvit projektet) transporteres
CO₂ vha. rørled-
ning fra land til offshore lager.
Udover ovenstående fuldskala CCS projekter i kommerciel drift er der eller har
der været en række pilot- og testprojekter. Nedenfor er kort beskrevet et ud-
drag af primært europæiske pilot- og test projekter.
Pilot- og testprojekter har oftest omfattet
CO₂-fangst,
for at eftervise egnethed
af en specifik fangstmetode på en specifik kilde. I enkelte tilfælde har projek-
terne omfattet hele CCS kæden.
Pilot- og testprojekterne kan som de kommercielle anlæg bidrage med erfaringer
omkring sikkerhed, miljø og natur selvfølgelig afgrænset i forhold til projekter-
nes omfang, levetid og formål.
Tabel 2: Oversigt over pilot- og testanlæg [4], [9]
Navn
Brindisi
CO₂
Cap-
ture Pilot Plant,
Brindisi, Italien
Produktion/år
Kulfyret kraftværk
/ 2010-2012
Beskrivelse
Et
pilot CO₂-fangstanlæg
til test af amin ab-
sorption.
Kapacitet 2,5 t CO₂ per time. CO₂ lag-
res i tanke med henblik på brug i et andet pilot-
forsøg med oplagring i Norditalien.
Et pilot CO₂-fangstanlæg
til test af pre-com-
bustion
CO₂-fangst.
Der bruges water-gas shift
efterfulgt af CO₂-absorption
i DPEG (dimethy-
læter polyethylene glykol).
Buggenum Carbon
Capture (CO₂
Catch-up) Pilot Pro-
ject, Buggenum,
Holland
CASTOR, Danmark
Energianlæg
/2011 og 2013.
Kulfyret energian-
læg / 2006 and
2007
Energianlæg,
2008
Cement produk-
tion
Et pilot CO₂-fangstanlæg
til test af forskellige
aminer.
CESAR, Danmark
Opfølgning på CASTOR projektet med modifika-
tion af pilotanlægget og test af to nye aminer.
Test af CO₂-fangst
på røggas fra cement pro-
duktion på Norcem Brevik med tre forskellige
post combustion teknologier. Testprogrammet
CO₂
Capture Test
Facility at Norcem
Brevik, Norge
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0184.png
28
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Navn
Produktion/år
Beskrivelse
blev udført med det formål at udvælge og be-
slutte egentlig fuldskala projekt.
Schwarze Pumpe
Oxy-fuel Pilot Plant,
Tyskland
Kulfyret energian-
læg
Test af oxyfuel
CO₂-fangst
på kulfyret energian-
læg. Anlægget blev startet op i 2008 og stop-
pede i 2014. En lille del af den opfangede
CO₂
blev injiceret i Ketzin storage site.
Test af
CO₂-fangst
anlæg på det 100% bio-
masse fyrede Drax energianlæg.
Pilotanlægget startede i 2019.
Drax bioenergy car-
bon capture pilot
plant, UK
Technology Centre
Mongstad (TCM),
Norge
Biomassefyrede
energianlæg
Diverse
Technology Centre Mongstad TCM er lokaliseret
ved raffinaderiet i Mongstad, ikke langt fra Ber-
gen og har været i drift siden 2012. Faciliteten
har testanlæg for
CO₂-fangst
med både chilled
ammonia og amin.
Omkring 51.000 tons
CO₂
blev over en periode
på 39 måneder opsamlet og injiceret ved brug
af et oxyfuel anlæg. Monitorering af lager blev
udført både under og 3 år efter injektion.
Lager :dolomitisk udtømt gas reservoir, dybde
4.500m
Lacq CCS Pilot Pro-
ject, Pau, Frankrig
CO₂ lager onshore
Ferrybridge Carbon
Capture Pilot (CCPi-
lot100+); UK
Renfrew Oxy-fuel
(Oxycoal 2) Project,
UK
Mountaineer Valida-
tion Facility, USA
Energianlæg, bio-
masse og kulfyret
Test af post combustion aminbaseret
CO₂-
fangstanlæg på røggas fra energianlæg. Test-
program var fuldført i december 2013.
Test af en 40-MWth oxy-fuel burner på energi-
anlægget Renfrew, Scotland.
Energianlæg
Energianlæg
CO₂-fangst
vha. af chilled ammonia metoden
fra et kulfyret anlæg.
CO₂ blev
lageret i perma-
nent geologisk lagring onshore. ca. 37.000 ton
CO₂
er injiceret i lageret. Injektion til lageret
stoppede i 2017 og følges op af 6 års post-in-
jektions monitorering.
Største testanlæg i Sverige.
CO₂-fangst
sker på
Preems hydrogen gas anlæg med amin baseret
anlæg fra Aker
. Det er meningen at CO₂ skal
transporteres til lager i Norge som en del af
Northern Lights projektet.
Preem raffinaderi i
Lysekil, Sverige
Raffinaderi
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0185.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
29
Nedenfor fremgår CCS-projekter på bedding, som giver et godt indblik i forestå-
ende projekter. I forhold til erfaringer ligger der for nogle af projekterne forun-
dersøgelser og, eller miljøvurderinger, som kan bidrage til det samlede erfa-
ringsbillede indenfor sikkerhed, miljø og natur.
Tabel 3: Oversigt over kommercielle projekter i udvikling [4]
Navn
ACT Acorn, Skot-
land
Projektstadie
Tidlig udvikling
Beskrivelse
Ideen med projektet er at
opsamle CO₂ fra
en
naturgasterminal ved St. Fergus og sende
CO₂
retur til udtømte gasfelter i Nordsøen ved brug
af eksisterende gasledninger.
CO₂ kilden i St.
Fergus er udstødningsgas fra kompressorer til
drift af naturgasnettet. CO₂ opsamling ved ab-
sorption (sandsynligvis amin).
Idéen med projektet er at Caledonia Clean
Energy etablerer
et CO₂-fangstanlæg
i forbin-
delse med et nyt gasfyret
energianlæg. CO₂-
fangst vil være omkring 3 Mtpa. Den opsamlede
CO₂ vil
skulle transporteres til tømte gaslagre i
Nordsøen via eksisterende gasledninger.
Idéen med projektet er at
etablere CO₂-
fangstanlæg i forbindelse med hydrogenanlæg.
Den opfangede CO₂ skal sammen med CO₂-
fangst fra andre anlæg transporteres til de
tømte gasfelter ved Hamilton og Lennox i Liver-
pool bay.
CO₂-fangst
på Fortum Oslo Varme affaldsfor-
brændingsanlæg i en størrelse på 0.4 Mtpa er
planlagt til 2024. Den opsamlede
CO₂ forventes
at blive sejlet med skib til et mellemlager på
Norges vestkyst ikke langt fra Bergen og herfra
med rør ud til endelig offshore geologisk lager.
NLP er en del af Langskip CCS projektet. Pro-
jektet omfatter skibstransport fra punktkilder til
mellemlager, mellemlager i tanke, en offshore
rørledning ud til en undersøisk satellit, hvor der
sker injektion i undersøisk lager. Satellitten vil
styres af monitorerings- og kontrolfunktioner
fra Oseberg platformen.
Idéen med projektet er at etablere et
CO₂-
fangstanlæg på Drax 660 MW biomassefyrede
energianlæg i 2027. Kapacitet på 4,3 Mtpa. Den
opsamlede CO₂
planlægges at blive transporte-
ret via rør til endelige geologisk lagring i den
sydlige del af Nordsøen.
Ervia Cork CCS
er i undersøgelsesfasen for CO₂-
fangst fra punktkilder i Cork, blandt andet to
gasfyrede energianlæg og et raffinaderi. Den
opsamlede CO₂ skal transporteres
via eksiste-
rende rørledninger til Kinsale Gas Field.
Caledonia Clean
Energy, Skotland
Tidlig udvikling
HyNet North
West,UK
Tidlig udvikling
Langskip CCS -
Fortum Oslo
Varme,Norge
Moden udvikling
Langskip CCS - No-
thern Lights projek-
tet
Moden udvikling
Drax BECCS Pro-
ject, UK
Tidlig udvikling
Ervia Cork CCS, Ir-
land
Tidlig udvikling
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0186.png
30
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
5
Sikkerheds- og miljømæssige forhold
Sikkerhed knytter sig til pludselige hændelser, som specifikt har med håndterin-
gen af CO₂ og tilknyttede hjælpestoffer at gøre, og som kan udgøre en fare for
menneskers liv og helbred. Hændelserne er på tværs af CCS-kæden i stor ud-
strækning knyttet til større udslip af kuldioxid
CO₂.
Herudover kan også udslip af
ammoniak, aminer og ilt være relevant for specifikke anlæg. Nedenfor gennem-
gås de farer som generelt er identificeret ved CCS aktiviteter. I afsnittene 8 - 9
er der anført forhold som er specifikke for de forskellige faser og anlæg.
5.1
Kuldioxid (CO₂ )
5.1.1 Indånding af
CO₂
CO₂ er
en naturlig bestanddel af atmosfærisk luft med en koncentration på ca.
400 ppm eller 0,04%. CO₂ findes i menneskers udåndingsluft i en koncentration
på ca. 38.000 ppm eller 3,8%.
CO₂ har en lav
akut giftighed for mennesker, men som for alle andre stoffer er
CO₂ giftig,
hvis koncentrationen er høj nok. Ved udsættelse for en koncentration
på mere end 5%
stiger blodets CO₂ koncentration og der opstår
acidose (fal-
dende pH i blodet). Ved koncentrationer
på mere end 10% CO₂ kan der opstå
kramper, koma og ved længerevarende udsættelse, i nogle tilfælde død. Ved ud-
sættelse for
koncentrationer på mere end 30% CO₂
kan der opstå næsten øje-
blikkelig bevidstløshed og død [10]. Udover giftvirkningen
vil CO₂ ved et udslip
også kunne sænke iltkoncentrationen i et område, så personer kvæles. Ved
kendte tilfælde af personer der er døde som følge af udsættelse for CO₂, vil der
som regel være tale om en kombination af CO₂ giftvirkning og kvælning
grund af iltmangel.
Faren ved udslip af
CO₂ er især
kendt fra udslip i lukkede rum, men der er også
eksempler på massive udslip fra minegange, hvor personer i almindelige boliger
i nærområdet er blevet dødeligt påvirket (Menzengraben, DDR, 1953) [11]. En
særlig
situation var et massivt udslip af CO₂,
anslået 1,6 millioner tons
CO₂,
fra
en bundvending (limnisk udbrud) af søen Lac Nyos i Cameroun i 1986. Der om-
kom ca. 1.700 mennesker og 3.500 stk. husdyr, i en afstand på op til 25 km fra
søen [12].
UK Health and Safety Executive har i flere publikationer estimeret konsekvensaf-
stande for henholdsvis store momentane udslip af
CO₂
og for store kontinuerte
udslip fra lækager [12], [13], [14]. For momentane udslip blev der studeret ud-
slipstørrelser på 50
2.000 tons. Disse udslipstørrelser svarer til variationen i
oplagsstørrelse fra tankvogne til større tanklagre.
For de største momentane udslip blev der fundet en konsekvensafstand på 120
300 meter. Ved kontinuerte udslip fra en lækage blev der fundet en konse-
kvensafstand på 100
200 meter. Konsekvensafstanden er defineret som den
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0187.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
31
afstand, inden for hvilken, der er en risiko for død på 1-5%. Ved længere af-
stande fra udslipspunktet er risikoen for død mindre.
Det er rimeligt at antage, at disse afstande er repræsentative for uheld på trans-
portsystemer og lagre fra
fangst af CO₂ og indtil injektion i slutlageret.
Et geologisk lager ligger typisk i en dybde på mere end 800 meter under jord-
overfladen/havbunden og den eneste direkte forbindelse med atmosfæren/havet
er et borerør med en række ventiler. Det er derfor vanskeligt at forestille sig, at
store mængder CO₂
fra et geologisk lager kan undslippe momentant og forår-
sage dødsfald i flere kilometers omkreds, som det har været tilfældet ved de før
omtalte udslip fra minegange og fra bundvending af søer. Det kan dog ikke ude-
lukkes at et voldsomt jordskælv eller et vulkanudbrud i et område med geolo-
gisk lagring af CO₂ kan frigive store mængder CO₂ til atmosfæren over kort tid.
Det må antages, at der ikke placeres geologiske lagre i risikoområder for jord-
skælv og vulkanudbrud, herudover er der ikke vulkanaktivitet i Danmark og
sandsynligheden for større jordskælv er endvidere meget lille grundet placering i
forhold til geologiske pladegrænser.
Derimod er store
CO₂
udslip fra injektion i geologiske formationer mulige
og
kendte
i forbindelse med blowouts [15]. Konsekvensafstanden
6
på 100 meter
fra et kontinuert udslip fra en lækage på 50 mm er i førnævnte publikationer fra
UK HSE anset for repræsentativ for et blowout, forudsat at udslippet sker til luf-
ten. Hvis udslippet sker lige over havbunden, er der ikke umiddelbar fare for
mennesker,
da den CO₂
der stiger op til overfladen vil fortyndes/optages i vand-
søjlen, inden den når atmosfæren [16].
Der er ikke identificeret blowouts fra underjordiske lagre, som er anlagt som de-
ciderede CO₂ lagre.
I ovennævnte kilde [15] anføres fire tilfælde af blowouts i forbindelse med bo-
ring i geologiske formationer med henblik på udnyttelse af den naturligt fore-
kommende CO₂ (Sheep Mountain, CO, USA; Crystal and Tenmile Geysers, Para-
dox Basin, UT, USA; Florina Basin, Grækenland; Torre Alfina geotermisk felt,
Italien). I kilden argumenteres for at disse hændelser lige så godt kunne være
opstået i forbindelse med anlæg af deciderede CO₂ lagre
, og at der bør drages
lære af dem.
De ovennævnte konsekvensafstande er udregnet ved hjælp af kommercielt til-
gængelige programmer. Der er stillet spørgsmålstegn ved, om disse program-
mer på tilfredsstillende vis modellerer de komplicerede forhold,
når tryksat CO₂
slipper ud i atmosfæren og spredes i omgivelserne, specielt hvad angår effekten
af sublimering af dannet tøris [10]. Det kan derfor ikke udelukkes, at der i frem-
tiden opnås ny viden om spredningsforholdene som vil revidere de konsekvens-
afstande, der er anført i denne rapport, og som kan få indflydelse på planlæg-
ningen omkring installationer med store mængder
CO₂.
6
Konsekvensafstanden er den afstand, ved hvilken risiko for dødsfald er 1-5%
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0188.png
32
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
I forbindelse med Northern Lights projektet er der udarbejdet en kvantitativ risi-
kovurdering (QRA) for mellemlageret på land [17].
Ved en QRA sættes de mulige konsekvenser i forhold til sandsynligheden for at
de identificerede hændelser indtræffer. Et af resultaterne af en QRA er et kort
med konturer omkring den undersøgte facilitet, som viser afstande med den
samme risiko for dødsfald for personer, der befinder sig i det pågældende om-
råde.
I nedenstående Figur 2 er gengivet et kort for landanlægget ved Northern
Lights. I det inderste orange område er der en risiko for dødsfald på 10
-5
per år
(svarende til et dødsfald per 100.000 år), i det gule 10
-6
per år (svarende til et
dødsfald per 1.000.000 år) og i det blå område 10
-7
per år (svarende til et døds-
fald per 10.000.000 år). Disse værdier svarer til de værdier, der anvendes af de
danske myndigheder til at afgøre, om risikoen er acceptabel.
Det inderste orange område må som udgangspunkt ikke strække sig ud over
virksomhedens matrikel. Ud til grænsen for det gule område må der ikke place-
res boliger eller anden følsom anvendelse, og ud til grænsen for det blå område
må der ikke placeres institutioner, der indgår i det offentlige beredskab eller fin-
des institutioner med svært evakuerbare personer.
I det aktuelle tilfælde er det vurderet, at de norske myndigheders acceptkrite-
rier, som på mange måder er de samme som de danske, er overholdt. Resulta-
terne kan dog ikke direkte overføres til et andet projekt, da omgivelsernes topo-
grafi er afgørende for udbredelsen af
et CO₂ udslip,
da der er tale om en kold,
tung gas.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0189.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
33
Figur 2
Risikokonturer for et landanlæg i Northern Lights projektet [17]. Den blå
markering har en udstrækning på ca. 1 km i øst vestlig retning.
Store momentane udslip af CO₂ vil også have en effekt på
dyre- og planteliv
både i vandmiljøet og på land. Konsekvenserne af sådanne udslip på natur og
miljø er behandlet i afsnittene om natur og miljø.
5.1.1
Fysiske påvirkninger fra uheld med CO₂
Udover udsættelse for høje koncentrationer af CO₂
kan der ved større udslip
også opstå alvorlige skader som følge af ekstreme kuldepåvirkninger. I CCS
sammenhæng vil
CO₂
efter fangst blive komprimeret og evt. afkølet, før det
transporteres og oplagres.
Hvis der sker et udslip af komprimeret/afkølet CO₂
fra en rørledning, beholder eller et reservoir, opstår der risiko for ekstreme kul-
depåvirkninger for personer eller udstyr som påvirkes af udslippet. Ramte perso-
ner kan få alvorlige og livstruende forfrysninger, mens udstyr kan påvirkes, så
det mister sin integritet.
Da CO₂ efter fangsten håndteres under tryk, er der
mulighed for farlige trykstig-
ninger, som kan føre til sprængning af rør og beholdere med udslyngning af
sprængstykker til følge. På denne måde adskiller
CO₂
sig ikke fra andre trykbæ-
rende systemer, bortset fra at CO₂ ikke kan brænde.
Interne eksplosioner på
grund af indtrængning af atmosfærisk luft eller brand og eksplosion i undsluppet
CO₂,
er ikke mulige.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0190.png
34
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
I litteraturen findes oplysninger om en ulykke i Ungarn i 1969, med en 30 m³
tank indeholdende CO₂, som pludseligt brød sammen
[18]. Fragmenter med en
vægt på 1
3 tons blev slynget væk i en afstand på op til 300 meter og mindre
fragmenter op til 400 meter. Ulykken kostede 9 mennesker livet, hvoraf de 5
dødsfald skyldtes forfrysninger. De øvrige dødsfald antages at skyldes de fysiske
påvirkninger fra eksplosionen.
I en publikation for det engelske HSE Executive [19] konkluderer forfatterne, at
fartøjer i nærheden af et gasudslip ikke kan synke på grund af manglende op-
drift. Hvor der er forekommet forlis, skyldes det, at fartøjer har taget vand ind
på grund af urolig sø forårsaget af udslippet. Desuden kan et udslip skabe
strømninger i overfladen, som kan få opankrede fartøjer ud af position. Publika-
tionen nævner ikke specifikke eksempler, eller hvor ofte det er sket.
Ekstreme kuldepåvirkninger kan også ramme andre levende organismer end
mennesker og vil i lighed med påvirkning på mennesker kunne medføre alvorlig
skade og død. Kuldepåvirkninger vurderes ikke at være en relevant effekt ved
udslip under vand.
5.2
Aminer
Ved nogle fangstmetoder (se også afsnit A.1) bruges forskellige blandinger af
aminer. Der er nævnt ethanolamin (MEA), diethanolamin (DEA), metyldietanola-
min (MDEA), piperazin (PZ), 2-Amino-2-metylpropanol (AMP), diglykolamin
(DGA) og diisopropanolamin (DIPA). Ingen af de nævnte aminer udgør en akut
fare for mennesker i vandig opløsning, ved et udslip. Dampene har en lav akut
giftighed og aminerne er ikke klassificerede som brandfarlige. Aminerne er ge-
nerelt irriterende at få på huden og i øjnene, og nogle er klassificeret som æt-
sende. Håndtering følger de normale arbejdsmiljøregler, og ved udslip vurderes
der ikke at være akut fare for mennesker, udover de personer i umiddelbar nær-
hed af udslippet, som kan blive ramt og få ætsninger, afhængig af aminblandin-
gens karakter, samt evt. forbrændinger, afhængig af temperaturen på udslippet.
De anvendte aminer er ikke klassificeret som miljøfarlige, og der forventes der-
for ikke akutte virkninger på natur eller miljø ved udslip.
Nedbrydningsprodukter af aminer, herunder nitrosaminer, afhængig af hvilken
aminblanding der benyttes (se også afsnit A.1.3) kan
udledes fra CO₂-
fangstanlæg. Nitrosaminer har en lav akut giftighed, og der er ved de koncen-
trationer som forventes ikke fare for akut forgiftning med nitrosaminer. Nitrosa-
miner og andre nedbrydningsprodukter anses for at være kræftfremkaldende og
derfor farlige ved langvarig og gentagen påvirkning. Dette aspekt er behandlet
under afsnittet om miljø.
5.3
Ammoniak
(NH₃)
NH₃ i form af ammoniakvand
kan
også bruges til CO₂-fangst.
Koncentrationen af
NH₃ i ammoniakvandsopløsningen er typisk mindre end 25%.
Hvis koncentratio-
nen af NH₃ er højere end 25%
skal ammoniakvand betragtes som et risikostof i
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0191.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
35
henhold til Risikobekendtgørelsen, på grund af akut miljøfare. Hvis oplaget af
ammoniakvand > 25% er på mere end 100/200 tons skal der derfor udarbejdes
sikkerhedsdokument/sikkerhedsrapport. I det følgende forudsættes det, at kon-
centrationen af NH₃ i ammoniakvand er mindre end 25%.
I brugskoncentrationer på mindre end 25% er ammoniakvand klassificeret som
ætsende på hud og øjne og som irriterende for luftvejene og skal håndteres jf.
de normale arbejdsmiljøregler for sådanne stoffer. Ved uheld er der ikke akut
fare for mennesker, udover de personer i umiddelbar nærhed af udslippet, som
kan blive ramt og få ætsninger.
I delstrømme i CO₂-fangstprocessen
med ammoniak er der høje koncentrationer
af NH₃,
i området 2.000
15.000 ppm. Disse koncentrationer er livsfarlige for
mennesker, idet en udsættelse for 2.700 ppm i 10 minutter (AEGL 3, 10 min) el-
ler længere, anses for livstruende. Processtrømmene findes i lukkede rørsyste-
mer og beholdere, men ved udslip vil der være akut fare for personer der ud-
sættes for høje koncentrationer af NH₃. Umiddelbart vurderes
det, at der kun er
fare for personer på virksomheden, men hvis denne proces etableres, bør der
udføres spredningsberegninger for uheld ved den konkrete anvendelse, for at
fastlægge de specifikke konsekvensafstande.
NH₃ lukkes ikke
urenset ud i atmo-
sfæren, da der typisk indføres et
vasketrin, som bringer NH₃ koncentrationen i
afkastet ned til under 200 ppm.
Gasformig ammoniak er akut toksisk for levende organismer, der rammes af et
udslip, afhængig af koncentrationen. På grund af fortynding vil virkningen være
begrænset til områder med høj koncentration af ammoniak. Vandlevende orga-
nismer påvirkes ikke af et udslip af gasformig ammoniak. Ammoniakvand i de
koncentrationer der typisk anvendes i et fangstanlæg, er ikke klassificeret som
miljøfarlig, men der må alligevel forventes lokale akutte effekter, hvis ammoni-
akvand finder vej til vandmiljøet, ligesom lokal svidning af vegetationen må for-
ventes, hvis ammoniakvand løber ud på jorden.
5.4
Oxygen
(O₂)
I forbrændingsanlæg kan oxyfuel processen anvendes i stedet for almindelig for-
brænding med atmosfærisk luft. Ved oxyfuel processen tilføres ren
O₂
til for-
brændingsprocessen i stedet for atmosfærisk luft, som indeholder ca. 80% nitro-
gen. Herved fås en CO₂-rig røggas som efter tørring har en
CO₂
koncentration
på 70
90%
CO₂,
som kan komprimeres og anvendes til f.eks. lagring. Til oxy-
fuel processen er der behov for et lager af
O₂,
som opbevares i en tryktank.
Hvis oplaget af
O₂ er større end 200
(kolonne 2) hhv. 2000 tons (kolonne 3),
falder oplaget ind under Risikobekendtgørelsens bestemmelser og der skal udar-
bejdes sikkerhedsdokument/sikkerhedsrapport.
O₂ er en naturlig bestanddel
af atmosfærisk luft, hvor den findes i en koncentra-
tion på ca. 21%.
Som udgangspunkt er O₂ derfor ikke farlig for mennesker.
Sti-
ger koncentrationen af O₂
til 25% eller derover er der en stærkt stigende risiko
for
brand og eksplosion. O₂ er ikke i sig selv
brandfarlig, men er en nødvendig
forudsætning for en brand, sammen med en passende (høj) temperatur og et
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0192.png
36
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
brandbart materiale. Visse materialer kan bryde spontant i brand ved normal
omgivelsestemperatur, blot O₂ koncentrationen øges.
Indånding af
høje koncentrationer af O₂
op til 100% er ikke akut farlig for men-
nesker og bruges sågar terapeutisk i nogle sammenhænge. Langvarig udsæt-
telse for
høje koncentrationer af O₂ er dog sundhedsskadelig, men er ikke rele-
vant i denne sammenhæng.
Uanset om oplaget
af O₂ er større end tærskelmængden for risikovirksomhed,
bør der i konkrete tilfælde
udføres analyser af risikoen for udslip af O₂ og konse-
kvenserne af disse, i forbindelse med planlægningen.
Udslip af
O₂
vurderes ikke at udgøre en fare for natur og miljø.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0193.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
37
6
CO₂-fangstanlæg
- Vurdering af
sikkerhed, natur og miljø
Sikkerhed
6.1
6.1.1 Forundersøgelser
Der er ikke identificeret relevante referencer med omtale af sikkerhedsforhold
specifikt relateret til
forundersøgelser til etablering af CO₂-fangstanlæg.
6.1.2 Anlæg og etablering
Der er ikke identificeret relevante referencer med omtale af sikkerhedsforhold
specifikt relateret til anlæg og etablering af CO₂-fangstanlæg.
6.1.3 Drift
Almindelige farer ved drift af trykbærende udstyr i form af operationelle forhold
der kan føre til farlige trykstigninger,
er også gældende for CO₂-fangstanlæg.
I forhold til større uheld skal der ved oxyfuel-anlæg være opmærksomhed på ri-
sikoen for lækage på tanke og rørsystemer indeholdende store koncentrationer
af O₂ og deraf følgende udslip af store mængder O₂ med brand-
og eksplosions-
fare til følge. Ved chilled ammonia anlæg skal der være opmærksomhed på risi-
koen for lækage på rørsystemer indeholdende store koncentrationer af NH₃ med
forgiftningsfare til følge.
I afsnit 5.3 og 5.4 er der en beskrivelse af de mulige farer og konsekvenser ved
håndtering og udslip af O₂ og NH₃.
Udover O₂ og NH₃ som har potentiale til store uheld med lang rækkevidde, skal
der også være opmærksomhed på lækager af aminholdige systemer, som kan
forårsage ætsninger på personer der rammes af et udslip. I afsnit 5.2 er der en
beskrivelse af de mulige farer og konsekvenser ved håndtering og udslip af ami-
ner.
Den stående mængde ren CO₂ i et fangstanlæg er forholdsvis lille, da CO₂ først i
forbindelse med mellemlagring komprimeres og evt. køles. Udslip af CO₂ fra
fangstanlæg vil derfor være begrænset.
Der er ikke fundet eksempler på uheld
med CO₂-fangstanlæg
i de undersøgte
referencer.
6.1.4 Afvikling
Ved afvikling (nedrivning)
af CO₂-fangstanlæg
skal der udover de almindelige
arbejdsmiljøregler være fokus på, at der ikke findes ansamlinger af stoffer og
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0194.png
38
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
materialer i anlæggene, som kan udgøre en fare for medarbejderne i forbindelse
med nedrivningsaktiviteterne. Ansamlinger af aminer og ammoniakvand udgør
her en potentiel risiko. Det vurderes at disse ansamlinger ikke udgør en fare for
natur og miljø, forudsat at det vaskevand der anvendes til rengøring af udstyret,
håndteres forsvarligt.
Der er ikke fundet eksempler på uheld under afvikling af
CO₂-fangstanlæg,
i de
undersøgte referencer.
6.2
Miljø
6.2.1 Forundersøgelser
Der er ikke identificeret referencer der specifikt beskriver miljøforhold ved forun-
dersøgelser af CO₂-fangstanlæg.
De miljømæssige forhold ved forundersøgelser vurderes at være sammenligne-
ligt med hvad der findes i forbindelse med forundersøgelser ved andre industri-
elle anlæg.
Det skal i forbindelse med planlægning sikres, at den valgte placering sker under
hensyn til de risikomæssige og miljømæssige forhold. Det nødvendige plan-
grundlagt skal sikres, og de nødvendige tilladelser være indhentet.
6.2.2 Anlæg og etablering
Der er ikke identificeret referencer, der specifikt beskriver miljøforhold ved an-
læg og etablering af CO₂-fangstanlæg.
De miljømæssige forhold ved anlæg og etablering vurderes at være sammenlig-
neligt med, hvad der findes i forbindelse med forundersøgelser ved andre indu-
strielle anlæg.
Det omfatter typisk: Støv og øvrige emissioner til luft knyttet til anlægsarbejde,
brug af ressourcer, eventuel udledning af overfladevand eller vand fra grund-
vandssænkning, CO₂ aftryk i anlægsfase samt generering af støj.
6.2.3 Drift
Drift af CO₂-fangstanlæg
har en række miljømæssige forhold.
Emissioner til luft
Emission og deposition af aminer og specielt nedbrydningsprodukter af aminer
har været en af de primære bekymringer ved udvikling af fuldskala aminbase-
rede fangstanlæg [20].
De aminbaserede fangstmetoder (se også afsnit A.1) bruger forskellige aminer
eller blandinger af aminer. Der er i litteraturen blandt andet nævnt ethanolamin
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0195.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
39
(MEA), diethanolamin (DEA), metyldietanolamin (MDEA), piperazin (PZ), 2-
Amino-2-metylpropanol (AMP), diglykolamin (DGA) og diisopropanolamin (DIPA)
[21] [22]. Redegørelse for de enkelte kemiske stoffer kan findes vha. ECHAs
hjemmeside [23].
Emissioner til luft og vand samt affald kan indeholde varierende mængder af
aminer samt nedbrydningsprodukter af aminer, herunder nitrosaminer og nitra-
miner, afhængig af hvilken aminblanding der benyttes [24] [22] [25].
Det anføres som en af de væsentligste konklusioner fra Longship projektet, at
det er vigtigt have metoder og data på plads for at kunne vurdere emissioner og
immissioner af farlige stoffer fra fangstprocessen inklusiv aminer samt eventu-
elle nedbrydningsprodukter heraf [26].
I Norge har man på CO₂ Technology Center Mongstad (TCM) siden 2012 haft fa-
ciliteter til at teste forskellige aminbaserede og chilled ammonia fangst teknolo-
gier, og der har været en række leverandører som her har testet, optimeret,
modnet og eftervist deres fangst teknologi og valg af solvent. Arbejdet på TCM
har også inkluderet udvikling af metoder til bestemmelse og vurdering af emis-
sion og deposition fra de aminbaserede fangstmetoder, udover at det har givet
bedre forståelse af de toksikologiske effekter af aminer og deres nedbrydnings
produkter til luft, vand og via affald [24] [27].
Der rapporteres om stor variation i emission af aminer, nitrosaminer og andre
stoffer fra forskellige anlæg og afhængig af den specifikke proces og hvilke ami-
ner der anvendes. Emission af aminer i røggassen er målt i afkast på forskellige
pilotanlæg i koncentrationer op til 4 mg/Nm³. Nitrosaminer og nitraminer er ble-
vet målt i røggassen i koncentrationer op til 5
μg/m³.
Der er en tendens til at
nyere anlæg har en mindre emission [28].
Reaktion af aminer med specielt NO
X
er i søgelyset i forhold til dannelse af ned-
brydningsprodukter i form af nitrosamin og nitraminer [28].
Aker, der leverer CO₂-fangstanlæg,
beskriver at spredningsberegninger udført
for Norcem Brevik viser at koncentrationer af nitrosaminer med deres løsning
med et specifikt amin og med brug af anti misting teknologi ligger væsentlig un-
der gældende norske grænseværdier [29].
Forsøg fra amin baseret CO₂-fangst
på testanlæg i Japan med blandt andet to
forskellig aminer viser at en stor del af amin emissionen foreligger som aeroso-
ler (mist) [30]. Også en anden kilde referer til, at aerosoler har en effekt på
emissionen af amin [28].
Der har være udført test på Fortum Oslo Varme med et pilotanlæg med Shell
capture technology og brug af DC-103 solvent. Resultaterne herfra viser at For-
tum Oslo Varme med den teknologi kan leve op til de norske krav for udledning
til luft [26].
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0196.png
40
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Det konkluderes i rapport fra det norske
Olje- og energidepartement fra 2016
at
der er sket en stor udvikling og opnået meget viden og erfaring om de forskel-
lige
CO₂-fangstteknologier
og de HSE relaterede risici, samt at der er leverandø-
rer der er i stand til at levere fuldskalaanlæg [31].
I Norge har Folkhelseinstituttet sat grænseværdier for nitrosaminer og nitrami-
ner i luft (immission) og vand, hvilke har været anvendt i godkendelser af amin-
baserede fangstanlæg [32].
I Storbritannien er der Environmental Assessment Levels (EAL's) for nogle ami-
ner men ikke for alle,
der anvendes til CO₂-fangst.
Arbejdsmiljøgrænseværdier
(OEL) findes for aminen "MEA," og det anføres, at den vil kunne bruges til at ud-
vikle en EAL for "MEA" mellem 5
μg/m³
(long-term) and 15,2
μg/m³
(15 minute
short-term). Foreslåede sundhedsbaserede grænseværdier for Nitrosaminer lig-
ger mellem 0,07 ng/m³-10 ng/m³.
Det er også på tale at bruge et reference amin (NDMA) på linje med f.eks. hvor-
dan benzo(a)pyrene anvendes som reference i forbindelse med polyaromatiske
hydrocaboner (PAH'er).
Det nævnes i samme rapport at den norske EAL på 0,3 ng/m³ (maks værdi) for
nitrosaminer og nitraminer (NDMA) ikke kan bruges direkte, da Storbritannien
har en anden måde at vurderer kræftfremkaldende stoffer [28].
Der er endvidere i Storbritannien i 2021 udarbejdet et review af Best Available
technolgy (BAT) af aminbaserede fangst teknologier til anvendelse på gas og
biomassefyrede energianlæg [21] som har resulteret i en BAT-vejledning til brug
for anlægsoperatører og myndigheder [33]. I samme forbindelse er der også
fastsat EALs for mono-ethanolamine (MEA) og N-nitrosodimethylamine (NDMA).
MEA EAL for luft: 24 h gennemsnit: 0,1 mg/m³, 1h gennemsnit 0,4 mg/m³
NDMA EAL for luft: Årligt gennemsnit: 0,2 ng/m³
For chilled ammonia processen er det primært udledning af ammoniak, der skal
undgås og kontrolleres. Det anføres, at der findes tilgængelige renseteknologier
i tilfælde af eventuelle høje udledningskoncentrationer [25].
Oxyfuel processen vil typisk have en reduceret NO
X
emission sammenlignet med
forbrændingsprocesser med atmosfærisk luft [34].
I rapport fra anlæg i Lacq anføres ingen væsentlige miljøpåvirkninger fra oxyfuel
fangstanlægget [35].
Ved et
retrofit af CO₂-fangst
på et eksisterende anlæg skal man være opmærk-
som på, at der vil ske en ændring af røggastemperatur, flow og vandmætning,
der influerer emissionskoncentrationer og spredning af røggassen.
I rapport fra International Energy Agency IEA fra 2011 er konklusionen at af-
hængig af valg af capture teknologi og synergier kan være tradeoffs, hvad angår
emission af NOx, NH₃, SO₂ and PM
[20]. Det påpeges at der fra anlæg med
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0197.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
41
CO₂-fangst
ved brug af aminer kan opstå en øget direkte udledning af NO
X
og
PM, idet effektiviteten af anlægget vil falde. SO₂ emissionen fra anlæg med CO₂-
fangst vurderes at falde, idet der er høje krav til SO₂ indhold i røggassen forud
for fangstprocessen. NH₃
emission kan forventes at stige for de amin baserede
fangst teknologier. For de øvrige fangstteknologier forventes ligeledes tradeoffs.
Udledning af procesvand
Der kan også ske emission af amin og nedbrydningsprodukter via spildevand
specielt amintab via spildevand fra scrubbersystemet vurderes at være et op-
mærksomhedspunkt. Der refereres til målte værdier af nitrosaminer i spildevand
i koncentrationer op til 6,79 g/l. Nedbrydelighed af nitrosaminer i vand varierer
betydeligt [28].
I Storbritannien foreligger der ikke en grænseværdi for nitrosaminer i vand, idet
der ikke foreligger tilstrækkelig data for de økotoksikologiske effekter [28].
For oxyfuel udkondenseres større mængder vand fra røggassen, hvilket dog er
tilsvarende ved normal forbrænding. Dette vand skal renses som typisk røggas-
kondensat.
Støj
Støjkilder på fangstanlæg vil være kompressor, booster sugetræksblæser samt
cirkulationspumper på anlægget. CO₂-kompressoren
vil skulle placeres i en lyd-
isoleret og ventileret bygning. Der er ikke fundet kilder som nævner støj som en
væsentlig miljøpåvirkning fra CO₂-fangstanlæg.
Arker, der leverer CO₂-fangstanlæg, beskriver at der i forbindelse med CO₂-
fangstanlæg skal laves passende støjreducerende tiltag [29].
Affaldsprodukter
Reclaimer processen for både aminbaserede og chillede ammonia anlæg vil re-
sultere i affald der skal bortskaffes. Affaldets sammensætning og indhold af far-
lige stoffer og form vil afhænge af specielt reclaimer processen [36].
Aminaffald er nævnt som en væsentlig miljømæssig påvirkning. Der estimeres 1
kg amin affald per 1 ton CO₂.
Energiforbrug til processen
Amin
baseret CO₂-fangst
nævnes som en meget energikrævende proces specielt
til regenereringsprocessen [29] og tilstedeværelse og brug af "overskudsenergi"
fra øvrige processer er vigtig for at holde det samlede energiforbrug nede.
En energianalyse udført på forskellige scenarier for CO₂-fangst
på affaldsfor-
brændingsanlæg i DK nævner ligeledes, at CO₂-fangst
kræver en betydelig
mængde varme i form af damp til stripperen og det er vigtigt for at få en høj
samlet effektivitet at så meget af varme
fra CO₂-fangstprocessen
genvindes til
fjernvarmeproduktion. Ved introduktion af varmepumper kan fjernvarmeproduk-
tionen øges med op til 20 % i forhold til et anlæg uden
CO₂-fangst,
men til gen-
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0198.png
42
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
gæld falder elproduktionen fra ca. 15 MW til ca. 6,5 MW for et anlæg med en af-
faldsbehandlingskapacitet på 30 ton/h. Det konkluderes, at der er et behov for
en afvejning mellem reduktion i produceret elektricitet og en øget varmegenvin-
ding og fjernvarmeproduktion i det konkrete projekt [37].
I rapport fra Det Europæiske Miljøagentur nævnes, at der for det enkelte projekt
er behov for at se på hele CCS kæden i et livscyklus perspektiv for at vurdere
CO₂ fodaftryk og øvrige emissioner
[38].
Det er i samme rapport nævnt at CO₂-fangst
på energianlæg samlet set vil be-
tyde et øget energiforbrug på 15-25% til energiproduktion, transport, konditio-
nering og mellemlagring.
Det norske Longship CCS projekt har vurderet, at der skal anvendes ca. 1,2–1,5
MWh/ton CO₂. Omkring 2/3 af energiforbruget er til varme, det øvrige er til
el
og til brændstof til skibe. Den største andel af energiforbruget bruges til CO₂-
fangst og liquefaction.
En livscyklus analyse (LCA) af samme projekt viser at for "worst case" scenariet
er CO₂ footprint 0,099 ton CO₂ udledt / ton CO₂ til lager.
I rapport fra IASS [25] nævnes et højt energiforbrug som en miljøpåvirkning for
både oxy-fuel og chilled ammonia teknologierne. Herudover nævnes indirekte
energiforbrug til NH₃ produktion anvendt i chilled ammonia fangst processen.
I Bref dokumentet (Best Available Techniques (BAT) Reference Document) for
store fyringsanlæg er det estimeret, at energiforbruget til CCS vil give anledning
til at netto el-effektiviteten reduceres med 8-12% [39].
Øvrige påvirkninger
Aker, der leverer CO₂-fangstanlæg, beskriver at der i forbindelse med CO₂-
fangstanlæg skal laves passende tiltag i forhold til reduktion af udledning af
varmt vand til recipient [29].
6.2.4 Afvikling
Der er ikke identificeret referencer der specifikt beskriver miljøforhold ved afvik-
ling af CO₂-fangstanlæg.
De miljømæssige forhold ved afvikling vurderes at være sammenlignelige med,
hvad der findes i forbindelse med afvikling af andre industrielle anlæg.
Det omfatter typisk: Støv og øvrige emissioner til luft knyttet til afviklingen, af-
faldsgenerering, eventuel udledning af overfladevand, CO₂-aftryk
under afvikling
samt generering af støj.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0199.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
43
6.3
Natur
6.3.1 Forundersøgelser
Der er ikke identificeret referencer, hvor der fremgår en naturpåvirkning som
følge
af de undersøgelser, som er nødvendige forud for etablering af CO₂-
fangstanlæg.
De naturmæssige forhold ved forundersøgelser vurderes herudover at være
sammenligneligt med hvad der findes i forbindelse med andre tilsvarende indu-
strielle anlæg.
6.3.2 Anlæg og etablering
For Lacq fangstanlæg, er der tale om CO₂-fangst
fra en eksisterende naturgas-
produktion. Det er derfor vurderet i forbindelse med miljøvurdering af projektet,
at der ikke er en påvirkning på omgivende flora, fauna og jordbund, da installa-
tionerne til CO₂-fangst
etableres inden for det eksisterende anlæg [35].
De naturmæssige forhold ved anlæg og etablering vurderes herudover at være
sammenligneligt med hvad der findes i forbindelse med andre tilsvarende indu-
strielle anlæg.
6.3.3 Drift
For Lacq fangstanlæg, er det vurderet i forbindelse med miljøvurdering af pro-
jektet, at der ikke sker en yderligere påvirkning på omgivende flora, fauna og
jordbund eller emissioner, støj og trafik. Overvågning af flora og fauna over en
5-årig periode har ikke vist ændringer i området [35].
Der er ikke identificeret referencer, hvor der fremgår en naturpåvirkning som
følge af eventuelt
udslip af aminer fra et CO₂-fangstanlæg.
6.3.4 Afvikling
Der er ikke identificeret referencer, som omhandler naturpåvirkningen ved afvik-
ling af et CO₂-fangstanlæg.
Det forventes dog, at naturpåvirkningen ved afvik-
ling af fangstanlæg generelt vil svare til påvirkningerne i anlægsfasen og sam-
menligneligt med tilsvarende industrielle anlæg.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0200.png
44
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
7
Mellemlager faciliteter - Vurdering af
sikkerhed, natur og miljø
Sikkerhed
7.1
7.1.1 Forundersøgelser
Der er ikke identificeret relevante referencer med omtale af sikkerhedsforhold
specifikt relateret til forundersøgelser til etablering af CO₂-mellemlagre.
7.1.2 Anlæg og etablering
Der er ikke identificeret relevante referencer med omtale af sikkerhedsforhold
specifikt relateret til anlæg og etablering af CO₂-mellemlagre.
7.1.3 Drift
Almindelige farer ved drift af trykbærende udstyr i form af operationelle forhold
der kan føre til farlige trykstigninger, er også gældende for CO₂-mellemlager.
Det antages at mellemlagre etableres på land. Der skal her være opmærksom-
hed på etablering af sikkerhedszoner omkring faciliteterne som følge af risikoen
ved udslip af CO₂.
I afsnit 5.1.1 er det vurderet, at der kan være afstande til en
dødelighed på 1
5% på op til 300 meter for et stort momentant udslip og op til
200 meter for et kontinuert udslip fra en stor lækage. I Northern Lights projek-
tet er der for mellemlageret udarbejdet konturer for stedbunden risiko, som indi-
kerer at de gældende danske acceptkriterier kan overholdes, hvis der i en af-
stand på ca. 500 meter ikke placeres institutioner, der indgår i det offentlige be-
redskab eller findes institutioner med svært evakuerbare personer og i en af-
stand på ca. 200 meter ikke placeres boliger eller anden følsom anvendelse. Det
vil være nødvendigt med lignende analyser for konkrete projekter.
I afsnit 5 er der en beskrivelse af de mulige farer og konsekvenser ved håndte-
ring og udslip af CO₂.
Der er ikke fundet eksempler på uheld med CO₂-mellemlagre
i de undersøgte
referencer.
7.1.4 Afvikling
Ved afvikling
(nedrivning) af CO₂-mellemlagre
skal der udover de almindelige
arbejdsmiljøregler være fokus på, at der ikke findes ansamlinger af stoffer og
materialer i anlæggene, som kan udgøre en fare for medarbejderne i forbindelse
med nedrivningsaktiviteterne. Umiddelbart er der ikke identificeret hjælpestof-
fer, som kan udgøre en fare ved nedrivning af mellemlagre. Undtagelse kan
være ammoniak i køleanlæg.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0201.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
45
Der er ikke fundet eksempler på uheld med CO₂-mellemlagre
i de undersøgte
referencer.
For mellemlagre vurderes der ikke at være fare for forurening af faciliteterne
med farlige stoffer, som der skal tages hensyn til i forbindelse med nedrivnin-
gen.
7.2
Miljø
7.2.1 Forundersøgelser
Der er ikke fundet referencer der specifikt beskriver miljøforhold ved forundersø-
gelser
for mellemlagre for CO₂.
De miljømæssige forhold ved forundersøgelser af mellemlagre vurderes at være
sammenlignelige med hvad der findes i forbindelse med forundersøgelser for an-
dre industrielle oplag af gas.
Det skal i forbindelse med planlægning sikres, at den valgte placering sker under
hensyn til de risikomæssige og miljømæssige forhold. Det nødvendige plan-
grundlagt skal sikres og de nødvendige tilladelser være indhentet.
7.2.2 Anlæg og etablering
Der er kun fundet få referencer der specifikt beskriver miljøforhold ved anlæg og
etablering af mellemlager for CO₂.
De miljømæssige påvirkninger under anlæg og etablering af mellemlager for
CO₂ vurderes at være tilsvarende dem som identificeres for typiske øvrige indu-
strielle lagre af gas og kemikalier.
Dette dækker følgende væsentligste påvirkninger der skal overvejes i de kon-
krete tilfælde: Støv og øvrige emissioner til luft knyttet til anlægsarbejde, brug
af ressourcer, eventuel udledning af overfladevand eller vand fra grundvands-
sænkning, CO₂ aftryk i anlægsfase samt generering af støj.
I miljøkonsekvensrapporten for Northern Lights projektet nævnes at et tankan-
læg med 12 tanke, hvor toppen af tankene vil nå op i ca. kote +45 har en stor
visuel betydning i det åbne landskab og vil ændre landskabets karakter [40].
7.2.3 Drift
Der er kun identificeret få referencer der specifikt beskriver miljøforhold ved drift
af mellemlager for CO₂.
De miljømæssige påvirkninger under drift af mellemlager for CO₂ vurderes at
være meget tilsvarende dem som identificeres for typiske øvrige industrielle
lagre af gas, olie og kemikalier.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0202.png
46
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Dette dækker følgende væsentligste påvirkninger der skal overvejes i de kon-
krete tilfælde: Støj fra pumper, kompressorer og andet industrielt udstyr, even-
tuelle diffuse emissioner af CO₂, brug af kemikalier
til konditionering, korrosi-
onsbeskyttelse mv. eventuelle udledninger via overfladevand og risiko for spild.
Herudover eventuelle planlagte udledning af CO₂ og evt. N2 i forbindelse med
vedligehold.
I miljøkonsekvensrapporten for Northern Lights projektet nævnes, at anlægget
vil kunne efterleve støjkrav.
Endvidere nævnes at der ikke er planlagt udledning
af CO₂ under normale drifts-
forhold. Kun i den unormale driftssituation, hvor anlægget ikke kan injicere gas i
en længere periode, og der sker en trykforøgelse i anlægget, vil der kunne være
behov for trykaflastning og udledning af CO₂
[17].
Herudover nævnes, at der ikke er risiko for forurening af overfladevand fra mel-
lemlageret, idet der ikke vurderes at være kilder til en sådan forurening. Alt ud-
styr, som indeholder olie til køling, smøring, hydraulik mv. vil blive etableret så-
ledes at eventuelle spild opsamles [17].
7.2.4 Afvikling
Der er ikke fundet referencer der specifikt beskriver miljøforhold ved afvikling af
mellemlager for CO₂.
De miljømæssige forhold ved afvikling vurderes at være sammenlignelige med,
hvad der findes i forbindelse med afvikling af andre industrielle anlæg.
Dette dækker følgende væsentligste påvirkninger der skal overvejes i de kon-
krete tilfælde: Affald i form af ikke genanvendelige anlægsdele, støj fra demon-
tering og nedtagning, energiforbrug og emissioner fra transport og maskineri,
eventuel udledning
af CO₂ fra tømning af anlæg, eventuel brug af kemikalier til
rensning af anlægsdele forud for nedtagning.
7.3
Natur
Naturpåvirkningen ved etablering af mellemlagerfaciliteter vil primært afhænge
af anlæggets placering i forhold til den eksisterende natur. Arealbehov og an-
lægsfase vil medføre de samme naturpåvirkninger som ved etablering af andre
anlæg, f.eks. inddragelse af beskyttede eller sårbare naturtyper og forstyrrelse
af beskyttede arter som følge af fysiske indgreb, trafik og støj.
7.3.1 Forundersøgelser
Forud for etablering af mellemlagerfaciliteter vil der typisk blive foretaget feltun-
dersøgelser (som for Northern Lights [41]) , som ikke i sig selv har en påvirk-
ning på flora og fauna.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0203.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
47
7.3.2 Anlæg og etablering
Øget trafik og støj fra anlægsarbejdet kan forstyrre fugle og pattedyr især i yng-
leperioden om foråret, hvor særligt større rovfuglearter er følsomme for forstyr-
relse [41].
For Northern Lights CO₂-lager
er det vurderet, at skibstrafikken i anlægsfasen til
og fra selve anlægget ved Ljøsøyna vil forårsage mest støj for fisk, da anlægsar-
bejdet vil foregå over et par år. De fleste studier viser, at skader på fisk fra støj-
eksponering ikke fører til negative effekter på fiskebestande. [40]
7.3.3 Drift
For mellemlager facilitet for Northern Lights, placeret ved kysten ca. 30 km
nordvest for Bergen, er det potentielle influensområde for naturpåvirkninger af-
grænset til op til 500 meter fra anlægget [41].
For det konkrete projekt, er det vurderet, at arealbehovet har den største på-
virkning i form af forringelse af naturområder med lokal landskabsøkologisk
funktion [41] [40].
På grund af den konkrete placering, er der ikke en øget støjpåvirkning eller en
væsentlig påvirkning af vigtige naturtyper eller rekreative aktiviteter i form af
trekking- og vandreruter [41].
Uheld på mellemlagerfaciliteter er beskrevet i afsnit 7.1.3 og konsekvensen ved
indånding af CO₂ er beskrevet i afsnit
5.1.1.
Påvirkningen på natur ved et uheld/udslip af CO₂,
herunder kuldepåvirkning, er
ikke vurderet i forbindelse med Northern Lights.
7.3.4 Afvikling
Naturpåvirkningen ved afvikling af mellemlagerfaciliteter er ikke vurderet speci-
fikt for Northern Lights projektet. Det forventes dog, at naturpåvirkningen ved
afvikling af mellemlagerfaciliteter generelt vil svare til påvirkningerne i anlægs-
fasen og er endvidere sammenligneligt med, hvad der findes for andre industri-
elle oplag af gas.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0204.png
48
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
8
Geologisk lagring af CO₂ på land
og til
havs - Vurdering af sikkerhed, natur og
miljø
Sikkerhed
8.1
8.1.1 Forundersøgelser
Ved forundersøgelser er der mulighed for, at man under boringer offshore ram-
mer lommer af kulbrinter i form af olie eller gas, som kan resultere i et blowout.
Blowouts af kulbrinter medfører risiko for brand og eksplosion, samt forurening
af havmiljøet i tilfælde af udslip af olie. Sandsynligheden vurderes som lav, da
der forud for boringerne er udført seismiske undersøgelser, som vil kunne give
information om eventuel forekomst af olie og gas i undergrunden.
Der er rapporteret om blowouts fra boringer i naturlige
forekomster af CO₂,
f.eks. ved geotermi og ved udvinding af CO₂ fra naturlige kilder
[15], se også
afsnit 5.1.1. Mest prominent i Sheep Mountain, CO, USA i 1982, hvor det tog en
uge at stoppe udslippet. Der er fra de nævnte uheld ikke blevet rapporteret om
alvorlig skade på mennesker eller miljø.
CO₂ i undergrunden findes typisk i områder med vulkansk aktivitet
og der er
ikke kendskab til naturlige forekomster af CO₂ i den danske undergrund.
Det
vurderes med den danske geologi, således meget lidt at sandsynligt at ramme
naturlige forekomster af CO₂ ved boringer i forbindelse med forundersøgelser.
Der er ikke fundet eksempler på uheld med større udslip i forbindelse med for-
undersøgelser for
geologisk CO₂ lagring.
8.1.2
Anlæg og etablering
Som for forundersøgelser gælder det, at der er mulighed for blowouts ved borin-
ger i forbindelse med etableringen, med de samme farer som nævnt for forun-
dersøgelser.
Der er ikke fundet eksempler på uheld med større udslip i forbindelse med an-
læg og etablering af
geologisk CO₂ lagring.
8.1.3 Drift
Ved driften af et geologisk lager injiceres der CO₂ i et reservoir i undergrunden.
Dette sker under tryk og hvis man mister kontrollen med processen eller får en
stor lækage på udstyret, er der risiko for et stort udslip til omgivelserne.
Hvis den oplagrede CO₂ af en eller anden grund migrerer mod overfladen kan
der ske forholdsvis store udslip af CO₂.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0205.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
49
Der er i flere tilfælde rapporteret om dødsfald og skader på vegetationen ved
udsivning fra naturlige forekomster af CO₂
[15]. I referencen nævnes f.eks.:
Uheld ved Mammoth Mountain, CA, USA: én person er død, uheld ved Solfatara i
Italien: skader på vegetation i et areal af 0,5 km², uheld i Albani Hills i Italien:
død af husdyr, uheld ved Clear Lake, CA, USA: 4 personer døde, uheld ved La-
tera caldera, Italien: skader på vegetation og uheld i Dieng, Indonesien: 145
personer døde.
Der er ikke fundet eksempler på uheld specifikke for drift af geologiske CO₂
lagre i de undersøgte referencer, herunder store udsivninger på grund af migre-
ring af den oplagrede CO₂.
De mulige konsekvenser af et stort momentant
udslip af CO₂ er beskrevet i af-
snit 5.
8.1.4 Afvikling
For lagre der er er velanalyserede, hvor der sker løbende monitorering og er pla-
ceret i områder, hvor den tektoniske aktivitet er lav, vurderes risikoen for store
momentane udslip af CO₂
for værende meget lille.
Som nævnt i det forrige afsnit er der kendte eksempler på udsivning fra natur-
lige forekomster af CO₂ i undergrunden.
Der er ikke fundet eksempler på uheld specifikke for geologiske CO₂ lagre, hvor
der ikke længere injiceres CO₂, i de undersøgte referencer,
herunder store ud-
sivninger på grund af migrering af den oplagrede CO₂.
De mulige konsekvenser af et stort momentant udslip af CO₂ er beskrevet i af-
snit 5.
8.2
Miljø
8.2.1 Forundersøgelser
Offshore og kystnære geologiske lagre
Der er kun fundet én referencer der decideret forholder sig til den miljømæssige
påvirkning ved forundersøgelser i forbindelse med
geologisk lagring af CO₂.
Specifikke CCS projekt referencer angiver primært, hvilke tekniske metoder der
har været anvendt i forundersøgelserne. Metoder som er tilsvarende dem som er
beskrevet under 10A.3.1.
Metoderne vurderes endvidere at være meget tilsvarende dem som bruges i for-
bindelse med kortlægning og undersøgelse af lagre til olie og gas, hvorfor der
kan hentes erfaring fra f.eks. miljøvurderingsrapporter for oliegas projekter.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0206.png
50
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
I miljøkonsekvensrapport for Northern Lights projektet [40] er nævnt følgende
miljømæssige påvirkninger fra forundersøgelserne:
Udledninger til vand af kemikalier, boremudder, borespåner og cement mv.
i forbindelse med boring og etablering af brønd.
Støj og emissioner fra undersøgelsesskibe og borerig i forbindelse med hhv.
undersøgelser, boring, transport og energiforbrug
I Northern Lights projektet forventes primært brug og udledning af kemikalier
klassificeret jf. OSPAR klassificeringen
7
som "grønne" og kun enkelte gule i for-
bindelse med brøndboring og etablering.
Herudover nævnes et gennemsnitlig dieselforbrug for en borerig (West Hercules)
til 44 ton per døgn, og at boringen har en estimeret varighed på 75 døgn inklu-
sive brøndtest.
Tilsvarende miljømæssige påvirkninger ses i forbindelse med boring og seismi-
ske undersøgelser udført i forbindelse med oliegasproduktion som f.eks. beskre-
vet i Redegørelse for miljømæssige og sociale virkninger ESIS-Tyra, september
2017 [42].
Energistyrelsen har udarbejdet en række standardvilkår for forundersøgelser til
havs samt en vejledning vedrørende boring, som også må forventes at dække
forundersøgelser og boringer i forbindelse med geologisk lagring [43] [44].
Onshore geologiske lagre
Typen af forundersøgelser på land vurderes ikke at være meget anderledes end
dem som er beskrevet for offshore. Den store forskel vil være at forundersøgel-
serne sker med maskiner og udstyr på land. Det betyder, at de miljømæssige
påvirkninger vil ske på land i mindre afstand til mennesker, beboelse og natur-
arealer på land. Affald og spild vurderes at udgøre en mindre miljømæssig på-
virkning idet der på land kan ske en kontrolleret opsamling og håndtering.
8.2.2 Anlæg og etablering
Offshore og kystnære geologiske lagre
Der er kun identificeret få referencer der decideret forholder sig til den miljø-
mæssige påvirkning ved
anlæg og etablering af et geologisk lager af CO₂.
Kemikalier klassificeres jf. OSPAR i grupperne: PLONOR (grønne), Ranking
(gule), Substitution (røde). Typisk gives tilladelse til anvendelse af grønne og
gule kemikalier hvorimod røde kun kan avendes efter en særskilt tilladelse fra
Miljøstyrelsen. Sorte kemikalier er de mest skadelige for havmiljøet, og en ud-
skiftning har højt prioriteret. De er optaget på en særlig liste over miljøskadelige
stoffer.
7
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0207.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
51
I anlægs-
og etableringsfasen skal der bores en brønd til injektion af CO₂ og de
permanente installationer til injektion på land hhv. på offshore installation skal
etableres.
I miljøkonsekvensrapport for Northern Lights projektet [40] er nævnt følgende
miljømæssige påvirkninger fra anlæg og etablering:
Udledninger til vand af kemikalier, boremudder, borespåner og cement mv.
i forbindelse med boring og etablering af brønd. Herudover nævnes anven-
delse af mindre mængde radioaktiv materiale samt udledning af formations-
vand i forbindelse med brøndtest.
Støj og emissioner fra supportskibe og borerig i forbindelse med hhv. trans-
port og energiforbrug
Tilsvarende miljømæssige påvirkninger ses i forbindelse med boring og seismi-
ske undersøgelser udført i forbindelse med oliegasproduktion beskrevet i f.eks.:
Redegørelse for miljømæssige og sociale virkninger ESIS-Tyra, september 2017
[42].
Onshore geologiske lagre
Anlæg og etablering af geologisk lager på land vurderes ikke at være meget an-
derledes end som er beskrevet for et offshore lager. Den store forskel er at an-
læg og etablering sker på land med landgående maskiner og transportmetoder.
Det betyder, at der i langt højere grad vil være risiko for påvirkning af menne-
sker i umiddelbar nærhed af site. Samtidig vurderes f.eks. affald og spild at ud-
gøre en mindre miljømæssig påvirkning idet der på land kan ske en kontrolleret
opsamling og håndtering.
8.2.3 Drift
Drift af geologisk
lager indbefatter injektion af CO₂ i lageret, vedligehold af
brønd samt monitorering af lageret.
Offshore og kystnære geologiske lagre
De miljømæssige påvirkninger nævnt for Northern Lights projektet inkluderer
[40]:
Anvendelse og udledning af nitrogen til spuling og test af anlægget.
Risiko for ventilering af et overskudsvolumen af CO₂ ved opstart og ventile-
ring.
Udledning af hydraulikvæske fra åbning af fjernstyrede ventiler på subsea-
installationer. Der estimeres en udledning på ca. 2.000 liter pr brønd pr år.
Udledningen forventes at være højere i starten på grund af hyppigere test.
Mulig udledning af kemikalier i forbindelse med brøndtest
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0208.png
52
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Mindre diffuse
udledninger af CO₂ fra tryksatte koblinger, flanger og venti-
ler
Øget energiforbrug inkl. tilhørende emissioner til drift af ventiler mv. ved
brønden
Det estimeres at drift af modtageanlæg og permanent geologisk
CO₂ lager vil
medføre en CO₂ udledning på 0,1 % af modtage kapaciteten for lageret
[40].
Monitorering udført fra 1996 og frem til 2017 af CO₂ udledning fra Sleipner vi-
ser, at der ikke sker udledning af CO₂
[45]. Konklusionen fra den løbende moni-
torering af dette projekt er blandt andet at CO₂ forbliver
sikkert i lageret og at
seismiske undersøgelser er vigtige i monitorering af lageret både i forhold til ud-
slip og i forhold til CO₂'ens opførsel i lageret
[45].
Onshore geologiske lagre
Drift af et onshore lager for CO₂ vurderes ikke at have væsentlige anderledes
miljømæssig påvirkning end et offshore lager for CO₂. Herudover kan et onshore
lager for CO₂ sammenlignes med onshore lager for naturgas f.eks. Stenlille.
I miljøvurdering hhv. miljøgodkendelse for Stenlille gaslager [46] [47] nævnes
følgende miljømæssige påvirkninger:
Røggasemissioner fra kedler og nødgeneratorer ved test og eventuelle
strømudfald.
Risiko for udslip af gas ved trykaflastning af udstyr
Støj fra ventiler, kompressorer og andet udstyr
Risiko for lækage af gas til grundvandsmagasin eller øvre jordlag
Risiko for lækage af forurenende stoffer fra f.eks. olietank og fra lager og
håndtering af formationsvand
Det anføres at drift og indretningen af lageret skal tilrettelægges på en sådan
måde, at muligheden for grundvandsforurening i praksis kan udelukkes. Det er
endvidere vurderet at mulighederne for at monitere et eventuelt gasudslip, før-
end det kan medføre nogen skade i området, er særdeles gunstige ved Stenlille.
I dokumentationen fra pilotanlægget i Lacq, Frankrig anføres det, at der ikke er
detekteret tilfælde af CO₂ lækage og at der ikke har være påvirkning af økosy-
stemet [48]. Miljøvurdering fra samme projekt konkluderer endvidere, at der
ikke er påvist væsentlige miljøpåvirkninger [35] af projektet.
Også data fra Illinois Basin, Decatur projektet
viser at CO₂ bliver i
det geologi-
ske lager. Det anføres at der ikke
er identificeret CO₂ lækager eller andre væ-
sentlige påvirkninger [49].
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0209.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
53
Ovenstående
erfaringer fra de enkelte CO₂ lagre
underbygges af en opsumme-
rende artikel fra The Electricity Journal. Her anfører at de seneste 50 års erfa-
ring med
geologisk lagring af CO₂ viser
at sandsynligheden for større udsivning
af
CO₂ er meget
lav [50].
8.2.4 Afvikling og monitorering
Afvikling af en geologisk lagring for CO₂ vil bestå af brøndlukning –
eventuel de-
comissionering af installationer og rør. Herudover vil fortsat ske monitorering af
lageret.
I Northern Lights projektet anføres det, at ved afslutning af injektion og lukning
af lageret vil brønde lukkes og anlæg på havet vil blive fjernet jf. OSPAR-
beslutning 98/3. Rørledninger og kabler vil blive håndteret jf. gældende ret-
ningslinjer på lukningstidspunkt. Det anføres, at det forventes at rør og kabler
efterlades såfremt de ikke udgør en risiko for bundfiskeri [40].
Det er endvidere for det projekt aftalt, at der forud for lukning skal udarbejdes
en afviklingsplan, som i detalje beskriver lukning og nedtagning af anlægsdele,
samt hvordan overvågning af lageret tænkes udført efter afslutning af injektion.
Miljøforhold ved monitorering af det geologiske lager efter lukning vil svarer til
dem som er beskrevet under forundersøgelser.
Miljøforhold ved lukning og afvikling af permanente installationer inkl. rørlednin-
ger vurderes endvidere at være de samme, som ses ved tilsvarende anlæg an-
vendt til udvinding af olie og gas. Dog med den væsentlige fordel at anlæg og
anlægsdele ikke er forurenet med kulbrinter, og at der efter afvikling/lukning
skal fortsættes med løbende monitorering af det geologiske lager.
8.3
Natur
8.3.1 Forundersøgelser
Som en del af de indledende forundersøgelser gennemføres seismiske undersø-
gelser, som kan påvirke natur og levende organismer både på land og på vand.
Seismiske undersøgelser på land
Ved seismiske undersøgelser på land i Danmark, afhænger påvirkningen på na-
turen af, hvilket materiel og køretøjer, som anvendes og om undersøgelsen fo-
retages fra veje eller ubebyggede arealer. Vilkårene for undersøgelsen reguleres
gennem tilladelser til de enkelte forundersøgelser.
For seismiske undersøgelser på land i Grønland, er det i en rapport fra 2020 vur-
deret, at påvirkninger på naturen afhænger af, hvilke metoder der anvendes og
hvornår på året undersøgelserne udføres. Der anvendes meget store og tunge
køretøjer, der sætter store aftryk i landskabet ved at beskadige vegetation og
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0210.png
54
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
det organiske lag, hvorved permafrost og vandafstrømningsforhold ændres. Der
er også ofte tale om kraftige forstyrrelser af fugle- og dyrevildt. [51]
Af afværgeforanstaltninger, som kan være relevante for andre områder end de
arktiske, nævnes i undersøgelsen:
Forhindre nedsivning af brændstof og andre skadelige stoffer, f.eks. ved
placering af spildbakker, som vil kunne opsamle miljøfarlige væsker.
Planlægge hvornår og hvor, der køres med tunge køretøjer, for at forhindre
skade på vegetation og sårbare områder.
Mindske forstyrrelse af fugle- og dyrevildt, ved at undgå sårbare perioder
og områder som er udpeget som vigtige habitater for dyrevildt. [51]
I Danmark vil de samme typer af afværgeforanstaltninger være relevante at
overveje, især inden for arealer med naturbeskyttelse eller i områder, hvor der
findes beskyttede arter, som er sårbare overfor fysisk påvirkning og forstyrrel-
ser.
Marine seismiske undersøgelser
Ved seismiske undersøgelser til søs inden for dansk territorium, afhænger på-
virkningen på naturen af, hvilke fartøjer og metoder, som anvendes og i hvilket
konkret område undersøgelsen foretages. Vilkårene for undersøgelsen reguleres
gennem tilladelser til de enkelte forundersøgelser.
Seismiske undersøgelser på havet kan påvirke fisk og marine pattedyr [52]
[53] [40] [42]. Niveauet af påvirkningen fra undervandsstøj kan overordnet op-
deles i:
Hørbart niveau, som afhænger af arter
Maskering af øvrige lyde, f.eks. kommunikation
Påvirkning af adfærd, f.eks. fødesøgning
Fysiske skader på høreorganerne, i form af hørenedsættelse eller høretab.
Den konkrete påvirkningen vil afhænge af, hvilke arter der udsættes for under-
vandsstøj. Der er potentielt en direkte påvirkning af det enkelte individ i form af
høreskader eller -tab og en indirekte påvirkning af bestande, hvis fødesøgning
og navigation forstyrres. I miljøvurdering af Tyra, henvises der til et studie af
marsvin under en 2D-seismisk undersøgelse i Moray Firth, hvor det blev konsta-
teret, at dyr udviste kortvarig undvigeadfærd inden for 5-10 km omkring områ-
det for seismisk dataindsamling. Samlet set kan risikoen for virkninger på hav-
pattedyr være lokal (hørenedsættelse) eller regional (adfærdsmæssig). [42]
I forbindelse med Northern Lights, er der gennemført grundige miljøvurderinger
af påvirkningen ved at gennemføre marine seismiske undersøgelser. Northern
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0211.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
55
Lights CO₂-lager
er placeret i den norske del af Nordsøen og forholdene er der-
for sammenlignelige med danske forhold, selvom der er specifikke arter og na-
turtyper, som ikke findes inden for den danske del af Nordsøen.
Dyrelivet i havet vurderes at påvirkes kraftigere af støj og på større afstande
end arter på land ved f.eks. seismiske undersøgelser, da lyd propagerer hurti-
gere og længere i vand end i atmosfærisk luft [3].
Seismiske luftkanoner kan påvirke fisks adfærd i området tæt på det seismiske
fartøj. I redegørelse for miljømæssige virkninger af opgradering af eksisterende
anlæg på Tyra-feltet, forventes det dog, at seismiske undersøgelser generelt
ikke vil føre til langvarige ændringer i fiskebestandenes størrelser og at virknin-
gen vurderes at være af lille intensitet, af lokalt omfang og af kort varighed
[42].
8
For hørenedsættelse og adfærdsmæssige virkninger på marine pattedyr vurde-
res påvirkningen at være af lille intensitet, da sandsynligheden for, at undersø-
gelsesfartøjer støder på havpattedyr og andre havarter i et område med risiko
for virkning, er lille. Det vurderes, at populationerne af havpattedyr i Nordsøen
ikke vil blive påvirket af seismiske aktiviteter ved TYRA-projektet. Virkningen
vurderes at være af lille intensitet, af lokalt eller regionalt omfang og mellem-
langvarige eller langvarige. Den overordnede virkning på havpattedyr af under-
vandsstøj fra seismiske undersøgelser vurderes at være af moderat negativ
overordnet betydning. [42]
For Northern Lights CO₂
lager, vil der før opstart af injektion blive gennemført
en baseline seismisk undersøgelse, som danner et sammenligningsgrundlag for
den senere overvågning af
CO₂.
Området som dækkes vil være i størrelsesorden
550 km², og undersøgelsen varer ca. to måneder og kan påvirke yngel og larver
af fisk, hvis undersøgelsen gennemføres i gydeperioden og umiddelbart efter
[40].
I Northern Lights projektet er det anført, at der gennem driftsperioden vil gen-
nemføres seismiske undersøgelser af det geologiske lager i en størrelsesorden
200 km². Her er det ligeledes anført at de seismiske undersøgelser kan give
skade på fisk og pattedyr. Det anføres, at påvirkningen er afhængig af metoden
der anvendes. En "soft start" angives som mulig afværgeforanstaltning således
at lydfølsomme fisk og pattedyr skræmmes bort. Det anføres at seismiske un-
dersøgelser med års mellemrum vil have midlertidige effekter på fiskebestande i
det berørte områder. [40]
For Northern Lights CO₂ lager er det
vurderet, at omfanget af direkte skade på
dyrenes hørelse er begrænset til nærområdet nogle hundrede meter fra kilden,
og at der ikke vil være en påvirkning på populationsniveau. Marsvin, spækhug-
ger og vågehval undviger ved lavere støjniveauer end mange andre arter, og det
I VVM-redegørelse for Tyra, henvises til følgende kilde:
Norwegian Oil Industry Association (OLF). 2003. Seismic surveys impact on fish
and fisheries by Ingebret Gausland.
8
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0212.png
56
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
kan derfor ikke udelukkes, at seismiske undersøgelser kan påvirke de marine
pattedyr i området, hvor de seismiske undersøgelser gennemføres. Påvirkningen
er vurderet til noget forringet
9
[40].
Undervandsstøj er en form for energi, der i ekstreme tilfælde kan påvirke plank-
ton, f.eks. på grund af nedbrydning af celler (cellelyse). Undervandsstøj som be-
skrevet for Tyra-projektet, som omfatter olie-/gasindvinding i Nordsøen, kan ge-
nereres fra seismiske aktiviteter (luftkanoner, multibeam-ekkolod og sidesø-
gende sonar), spunsramning under konstruktion af nye platforme, ramning af
konduktorer, boring, afvikling og forskellige fartøjer. På grundlag af planktonpo-
pulationernes meget tætte bestandtæthed og deres høje reproduktion forventes
plankton at genoprette sig selv efter forstyrrelsen [42].
Skadelige påvirkninger af fisk og pattedyr som følge af seismiske undersøgelser
og overvågning, medfører en lokal, midlertidig påvirkning, hvor det er muligt at
undgå skadelige påvirkninger med afværgeforanstaltninger [52], f.eks. afværge-
tiltag som "soft-start" og brug af fiskerikyndigt mandskab ombord [40].
Af miljøvurderingen af Tyra-projektet, fremgår det, at risikoen for, at under-
vandsstøj påvirker havpattedyr i forbindelse med geofysiske aktiviteter og an-
lægsprojekter, generelt afværges ved hjælp af følgende tiltag:
På steder, hvor det må forventes, at der vil ske en påvirkning af havpatte-
dyr, vurderes den bedste tilgængelige teknologi.
Planlægning og effektiv udførelse af geofysisk dataindsamling og anlægs-
projekter, så den samlede varighed af arbejdet forkortes, og følsomme ar-
ters eksponering for støj minimeres.
Overvågning af havpattedyrenes tilstedeværelse inden iværksættelse af
støjende aktiviteter og i forbindelse med geofysisk dataindsamling eller an-
lægsarbejde.
Der etableres en eksklusionszone, hvor arbejdet bliver udsat, hvis der viser
sig at være havpattedyr til stede inden arbejdets påbegyndelse.
Procedurer til "soft" opstart, også kaldet ramp-up, skal benyttes i de områ-
der, hvor der er påvist aktivitet af havpattedyr. Det betyder, at lydsignalni-
veauet gradvist forøges til fuldt operationelt niveau, så dyret har mulighed
for at fjerne sig fra de generende lyde. Derved reduceres risikoen for even-
tuelle påvirkninger fra den genererede undervandsstøj. [42]
I Danmark vil de samme typer af afværgeforanstaltninger være relevante at
overveje, især inden for arealer med naturbeskyttelse eller i områder, hvor der
findes beskyttede arter, som er sårbare over for støj og forstyrrelser. Afværge-
9
Efter vurderingsmetode i miljøvurdering af Northern Lights.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0213.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
57
foranstaltninger vil blive fastlagt efter en konkret vurdering af et projekts på-
virkning og vil typisk omfatte foranstaltninger, som reducerer eller undgår væ-
sentlige, negative påvirkninger.
Visse foranstaltninger for at mindske eller undgå en påvirkning af marine patte-
dyr og fisk er allerede standardprocedure i Danmark og/eller en del af de tilla-
delser, som gives [43]. Der kan være identificerede påvirkninger, som forstyr-
relse af marine pattedyr i et større område, som ikke afværges med de foran-
staltninger, som typisk anvendes.
8.3.2 Anlæg og etablering til havs
Under anlæg og etablering kan der være behov for seismiske undersøgelser
se
påvirkning på natur under forundersøgelser i afsnit 8.3.1.
I anlægsfasen til havs kan marine pattedyr og fisk potentielt påvirkes af anlæg
af installationer [53], herunder støj fra skibstrafik, øget turbiditet
10
og risiko for
spredning af sedimenter, næringssalte og miljøgifte/kemikaliesammensætning
[40] [42].
Arealbehov
Afhængigt af det konkrete projekts placering og arealbehov, kan der være en
permanent påvirkning af natur- og miljøbeskyttelsesområder [3], herunder Na-
tura 2000-områder [54] [53], vigtige marine naturtyper samt gydeområder
[40].
I forbindelse med arealbehovet, kan der være et tab af områder for fisk der gy-
der på bunden (tobis) og reduceret fiskeri omkring anlæg og ikke nedgravede
rørledninger pga. fiskerifri zoner og sikkerhedszoner [53].
Havbund
Ved etablering og placering af anlæg, brønde og rørledninger, vil der være en
påvirkning af havbunden [3] [42], herunder permanent ødelæggelse af hav-
bund/habitater og midlertidig påvirkning som følge af sedimentspredning [52]
samt ændring af havbunden ved akkumulering af bore-mudder [53]. Boring af
brønde medfører ophobning af materiale med kemikalier bundet til sedimentet.
Sedimentet spredes hurtigt af vandstrømmen, men der er observeret lokale ef-
fekter i overvågningsprogrammer [52].
Fysisk forstyrrelse på havbunden kan forekomme under "site undersøgelser",
4D-seismiske undersøgelser, boring, installation af platforme og rørledninger
samt afvikling. De fysiske forstyrrelser fra disse aktiviteter forventes ikke at fo-
rekomme samtidig. [42]
Turbiditet anvendes om vandets klarhed/renhed og er et mål for suspenderet
stof i vandet, f.eks. fine partikler som mineraler, organiske stoffer og bakterier.
10
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0214.png
58
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
For
Northern Lights CO₂ lager
forventes en lille spredning af partikler og dermed
miljøgifte i forbindelse med etablering af rørledningen og kun begrænset op-
hvirvling som følge af udlæg af sten langs rørledningen. Der forventes ingen på-
virkning på bundfaunaen som følge af sedimentspredning [40]. For projektet er
det desuden vurderet, at der vil ske en ændring af habitater, hvor der udlægges
sten langs rørledningen. Da det konkrete område ikke rummer sjældne arter el-
ler unik bundfauna og der samtidig er tale om et begrænset areal, er den sam-
lede påvirkning af bundfauna vurderet til ubetydelig [40].
I miljøvurdering af Tyra, er det vurderet, at den mest intense virkning på hav-
bunden forårsages af tracering, hvor nye rørledninger nedgraves til en dybde på
ca. 1.5-2 m under havbundsoverfladen. Tracering af rørledningen i havbunden
foregår ved hjælp af pløjning, nedspuling eller mekanisk skæring. Under denne
proces suspenderes havbundssediment ind i vandsøjlen. Baseret på erfaringer
fra andre rørledningsprojekter
11
vurderes det, at det suspenderede sediment
bundfældes inden for nogle få hundrede meter fra det forstyrrede område [42].
Støj og lys
Støjpåvirkning i forbindelse med seismiske undersøgelser/monitorering er be-
handlet i afsnit 8.3.1.
For Northern Lights CO₂ lager vil
installation af rørledning og kabler, samt etab-
lering af stenfyld i rørledningstracéet medføre støj. Det er vurderet, at der ikke
er nogen negativ påvirkning af marine pattedyr fordi arbejdet vil flytte sig og fo-
regå over en begrænset periode, hvor dyrene vil have mulighed for at trække
væk fra området under anlægsarbejdet. For den konkrete lokalitet, er der alle-
rede en høj grad af skibstrafik i området, og det forventes derfor ikke at skibs-
trafik i anlægsfasen vil påvirke marine pattedyr i nævneværdig grad. [40]
I det omfang, der anvendes belysning på fartøjer og faste installationer over
vandet, kan det have en påvirkning på arter over og under vandet [52]. Fugles
navigation kan blive forstyrret og de tiltrækkes især af lys på offshore olie-gas-
platforme, hvor belysningen har en effekt på store afstande [55]. I forbindelse
med Tyra, er det vurderet, at den potentielle forstyrrelse af fisk fra lys på rigge,
11
I VVM-redegørelsen for Tyra henvises til følgende kilder:
Neff, J.M., Anderson, J.W. 1981. Response of marine animals to petroleum and specific pe-
troleum hydrocarbons. Halsted Press. New York.
Nord Stream. 2009. Environmental Impact Assessment: Documentation for Consultation
under the Espoo Convention Nord Stream Espoo Report: Key Issue Paper Seabed Inter-
vention: Works and Anchor Handling.
Todd VLG, Todd IB, Gardiner JC, Morris ECN, MacPherson NA, DiMarzio NA, Thomsen F,
2015. Review of impacts of marine dredging activities on marine mammals. ICES Journal
of Marine Science 72, 328–340.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0215.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
59
platforme og fartøjer forventes at være lokal og sprede sig 90-100 m fra kilden
[42].
Vandkvalitet
Boring af brønd vil medføre støj og øget turbiditet i vandmasserne, som kan føre
til at marine pattedyr undviger området.
For Northern Lights CO₂ lager
forventes
det ikke at marine pattedyr bliver påvirket af boringen i nævneværdig grad [40].
Fisk påvirkes under anlægsarbejdet af øget turbiditet i vandsøjlen, som vil
kunne medføre dårligere sigt under fødesøgning og potentiel undvigelse af om-
rådet [40]. Havfugle kan ligeledes påvirkes af øget turbiditet, som kan gøre fø-
desøgningen mere udfordrende for fuglene, hvis anlægsarbejdet gennemføres i
sårbare perioder som yngleperioden [40].
Fisk er følsomme over for lydtryk og partikelbevægelse. Voksne fisk er meget
mobile og kan svømme væk fra områder, som er forstyrrende, i modsætning til
larver og yngel som er mindre mobile. Rørlægningsarbejdet flytter sig langs tra-
céet med ca. 4 km i døgnet, dvs. at støj og forstyrrelser i forbindelse med arbej-
det dermed vil foregå i en meget begrænset periode i det enkelte område [40].
I miljøvurdering af Tyra, er det vurderet, at virkningen på vandkvalitet, som
følge af suspenderet materiale ved anlæg af rørledningen, vurderes at være af
lille intensitet, af lokalt omfang og af kort varighed. [42]
Udledning af vandbaseret boremudder og vandbaserede borespåner under de
planlagte boreaktiviteter kan påvirke vand- og sedimentkvaliteten omkring bore-
riggen.
Når vandbaseret mudder og vandbaserede spåner, der er slam af partikler af
forskellige størrelser og tætheder i vand, der indeholder opløste salte og organi-
ske kemikalier, udledes til havet, dannes der en fane, som hurtigt fortyndes, da
den driver væk fra udledningsstedet med de dominerende vandstrømme. Feltun-
dersøgelser af koncentrationen af suspenderede stoffer i faner af boremudder og
-spåner i forskellige afstande fra boreaktiviteten har bekræftet dette mønster,
og det kan konkluderes, at koncentrationen af suspenderede borespåner og -
mudder falder meget hurtigt på grund af materialets sedimentation og fortyn-
ding [56] [57].
Kemikalier og næringsstoffer
Udslip af kemikaliebehandlet vand ved brønden fra klargøringen af rørledningen
før drift, er for Northern Lights planlagt gennemført i juli og august måned. Ma-
krel gyder i perioden maj-juli, mens nordsøsild gyder i perioden august–februar.
Begge arter har gydeområder langt fra brøndområdet, og det vurderes at udslip
af kemikalieholdigt vand hurtigt vil fortyndes og vil medføre ubetydelig påvirk-
ning på drivende æg og yngel. [40]
For Northern Lights CO₂-lager
er det vurderet, at rørlægning og udlægning af
sten kan give en lokal spredning af mindre mængder partikler og næringsstoffer
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0216.png
60
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
nær havbunden, samt eventuelle miljøgifte i sedimenterne i Hjeltefjorden. Dette
vil relativt hurtigt sedimentere igen. [40]
Udledningerne af vand, olie og kemikalier indeholder stoffer, der kan fungere
som næringsstoffer for fytoplankton og bakterier i vandet [42].
Plankton
For Northern Lights CO₂ lager
forventes ingen påvirkning på plankton ved etab-
lering af rørledning, da arbejdet medfører meget begrænset resuspension
12
af
sediment og kun på dybt vand. Der kan være miljøfarlige stoffer i det sendi-
ment, som ophvirvles fra havbunden, men det forventes ikke, at det vil være i
så høje koncentrationer, at det har en negativ påvirkning af det marine miljø.
Det vurderes, at der er en ubetydelig påvirkning, som er kortvarig, hurtigt re-
versibelt og kun påvirker et meget begrænset område. [40]
Forskellige aktiviteter ved Tyra-projektet forventes at medføre sedimentresu-
spension, og det kan føre til øget vandturbiditet og tilførsel af næringsstoffer
(primært ammonium og fosfat), der kan stimulere bakterie- og fytoplankton-
vækst i vandet [42].
8.3.3 Drift
Under drift og injektion kan der være behov for seismiske undersøgelser/moni-
torering
se påvirkning på natur under forundersøgelser i afsnit 8.3.1.
Offshore og kystnære geologiske lagre
Et EU-forskningsprojekt fra 2011-2015, ECO2, opsummerede påvirkninger på
marin natur ved CO₂-lagring
ved de aktive lagre, Sleipner og Snøhvit, samt et
kommende lager i Polen. Studiet undersøgte konsekvenser af CO₂-udslip
ved la-
boratorieforsøg, et kontrolleret forsøgsudslip ved Sleipner og undersøgelse af lo-
kaliteter med naturlig CO₂-udsivning. Forskningsprojektet konkluderer, at CO₂
gasbobler opløses inden for et par meter, og at forsuring/fald i pH-værdi forsvin-
der inden for 1 km. Studiet refererer til forsøg, som har vist, at fisk og skaldyr
kan blive påvirket ved konstante udledninger og lav pH-værdi, som over tid kan
opløse kalkskaller og muslinger. De miljømæssige påvirkninger af udslip vurde-
res samlet set som små, også ved potentielle
udslip fra flere CO₂-lagre.
[58]
I forbindelse med fysiske anlæg på havbunden, som ikke-nedgravede rørlednin-
ger, kan der opstå revlignende effekter [53]. Ved udlægning af sten langs rør-
ledningen og ved krydsninger, vil habitater i området ændres. For Northern
Lights er der tale om et område på 5.500 m², hvor det dog vurderes, at bund-
faunaen i området ikke er unik for området og at arterne findes flere steder
langs kysten. Områderne som dækkes til af sten er begrænsede. Der forventes
Opblanding af partikler/sediment i vandet, som f.eks. ophvirvles ved forstyr-
relse af havbunden under anlægsarbejde.
12
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0217.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
61
ingen påvirkning på ansvarsarterne eller at biodiversiteten i området vil reduce-
res. Påvirkningen vurderes derfor som ubetydelig, med
ingen konsekvenser
13
for
bundfauna. [40]
Rørledninger kan få vandet til at strømme hurtigere foran rørledningen og der-
med erodere havbunden og/eller skabe aflejringer bag den. Vandbevægelsen
kan også bevirke, at bunden under rørledningen eroderer. Rørledninger med til-
knytning til Tyra-projektet nedgraves ved tracering eller dækkes med sten, hvil-
ket minimerer erosionsvirkningerne. [42]
Med hensyn til svampeorganismer, der lever på faste undervandskonstruktioner,
vil disse fungere som filtre for den plankton, der findes i de gennemstrømmende
vandmasser. Dette vil ændre den lokale fødekæde og dermed den lokale biologi-
ske produktion og nedbrydning af organisk stof i området. Selv om dette vil på-
virke økologien i et område, der er flere gange større end det område, der opta-
ges af felterne, er det stadig en mindre påvirkning af det regionale økosystem.
[42]
I miljøvurdering af Danmarks havplan, er det vurderet for de to udlagte områder
til CO₂-lagring
i Nordsøen, at der vil der være en forstyrrelse af kyst- og hav-
fugle på grund af skibstrafik i løbet af driftsfasen [53].
I forbindelse med EU's CO₂-lagringsdirektiv,
er det vurderet, at der i tilfælde af
meget usandsynlige mindre CO₂-lækager,
kun vil være lille lokal marin påvirk-
ning. Dette skyldes, at de marine økosystemer er robuste over for mindre ud-
sving i CO₂ koncentration. Selv ekstremt usandsynlige større lækager vil have
en begrænset og midlertidig effekt på marine økosystemer [59].
Den lille risiko for lokale marine økosystemer, som følge af CO₂-lagring,
skal op-
vejes med de omfattende påvirkninger, som klimaforandringer og relateret for-
suring af havene medfører i dag [59].
I forbindelse med eventuel
lækage fra Northern Lights CO₂ lager, er det vurde-
ret, at der vil være en ubetydelig påvirkning af det marine miljø. Dette er be-
grundet i typen af uheld, hvor der er tale om et akut udslip med begrænset
spredningsområde og at CO₂ forventes at blive fortyndet
hurtigt i vandmasserne
[40].
Onshore geologiske lagre
I driftsfasen for geologisk lagring på land, vil der være behov for at overvåge la-
geret og de eventuelle påvirkninger på jord, luft, flora og fauna samt grundvand
og overfladevand. Overvågningen kan have samme påvirkninger på naturen,
som for de indledende forundersøgelser i form af seismiske undersøgelser, be-
sigtigelser og opsætning af måleudstyr.
13
Jf. vurderingsmetode i miljøvurdering af Northern Lights projektet.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0218.png
62
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
For lagringsområdet ved Lacq har der været gennemført et overvågningspro-
gram gennem 5 år, baseret på et baseline studie i 2009. Overvågningen bestod
blandt andet af forskellige målestationer og regelmæssige registreringer. For på-
virkningen på flora og fauna er der påvist mindre fluktuationer over årene, som
kan tilskrives øvrige
påvirkninger end CO₂-lageret.
Det er dog samtidig vurde-
ret, at de 5 år er for kort en overvågningsperiode til at afskrive påvirkninger fra
CO₂-lageret
[35].
CO₂ anses ikke i sig selv som forurenende i vand, men ved opløsning
danner
CO₂ en svag syre, kulsure, som kan medføre udvaskning af andre forurenende
metaller eller mineraler, som arsenik, bly og organiske forbindelser, som kan
forurene grundvand og drikkevand. [60]
8.3.4 Afvikling
Under afvikling kan der være behov for seismiske undersøgelser/monitorering
se påvirkning på natur under forundersøgelser i afsnit 8.3.1.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0219.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
63
9
Transport af CO₂ på land
og til havs -
Vurdering af sikkerhed, natur og miljø
Sikkerhed
9.1
9.1.1 Forundersøgelser
Der er ikke identificeret relevante referencer med omtale af sikkerhedsforhold
specifikt relateret til forundersøgelser for etablering af transport infrastruktur for
CO₂.
9.1.2 Anlæg og etablering
Hvad angår transport med lastvogn, tog eller skib antages det, at der vælges
eksisterende standardmateriel, som er indrettet i henhold til de internationale
transportregler for CO₂
(ADR, RID og IMDG). Derfor ingen specifikke forhold for
transport af CO₂.
Ved lægning af rørledninger er der en række fysiske farer (håndtering af tungt
udstyr, klemfare, druknefare og lign.), både til havs og på land, som ikke er re-
lateret specifikt til anlæg af
CO₂-rørledninger. I anlægsfasen er der ikke CO₂ i
rørledningerne
og derfor ingen fare for udslip af CO₂.
9.1.3 Drift
Ved transport med lastvogn, tog eller skib gælder de internationale transport-
regler
for CO₂
i henhold til ADR, RID og IMDG.
I estimaterne nævnt i afsnit 5.1.1 er der udregnet konsekvensafstande på ca. 30
meter til 1
5% dødelighed, for momentane udslip
på 50 tons CO₂, hvilket an-
tages at repræsentere et udslip fra en lastvogn eller en togvogn. For skibstanke,
som må formodes at være større, kan konsekvensafstanden være op til 300 me-
ter.
Almindelige forholdsregler for drift af trykbærende rørledninger er også gæl-
dende for
drift af rørledninger med CO₂.
I estimaterne nævnt i afsnit 5.1.1 er der udregnet konsekvensafstande
14
på ca.
200 meter, for et stort kontinuert udslip, som antages at repræsentere et stort
udslip fra en rørledning. Et fuldstændigt rørbrud vil give større konsekvensaf-
stande, men vi har ikke kendskab til modellering af sådanne udslip. Det må an-
tages at konsekvensafstanden i sådan et tilfælde er mindst 300 meter, svarende
til et momentant udslip på 2.000 tons. De nævnte konsekvensafstande gælder
Konsekvensafstanden er defineret som den afstand, inden for hvilken, der er
en risiko for død på 1-5%
14
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0220.png
64
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
for udslip til
atmosfæren. Ved udslip til havs vil den undslupne CO₂
fortyn-
des/optages i vandsøjlen, når den stiger op til overfladen, så den ikke udgør en
fare for mennesker.
I afsnit 5 er der en beskrivelse af de mulige farer og konsekvenser ved håndte-
ring og udslip af CO₂.
Der er fundet forskellige artikler i aviser og tidsskrifter om et uheld med udslip
fra en rørledning i USA i februar 2020. Der foreligger endnu ikke resultater af of-
ficielle undersøgelser af uheldet. Ud fra hvad der kan udledes af artiklerne, er
der tale om et totalt rørbrud på en nedgravet rørledning som følge af forskydnin-
ger i jorden efter heftige regnskyl. Gasskyen var angiveligt grønlig og stærkt
stinkende,
hvilket indikerer at der ikke var tale om ren CO₂. Angiveligt var der
også H₂S i rørledningen. Ingen mennesker
kom alvorligt til skade [61].
Der er ikke fundet eksempler på uheld med CO₂-transport
i de undersøgte refe-
rencer.
9.1.4 Afvikling
Ved demontering af rørledninger skal der udover de almindelige arbejdsmiljøreg-
ler være fokus på, at der ikke findes ansamlinger af stoffer og materialer i rør-
ledningerne, som kan udgøre en fare for medarbejderne i forbindelse med de-
monteringen. Umiddelbart er der ikke identificeret hjælpestoffer, som kan ud-
gøre en fare ved nedrivning af rørstrækninger.
Skrotning
af lastvogne, togvogne og skibe til transport af CO₂ vurderes ikke at
være relevant i denne sammenhæng.
Der er ikke fundet eksempler på uheld ved demontering af rørledninger i de un-
dersøgte referencer.
9.2
Miljø
9.2.1 Forundersøgelser
Rørledninger, Lastbil, godstog, skib
Der er ikke fundet referencer, der specifikt beskriver miljøforhold ved forunder-
søgelser for infrastruktur til transport af CO₂.
De miljø- og naturmæssige forhold ved forundersøgelser for infrastruktur til
transport af CO₂ vurderes at være sammenlignelige med hvad der findes i for-
bindelse med forundersøgelser for infrastruktur til transport af naturgas, LPG,
LNG og andre industrielle gasser.
Det skal i forbindelse med planlægning sikres, at det valgte tracé hhv. transport-
ruter sker under hensyn til de risikomæssige og natur- og miljømæssige forhold.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0221.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
65
Det nødvendige plangrundlag skal sikres for rørledninger, og de nødvendige til-
ladelser være indhentet.
9.2.2 Anlæg og etablering
Rørledning
Der er kun identificeret få referencer der specifikt beskriver miljøforhold ved an-
læg og etablering af rør til transport af CO₂.
De miljømæssige påvirkninger under anlæg og etablering af ny rørledning for
CO₂ vurderes at være tilsvarende dem,
som identificeres for typiske øvrige rør-
ledninger anvendt til f.eks. transmission og distribution af naturgas.
Dette dækker følgende væsentligste miljøpåvirkninger der skal overvejes i de
konkrete tilfælde: Støv og øvrige emissioner til luft knyttet til anlægsarbejdet,
brug af ressourcer, eventuel udledning af overfladevand eller vand fra grund-
vandssænkning (kun på land), brug og udledning af kemikalier ved klargøring,
CO₂ aftryk i anlægsfase
samt generering af støj.
I miljøkonsekvensvurderingen for Northern Lights projektet er det er nævnt at
transportsystemet skal rengøres,
tryktestes og fyldes med flydende CO₂ forud
for drift og injektion af CO₂ i brønden. Tryktestning sker med kvælstof.
Der for-
ventes brug af "grønne" (inkl. MEG) og "gule" kemikalier under klargøring af rør-
ledning. Både kvælstof og kemikalier vil udledes til havet ved injektionsbrønden
[40].
Lastbil, godstog, skib
Ej relevant.
9.2.3 Drift
Rørledning
Der er kun identificeret få referencer der specifikt beskriver miljøforhold ved drift
af rørledning til transport af CO₂.
De miljømæssige påvirkninger under drift af ny rørledning for CO₂ vurderes at
være tilsvarende dem som identificeres for typiske øvrige rørledninger anvendt
til f.eks. transmission og distribution naturgas.
Der kan ved vedligeholdelses- eller reparationsarbejde skulle foretages en kon-
trolleret nedblæsning af sektioner
med udledning af CO₂.
For rørledningen til Northern Lights gennem Hjeltefjorden, er det vurderet, at
der ikke er nogen landskabelig påvirkning, da rørledningstracéet ikke er synligt
[40].
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0222.png
66
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
I USA har der været transporteret CO₂ i over 35 år og det estimeres at over 50
millioner ton CO₂ transporteres
hvert år i knap 6.000 km rørledning. Transport
via rørledning ses som den mest "cost" effektive løsning, og der vurderes ikke at
være barriere, hverken i forhold til design eller sikkerhed som vil kunne stå i ve-
jen for yderligere etablering i forbindelse med udvikling af CCS [60].
Skib
Der er ikke identificeret referencer der specifikt beskriver miljøforhold ved skibs-
transport af CO₂.
Miljøpåvirkningen fra skibstransport i driftsfasen vil være relateret til støj samt
energiforbrug og tilhørende forbrændingsemissioner og CO₂ aftryk. Herudover
kan være mindre diffus udledning af CO₂ fra tanke og koblinger.
Der sker allerede i dag transport af flydende naturgas (LNG) samt af flydende
petroleum gas (LPG).
Lastbil, godstog
Der er ikke identificeret referencer der specifikt beskriver miljøforhold ved last-
bilstransport af CO. Miljøpåvirkningen fra lastbilstransport i driftsfasen vil være
relateret til støj samt energiforbrug og tilhørende forbrændingsemissioner og
CO₂ aftryk. Herudover kan være mindre diffus udledning af CO₂ fra tanke og
koblinger.
Transport af CO₂ via lastbil foregår allerede i dag, og CO₂ sættevogne
er derfor
sikkerhedsmæssigt godkendt til vejtransport.
9.2.4 Afvikling
Rørledning
Se afsnit 8.2.4
Lastbil, godstog, skib
Ikke relevant.
9.3
Natur
9.3.1 Forundersøgelser
Se afsnit 9.2.1.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0223.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
67
9.3.2 Anlæg og etablering
Ved etablering
af CO₂-rørledninger
til havs, vil der være en fysisk påvirkning af
havbunden samt forstyrrelser i anlægsperioden. Se marine påvirkninger i afsnit
8.3.2.
Ved etablering af rørledninger på land, vil der være fysiske påvirkninger ved an-
lægsarbejde, nedgravning, trafik og øvrige påvirkninger, som kendes fra etable-
ring af f.eks. ledninger og gasrør.
Ved Lacq pilot projekt anvendes en ca. 30 meter rørledning på land mellem
fangstanlæg og onshore lagring. Rørledningen er en eksisterende gasledning, og
der har derfor ikke været anlægsarbejde [48].
9.3.3 Drift
For Northern Lights projektet,
er det vurderet, at CO₂-rørledningen
har en rela-
tivt lille dimension og derfor ikke medfører hindringer eller påvirker fiskebe-
stande i området. Under driftsperioden vil der årligt forekomme udslip af ca. 2
m³ hydraulikvæske (klassificeret som "gult" kemikalie) fra ventilanlægget pr.
brønd. Injektionsbrønden ligger ikke i nærheden af registrerede gydeområder,
og mindre udslip af brugt vandbaseret ikke-toksisk hydraulikvæske ved test og
operation af ventiler medfører ubetydelig negativ påvirkning og konsekvens for
fiskeæg og yngel. [40]
Som et høringssvar til Northern Lights projektet, er det påpeget at væske i rør
vil medføre støj, som bør overvåges. Operatøren henviser til, at der er et bety-
delig antal og længde af væsketransporterende rørledninger af varierende di-
mension på norsk sokkel, og at der ikke er planer om at starte støjmålinger fra
CO₂-væskestrømmen
i rørledningen. [62]
Ved nedgravede rørledninger på land, kan der være servitutregulerede begræns-
ninger af arealanvendelsen over og omkring rørledningen, som kan påvirke na-
tur og biodiversitet.
9.3.4 Afvikling
Se afsnit 9.2.4.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0224.png
68
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
10
[1]
Referencer
KEFM, »Principaftale mellem regeringen (Socialdemokratiet), Venstre, Dansk Folkeparti,
Radikale Venstre, Socialistisk Folkeparti, Enhedslisten, Det Konservative Folkeparti, Libe-
ral Alliance og Alternativet om En køreplan for lagring af CO2,« Juni 2021 2021. [Online].
Available:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKE-
wiQ3-Pky_HyAhWIz4sKHWjmD5sQFnoECAYQAQ&url=https%3A%2F%2Fkefm.dk%2FMe-
dia%2F637606718216961589%2FPrincipaftale%2520om%2520CO2-
lagring.pdf&usg=AOvVaw1y6rm60I85JFg7tfo1qR0P. [Senest hentet eller vist den Sep-
tember 2021].
[2]
Global CCS Institute, »Global status of CCS 2020,« 2020. [Online]. Available:
https://www.globalccsinstitute.com/resources/global-status-report/. [Senest hentet eller
vist den August 2021].
[3]
[4]
[5]
Energistyrelsen, »Leverance 5.1: Miljø- og sikkerhedsaspekter i CCS-kæden,« København
V, 2021.
Global CCS Institute, »Global CCS Institute facilities database,« 2021. [Online]. Available:
https://co2re.co/ClimateChange.
C. Bofeng og e. al, »China Status of CO2 Capture, Utilization and Storage (CCUS) 2019,«
Center for Climate Change and Environmental Policy,Chinese Academy of Environmental
Planning. 2020, 2019.
[6]
[7]
K. M. Novak, N. Gaurina- Medimurec og L. Herncevic, »Significance of enhanced oil reco-
very in CO2 emission reduction,« Sustainability, årg. 13, 2021.
A. Hosa, M. Esentia, J. Stewart og S. Haszeldine, »Benchmarking worldwide CO2 saline
aquifer injections,« March 2010. [Online]. Available: https://www.sccs.org.uk/images/ex-
pertise/reports/working-papers/wp-2010-03.pdf.
[8]
[9]
Scottish Carbon Capture & Storage (SCCS), »Global CCS Map,« [Online]. Available:
https://www.sccs.org.uk/expertise/global-ccs-map.
ArkerSolutions, »Arker Solutions starts CCS test program at Preem Refinery in Sweden,«
may 2020. [Online]. Available: https://www.akersolutions.com/news/news-ar-
chive/2020/aker-solutions-starts-ccs-test-program-at-preem-refinery-in-sweden/. [Se-
nest hentet eller vist den August 2021].
[10]
[11]
[12]
[13]
Det Norske Veritas, »Design and operation of CO2 pipelines,« 2010.
F. H. Hedlund, »The extreme carbon dioxide outburst at the Menzengraben potash mine 7
July 1953,« Elsevier, 2011.
P. Harper, »Assessment of the major hazard potential of carbon dioxide (CO2),« Health
and Safety Executive, 2011.
S. Gant, M. Pursell, A. McGillivray, J. Wilday, M. Wardman og A. Newton, »Overview of
carbon capture and storage (CCS) projects at HSE’s Buxton Laboratory,« Health and Sa-
fety Executive, 2017.
[14]
[15]
A. McGillivray og J. Wilday, »Comparison of risks from carbon dioxide and natural gas
pipelines,« Health and Safety Laboratory , 2009.
J. L. Lewicky, J. Birkholzer og C.-f. Tsang, »Natural and industrial analogues for leakage
of CO₂ from storage reservoirs: identification of features, events, and processes and les-
sons learned,« Ernest Orlando Lawrence Berkeley National Laboratory , 2006.
[16]
C. Oldenbrug og L. Pan, »Major CO2 blowouts from offshore wells are strongly attenuated
in water deeper than 50 m,« Energy Geosciences Division - Lawrence Berkeley National
Laboratory, 2019.
[17]
Equinor, »Northern Lights FEED Report,« Equinor, 2020.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0225.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
69
[18]
F. H. Hedlund, »Past explosive outbursts of entrapped carbon dioxide in salt mines pro-
vide a new perspective on the hazards of carbon dioxide,« Intelligent Systems and Deci-
sion Making for Risk Analysis and Crisis Response, 2013.
[19]
[20]
P. J. Rew, P. Gallagher og D. M. Deaves, »Dispersion of subsea releases, review of predic-
tion methodologies,« HSE BOOKS, HSE Executive- offshore technology report, 1995.
IEAGHG, »Environmental impacts of amine emissions during post combustion capture -
Workshop 2010/11,« International Energy Agency Environmental Projects Ltd., Chelten-
ham, UK, 2010.
[21]
J. L. M. Gibbins, »BAT Review for New-Build and Retrofit Post-Combustion Carbon Dioxide
Capture Using Amine-Based Technologies for Power and CHP Plants Fuelled by Gas and
Biomass as an Emerging Technology under the IED for the UK,,« 2021. [Online]. Availa-
ble: https://ukccsrc.ac.uk/best-available-technology-bat-information-for-ccs/. [Senest
hentet eller vist den august 2021].
[22]
M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fenell, S.
Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S.
Krevor, G. C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M.
Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox og
N. M. Dowell, »Carbon capture and storage (CCS): the way forward,« Energy and En-
vironmental Science, årg. 11, pp. 1062-1176, 2018.
[23]
[24]
[25]
[26]
[27]
ECHA (europa.eu), »Information om kemikalier - ECHA (europa.eu).,« 2021. [Online].
Available: https://echa.europa.eu/da/information-on-chemicals.
E. Gjernes, L. I. Helgesen og Y. Maree, »Health and environmental impact of amine based
post combustion CO₂ capture,« Energy Procedia, årg. 37, pp. 735-742, 2013.
G. Dautzenberg og T. Bruhn, »Environmental impacts from CCS technologies,« Institute
for Advanced Sustainability Studies, Potsdam, 2013.
Gassnova, »Developing longship - Key lessons learned,« 2020.
L. I. Helgesen og E. Gjernes, »A way of qualifying Amine Based Capture Technologies
with respect to Health and Environmental Properties,« Elsevier, Energy Procedia, p. 13,
2016.
[28]
[29]
Scottish Environment Protection Agency, »Review of amine emissions from carbon cap-
ture (version 2.01),« Natural Scotland - Scottish Government, 2015.
Aker Carbon Capture, »Experience-based approaches to lower carbon cement production
- How the Brevik CCS project opens up new possibilities for other cement producers,«
Aker Carbon Capture Norway AS, Lysaker, 2021.
[30]
K. Fujita, Y. Kato, S. Saito, H. Kitamura, D. Muraoka, M. Udatsu, Y. Handa og K. Suzuki,
»The effect of aerosol characteristics in coal- and biomass-fired flue gas on amine emissi-
ons,« 14th International Conference on Greenhouse Gas Control Technologies, GHGT-14,
pp. 1-10, 2018.
[31]
[32]
Ministry of Petroleum and Energy, »Feasibility study for full-scale CCS in Norway,«
Gassnova & Gassco, 2016.
NIPH, »Health effects of amines and derivatives associated with CO₂ capture: Nitrosami-
nes and nitramines,« 2011. [Online]. Available: https://www.fhi.no/publ/2011/health-ef-
fects-of-amines-and-deriva/.
[33]
UK Environmental Agency, »Guidance, Post-combustion carbon dioxide capture: best ava-
ilable techniques (BAT),« july 2021. [Online]. Available: https://www.gov.uk/gui-
dance/post-combustion-carbon-dioxide-capture-best-available-techniques-bat#who-this-
guidance-is-for. [Senest hentet eller vist den August 2021].
[34]
[35]
M. N. Toftegaard, »OxyFuel combustion of coal and biomass,« 2011.
Total, »Carbon capture and storage, the Lacq pilot, project and injection period 2006-
2013,« 2014.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0226.png
70
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
[36]
[37]
[38]
[39]
IEAGHG, »Evaluation of reclaimer sludge disposal from post combustion CO2 capture,«
2014.
Rambøll, »CO2 fangst på danske affaldsenergianlæg,« København, 2020.
European Environment Agency, »Air pollution impacts from carbon capture and storage
(CCS),« 2011.
T. Lecomte, J. F. F. d. l. Fuente, F. Neuwahl, M. Canova, A. Pinasseau, I. Jankov, T.
Brinkmann, S. Roudier og L. D. Sancho, »Best Available Techniques (BAT) Reference Do-
cument for Large Combustion Plants,« 2017.
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
Equinor, »EL001 Northern Lights - Mottak og permanent lagring af CO2. Plan for utbygg-
ning, anlegg og drift. Del II - Konsekvensutredning.,« Oktober 2019.
L. Eilertsen, »Northern Lights. Konsekvensvurdering med hensyn på naturmiljø og biolo-
gisk mangfold på land,« Rådgivende Biologer AS, 2018.
MAERSK OIL DBU, »Redegørelse for miljømæssige og sociale virkninger - ESIS-Tyra,«
Rambøll, 2017.
Energistyrelsen, »Standard vilkår for forundersøgelser til havs,« 2017.
Energistyrelsen, »Guidelines for drilling, esploration,« 1988,2009.
A.-K. Furre, O. Eiken, H. Alnes, J. N. Vevatne og A. F. Kier, »20 years of monitoring CO2-
injection at Sleipner,« Elsevier, p. 3916
3926, 2017.
Erhvervsministeriet, »Cirkulære om naturgaslager ved Stenlille,« Erhvervsministeriet ,
1991.
M. Roskilde, »Revurdering af miljøgodkendelser Stenlille gaslager,« Miljøministeriet,
2009.
Total, »Carbon capture and storage, The Lacq pilot - results and outlook,« 2013.
S. E. Greenberg, »Illinois Basin Decatur Project,« 2015.
M. Batres, F. M. Wang, H. Buck, R. Kapila, U. Kosar, R. Licker, D. Nagabhushan, E. Rekhl-
man og V. Suarez, »Environmental and climate justice and technological carbon re-
moval,« The Electricity Journal, nr. 34, 2021.
[51]
L. A. Kyhn, S. Wegeberg, D. Boertmann, P. Aastrup, J. Nymand og A. Mosbech, »Onshore
Seismic Surveys in Greenland,« Aarhus University, DCE
Danish Centre for Environment
and Energy, 2020.
[52]
M. Hjorth, L. D. Kristensen, C. J. Murray, J. H. Andersen, S. Brooks og K. Sørensen, »Ef-
fects of oil and gas production on marine ecosystems and fish stocks in the Danish North
Sea,« WSP Denmark, NIVA, Teknologisk Institut, 2021.
[53]
[54]
[55]
Søfartsstyrelsen, »Miljøvurdering af Danmarks Havplan,« COWI, 2021.
A. D. Nielsen, N. P. Christensen, P. Jørgensen og E. L. Lundsteen, »Catalogue of geologi-
cal storage of CO2 in Denmark, Danish Energy Agency,« Rambøll, Copenhagen, 2021.
P. Deda, M. Elbertzhagen og M. Klussmann, »Light Pollution and the Impacts on Biodiver-
sity, Species and their Habitats,« Everglades, nr. Secretariat of the Convention on the
Conservation of Migratory Species of Wild Animals (UNEP-CMS), pp. 133-138, 2007.
[56]
J. M. Neff, »Fate and effects of water based drilling muds and cuttings in cold water en-
vironments.,« Review prepared for Shelle exploration an Production Company Houston
Texas, 2010.
[57]
T. Bakke, J. Klungsøyr og S. Sanni, »Environmental impacts of produced water and dril-
ling waste discharges from the Norwegian offshore petroleum industry,« Marine Environ-
mental Research, årg. 92, pp. 154-169, 2013.
[58]
K. Wallmann, M. Haeckel, P. Linke, L. Haffert og M. Schmidt, »Best Practice Guidance for
Environmental Risk Assessment for offshore CO2 geological storage,« EU: ECO2 - Sub-
seabed CO2 Storage: Impact on Marine Ecosystems, 2015.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0227.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
71
[59]
ZEP, »CO2 Storage Safety in the North Sea: Implications of the CO2 Storage Directive -
TWG Collaboration across the CCS Chain,« European Zero Emission Technology and Inno-
vation Platform, 2019.
[60]
[61]
US Office of Fossil Energy and Carbon Management, »Report of the Interagency task
force on Carbon Capture and Storage,« 2010.
EcoWatch, »How the World's First CO2 Pipeline Explosion Turned a Mississippi Town Into
'a Zombie Movie',« August 2021. [Online]. Available: https://www.ecowatch.com/co2-
pipeline-explosion-mississippi-2654814127.html.
[62]
Equinor , »EL001 Northern Lights: Plan for utbygging, anlegg og drift - Del II: Konse-
kvensutredning - Oppsummering av høringsuttalelser og tilsvar til disse,« Equinor ASA,
Stavanger, 2020.
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
Energistyrelsen og Energinet, »Technology Data - Industrial process heat,« 2020.
Energistyrelsen og Energinet, »Technology data - Energy transport,« 2017.
EIGA, »MINIMUM SPECIFICATIONS FOR FOOD GAS APPLICATIONS, Doc 126/20,«
EUROPEAN INDUSTRIAL GASES ASSOCIATION, 2020.
H. J. Herzog, Carbon Capture, 2018.
S. Flude. [Online]. Available: https://theconversation.com/carbon-capture-and-storage-
has-stalled-needlessly-three-reasons-why-fears-of-co-leakage-are-overblown-130747.
The Danish Hydrocarbon Research and Technology Centre, »CO2 storage in Danish Oil &
Gas fields,« DTU, Kongens Lyngby, 2020.
Project Greensand, »Project Greensand,« [Online]. Available: https://statics.te-
ams.cdn.office.net/evergreen-assets/safelinks/1/atp-safelinks.html.
Søfartsstyrelsen, »Danmarks havplan,« 2021. [Online]. Available: https://hav-
plan.dk/da/page/info. [Senest hentet eller vist den 23 august 2021].
Maersk Drilling, »MaerskDrilling,« [Online]. Available: https://www.maerskdrilling.com.
EU, »Directive 2009/31/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, of 23
April 2009 on the geological storage of carbon dioxide and amending Council Directive
85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC,
2004/35/EC, 2006,« 2009. [Online].
[73]
T. Dahl-Jensen, R. Jakobsen, T. B. Bech, C. M. Nielsen, C. N. Albers, P. H. Voss og T. B.
Larsen, »Monitoring for seismological and geochemical groundwater effects of high-vo-
lume pumping of natural gas at the Stenlille underground gas storage facility, Denmark,«
GEUS Bulletin, p. 8, 2021.
[74]
Energistyrelsen, »Technology Data - Energy transport,« 2020.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0228.png
72
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Bilag A
Teknisk beskrivelse af CCS anlæg
Afsnittet indeholder en teknisk beskrivelse af de forskellige anlæg, der indgår i
CCS
omfattende 1) geologisk lagring, 2) CO₂-fangst,
3) mellemlagring samt 4)
transport infrastruktur. For hvert anlæg indgår en teknisk beskrivelse af faserne
a) forundersøgelser, b) anlæg og etablering, c) drift og d) afvikling.
A.1
CO₂-fangstanlæg
CO₂-fangstteknologier
afgrænses specifikt til følgende typer anlæg med høj tek-
nologisk modenhed, som allerede er eller er tæt på at være kommercielt tilgæn-
gelige:
Rensning af røggas (post combustion) ved hhv. aminvask og nedkølet am-
moniak (oftest benævnt chilled ammonia)
Dannelse af røggas med høj CO₂ koncentration ved forbrænding ved iltrige
betingelser (oxyfuel).
Det forudsættes desuden, at der etableres liquefaction-anlæg samt mellemlager-
faciliteter ved efterfølgende transport med lastbil, tog eller skib, alternativt kom-
pressortrin og dehydrering ved transport via rørledning.
Følgende tekniske beskrivelse af disse anlæg og transportkæder dækker forun-
dersøgelser, anlæg, drift og afvikling. Der henvises desuden til Energistyrelsens
teknologikataloger for hhv. procesvarme og carbon capture samt transport af
energi og CO₂
[63], [64].
A.1.1 Forundersøgelser
Specifikt for selve fangstanlægget vil der for alle de beskrevne procestyper
skulle foregå forundersøgelser som for typiske industri-/procesanlæg. Desuden
skal der pga. det høje energiforbrug til selve CO₂-fangsten
foretages undersø-
gelse af udnyttelse af evt. eksisterende spildvarme fra hovedprocessen, samt in-
tegration med damp- og fjernvarmesystemer for at sikre høj energieffektivitet.
Herunder skal behovet for køleeffekt afdækkes, idet processen vil kræve en del
kølevand og/eller -luft. Da røggassen indeholder en række stoffer, som er uhen-
sigtsmæssige i CO₂-fangstprocessen,
skal der afhængigt af koncentrationsni-
veauer muligvis etableres yderligere rensetrin såsom røggaskondensering med
lud og / eller deNOx.
Ved et retrofit af CO₂-fangst
på et eksisterende anlæg vil der desuden ske æn-
dring af røggastemperatur, flow og vandmætning, der influerer på spredning af
røggassen.
A.1.2 Anlæg og etablering
Anlæg og etablering vil for alle de beskrevne procestyper skulle foregå som for
typiske industri-/procesanlæg.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0229.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
73
Konstruktion af kemikalietanke mv. skal sikre at der ikke kan se forurening af
jord, grundvand og overfladevand ved eventuelt spild. Specielt for aminvask be-
mærkes, at de typisk anvendte aminer er skadelige for vandmiljøet.
Konstruktion af lagertanke mv. for CO₂ skal sikres mod eventuelle lavpunkter og
lukkede miljøer, hvor CO₂ kan opkoncentreres ved eventuel
lækage
Der skal desuden
sikres tilstrækkelig rumventilation samt CO₂-
detektorer/alarmer i bygninger og lavpunkter i terrænet, hvor der er risiko for
ophobning.
A.1.3 Drift
Beskrivelse af teknologier
– CO₂-fangst
Aminvask
Aminvask hører under post combustion typen, hvor
CO₂ adskilles fra
en gas-
strøm.
Metoden benyttes f.eks. ved produktion af CO₂ til fødevarer samt til op-
gradering af biogas og naturgas, og vil være relevant til fangst af CO₂
fra røg-
gassen efter forbrænding i kedler/ovne. Et procesdiagram ses i Figur 3 nedenfor.
Røggassen fra forbrændingsprocessen eller anden CO₂-holdig
gas renses, køles
og ledes til en absorber, hvor den skrubbes med en vandig amin-opløsning.
CO₂
i røggassen optages af aminen under frigivelse af varme, hvorefter den CO₂-
fattige røggas passerer en vaskesektion og et dråbefang for at fjerne amin samt
nedbrydningsprodukter fra aminen, inden røggassen udledes via skorstenen. Der
opnås typisk
en gennemsnitlig effektivitet på 90 %, dvs. 90 % af CO₂-indholdet
i den indgående røggas opfanges.
Den CO₂-rige
amin ledes herefter til en desorber, hvor den opvarmes vha.
damp, og CO₂ frigives i koncentreret form. Den CO₂-fattige,
varme amin veksles
med
den køligere CO₂-rige
amin, køles yderligere og returneres til absorberen til
fornyet optagelse af
CO₂. Selve den koncentrerede CO₂-strøm
køles, herved
dannes kondensat som ledes tilbage til processen.
Dampkilden findes på hovedanlægget ved udnyttelse af evt. overskudsvarme,
samt udtag fra turbine eller hoveddampsystem. Alternativt etableres en hjælpe-
kedel, hvis der ikke er tilstrækkelig til rådighed. Varme fra produceret i
CO₂-
fangstprocessen vil i nogen grad kunne anvendes i fjernvarmenettet.
Aminen vil over tid ophobe en række affaldsprodukter. Disse kan i nogen ud-
strækning fjernes ved destillation eller ionbytning i en reclaimer. Der vil herun-
der dannes hhv. en slamfraktion eller spildevand. Den termisk destillation dan-
ner en slamfraktion, der må forventes at blive klassificeret som farligt affald
[36]. Tilsvarende giver ionbytteren anledning til spildevand, når resinerne rege-
nereres med opløsninger af lud (NaOH) og svovlsyre (H
2
SO
4
.)
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0230.png
74
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Figur 3: Processkitse af aminvask. Reclaimeren er ikke vist.
Ved retrofit af CO₂-fangst
på en eksisterende punktkilde muliggør en post com-
bustion løsning kortere driftsstop af det eksisterende anlæg i anlægsfasen, da
der primært er behov for ændringer af røggaskanaler samt damp- og varmeinte-
gration. Udfordringer for aminvask er primært følsomheden over for forurenende
stoffer
i røggassen såsom svovldioxid (SO₂), nitrogendioxid (NO₂), saltsyre
(HCl) og partikler, samt det høje energibehov. Teknologien er moden og kom-
mercielt tilgængelig
dog primært for kapaciteter på 1-15
ton/h CO₂ indfanget.
Enkelte større anlæg er bygget i hhv. USA og Canada:
Kulfyret anlæg, Petra Nova, USA, 1.600.000 ton pr år. 200 ton/h (MHI)
SaskPower Boundary Dam, Canada (Shell CanSOLV), 400.000 ton/år (50
ton/h)
De enkelte leverandører af aminbaserede CO₂-fangstanlæg
benytter i stor ud-
strækning egne, hemmeligholdte aminblandinger med forskellige forbedrede
egenskaber såsom lavere degradering og energiforbrug. Den kommercielt til-
gængelige amin monoetanolamin (MEA) er kendetegnet ved et højt energifor-
brug, der ligger 50% over, hvad flere leverandører har angivet at kunne opnå
med deres egne blandinger. Andre typisk anvendte aminer er bl.a. dietanolamin
(DEA), metyldietanolamin (MDEA), piperazin (PZ), 2-Amino-2-metylpropanol
(AMP), diglykolamin (DGA) og diisopropanolamin (DIPA).
Chilled ammonia
Chilled ammonia processen er også af post combustion typen og ligner aminvask
i udformningen. Processen er demonstreret i relativt stor skala, 110.000 ton pr.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0231.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
75
år, på Mountaineer demoanlægget i USA. Den er dermed tæt på kommerciel lan-
cering.
Der benyttes en vandig ammoniakopløsning i stedet for amin typisk i en opløs-
ning under 25%. Da reaktionsoptimum er mellem 5 °C og 15 °C, skal røggassen
køles til dette temperaturinterval. Fordele er angiveligt reduceret energiforbrug,
CO₂-produkt
ved relativt høje tryk (5-25 bar) samt fravær af amin og nedbryd-
ningsprodukter i røggassen. Imidlertid har varmebehovet vist sig at være højere
end forventet, og problemstillinger såsom langsom absorptionskinetik, øget pro-
ceskompleksitet samt udfordringer med håndtering af udfældninger af salte er
også identificeret, hvilket giver ustabil drift og korrosion. Desuden skal der udfø-
res yderligere afkøling af røggassen sammenlignet med en aminproces.
Oxyfuel
Oxyfuel er en væsentligt anderledes teknologi, idet der foretages forbrænding i
ilt fortyndet med recirkuleret røggas. Dette giver en røggas bestående hovedsa-
geligt af CO₂ og vand.
Efter kedlen renses røggassen for vanddamp og andre
urenheder, og den resulterende gas med
høj CO₂-koncentration
kan herefter
komprimeres. På grund af luftindtrængning i systemet, behov for iltoverskud,
kvælstof
i brændslet mv. vil den resulterende, tørre CO₂-koncentration
ligge på
70 - 90%.
Ilt til forbrænding produceres ved adskillelse fra atmosfærisk luft med en luftse-
parationsenhed, hvilket er kendt teknologi. For at sikre ilt til opstart og løbende
forbrænding vil der være behov for en buffertank med flydende ren ilt.
Ved retrofit med oxyfuel kræves væsentlige ændringer af det eksisterende an-
læg, herunder ombygning af ovn/kedel og tætning af røggassystemet. Dette er
nødvendigt, da gassens egenskaber og de termodynamiske betingelser ændres,
hvilket blandt andet påvirker forbrændingszonen og varmeoverføringen. Den
største udfordring ved retrofit er dog at reducere luftlækager ind i systemet
mest muligt.
Der eksisterer ikke egentlige anlæg på kommerciel skala, men en række demo-
anlæg på kul (Schwarze Pumpe, 30 MW
th
og Callide i Australien, 120 MW
th
) har
tidligere været i drift. Der er desuden en række eksperimentelle fluid bed kedler
(CFB'er) på typisk få MW
th
- dog et enkelt på 30 MW
th
i Spanien.
Beskrivelse af teknologier
– CO₂-konditionering
Efter fangst og dannelsen af en koncentreret CO₂-strøm
skal der alt efter den
valgte transportmetode ske komprimering og evt. kondensering/liquefaction, se
Figur 4.
Komprimering
Ved transport via rørledning skal CO₂ komprimeres vha. en flertrinskompressor
med intercooling, hvor den genererede varme kan udnyttes andre steder i pro-
cessen.
Typiske CO₂-rørledningstryk
på længere strækninger er 80-150 bar for
at undgå tofase-regionen af fasediagrammet, samt opnå en tilfredsstillende den-
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0232.png
76
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
sitet. Ved transport på kortere strækninger (såsom 10-20 km) kan lavere trykni-
veauer være fordelagtige. Over
jord vil det være ca. 10 bar for at undgå CO₂-
kondensation ved lave omgivelsestemperaturer. For nedgravede rør, hvor der er
frostfrit, kan der gås op til 30 bar.
CO₂ er korrosiv ved tilstedeværelse af fugt, da der dannes kulsyre, og i kombi-
nation med høje tryk kan der desuden ske udfældning af gashydrater. Derfor er
dehydrering af gassen til et fugtindhold under 50-400 ppmv nødvendigt. Dehy-
drering sker typisk som en kombination af to forskellige kølesystemer
vandkø-
ling og en flydende glykolproces. Et mekanisk filter er monteret efter absorpti-
onskolonnen for at fjerne eventuelle partikler, der rives med i CO₂-strømmen.
Tørring installeres ved et mellemliggende trin i kompressoren.
Transport
via
rørledning
Transport via
skib, godstog
og lastbil
Figur 4:
Fasediagram for CO₂. Områder for transport med skib, godstog og lastbil i fly-
dende form, samt transport via rørledning i komprimeret tilstand er angivet med
skraverede områder. 1 MPa = 10 bar. 250 K = -23
°
C.
Kondensering / liquefaction
Ved kondensering (også kaldt liquefaction) komprimeres og afkøles CO₂-
strømmen til ca. 15-18 bar og -21 til -27 ° C.
CO₂-produktstrømmen
ledes først gennem en køler og separator for at fjerne
vand, før gassen komprimeres i kompressoren.
CO₂-gassen
afkøles derefter
yderligere og vaskes i en skrubbersektion for at fjerne vandopløselige urenheder
og tilbageværende amin. Vasketrinet kræver vand som efterfølgende skal hånd-
teres ved f.eks. recirkulering til fangstanlægget, internt procesvand eller be-
handling i renseanlæg. Yderligere tørring sker vha. en absorptionskolonne til
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0233.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
77
meget lavt niveau (<50 ppm) for at undgå korrosionsproblemer i rør og lager-
tanke, samt dannelse af iskrystaller. Afhængig af kravene til renheden af CO₂-
produktet, kan forskellige adsorbere og filtre installeres nedstrøms, f.eks. et ak-
tivt kulfilter. Den tørre CO₂-gas
køles derefter, inden den kommer ind i destilla-
tionskolonnen, hvor inerte / ikke-kondenserbare gasser, såsom kvælstof, ilt og
argon fjernes, mens CO₂
kondenseres med en ekstern køler (typisk ammoniak).
Flydende CO₂ sendes til opbevaring i
isolerede tryktanke.
Et standard kondenseringsanlæg er normalt designet til at producere CO₂ i føde-
varekvalitet, hvilket betyder, at forskellige rensetrin er inkluderet, såsom aktivt
kulfilter, NO
X
-fælde osv., for at fjerne sporkomponenter fra aminvask eller lig-
nende. Den producerede CO₂ har typisk en renhed over 99,9 vol%.
Overordnet drift af fangst og konditionering
Under drift overholdes de gængse sikkerhedsregler for de øvrige anlæg. Ved
kondenseringsanlægget er der desuden risiko for forfrysninger ved direkte kon-
takt. Ved arbejde hvor der kan ske
kontakt med CO₂, anvendes sikkerhedsbriller
og kuldeisolerende handsker.
For aminvask skal der under påfyldning af aminer samt håndtering af kemiske
restprodukter fra aminvask-processen anvendes personlige værnemidler samt
sørges for tiltag til at undgå spild og udledning til omgivelserne. Affaldet fra re-
claimer-processen vil skulle bortskaffes som farligt affald eller afbrændes på ho-
vedanlægget, såfremt der er tale om den termiske type. Ionbyttertypen vil
kræve spildevandsbehandling.
For chilled ammonia skal der tilsvarende være foranstaltninger ved påfyldning af
ammoniak (NH₃), der er giftig. Mht.
oxyfuel skal der sikres mod lækager af ilt,
da gassen er stærkt brandnærende.
Aminvasken medfører emissioner til luft. De specifikke emissioner vil være af-
hængig af den valgte metode, hvilke aminer som anvendes og af røggassen fra
den specifikke punktkilde.
I røggassen kan der forekomme emissioner af amin samt nedbrydningsproduk-
ter som ammoniak (NH₃) og flygtige organiske stoffer (VOC).
Nogle aminer kan desuden danne toksiske nitrosaminer ved reaktion med NO
X
.
Ved tilstedeværelse af høje koncentrationer af f.eks. svovlsyre og submikrone
partikler i røggassen kan der desuden dannes aminholdige aerosoler. Vasketrin
og dråbefang efter absorberen mindsker disse emissioner, men evt. aerosoler
fjernes dog ikke effektivt.
Tilsvarende er det for chilled ammonia processen primært udledning af ammo-
niak, der skal undgås.
Mht. spildevand dannes det ved post combustion typerne ved vandoverskud i
systemet. Ligeledes haves vaskevand fra absorberens røgvasketrin og rensning
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0234.png
78
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
af CO₂-strømmen.
Vandet vil skulle behandles i et renseanlæg før udledning el-
ler anvendes som internt procesvand. For oxyfuel udkondenseres større mæng-
der vand fra røggassen, hvilket dog er tilsvarende ved normal forbrænding.
Dette vand skal renses som typisk røggaskondensat.
Specielt for kondenseringen af CO₂, kan
køleenheden indeholde ammoniak
(NH₃), hvilket kræver sikkerhedsudstyr og potentielt andre sikkerhedsmæssige
forholdsregler.
Beskrivelse af teknologier -
CO₂-kvalitet
Den følgende specifikation
for CO₂ i forbindelse med lagring i undergrunden, er
blevet defineret for Northern Lights projektet [17]. I kilden anføres, at såfremt
CO₂ kvaliteten afviger fra det angivne, skal der udføres en risikovurdering for in-
stallationerne.
Tabel 4: Specifikation
for CO₂ i forbindelse
med lagring i undergrunden på Nothern Lights
projektet [17]
Komponent
Max. koncen-
tration vppm
30
Årsag
Vand, H₂O
Undgå dannelse af hydrater og udfældning af frit
vand i anlægsdele til transport og mellemlagring.
Minimere risikoen for blokering og korrosion.
Sat for at opfylde kravene til renhed ved slutlag-
ring. O₂ kan forårsage korrosion, når det reage-
rer med klorider (Cl).
SOx accelerer korrosion i nærvær af vand.
NO
X
accelerer korrosion i nærvær af vand.
Giftig ved indånding. Niveau indstillet til at redu-
cere risikoen for mulig lækage.
Giftig ved indånding. Niveau indstillet til at redu-
cere risikoen for mulig lækage.
Har potentiale til at reagere med og nedbryde
ikke-metalliske materialer
-
H
2
kan forårsage korrosion i form af brintskør-
hed.
Kan reagere med ilt til myresyre.
Kan reagere med ilt til eddikesyre.
Giftig for personalet. Kan forårsage skørhed i
metalliske materialer.
Giftig for personalet. Kan forårsage skørhed i
metalliske materialer.
Oxygen, O₂
10
Svovl oxider, SOx
Nitrogen oxider, NO
X
Hydrogen sulfid, H₂S
10
10
9
Carbon monoxid, CO
100
Amin
10
Ammoniak, NH₃
Hydrogen, H
2
10
50
Formaldehyd, HCHO
Acetaldehyd
Kviksølv, Hg
20
20
0,03
Cadmium, Cd + Thallium, Tl
0,03 (sum)
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0235.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
79
Til sammenligning kan f.eks. nævnes fødevarekvalitet standard for CO₂
(E290)
ifølge EU og EIGA [65].
Tabel 5 Fødevarekvalitet standard for CO₂
(E290) er ifølge EU og EIGA
[65]
Komponent
Analyse CO₂ (v/v)
Vand
CO
Totale hydrocarboner
Olie-indhold
Surhed og reducerende stoffer
CO₂ (E290)
>99 v%
<52 vppm
<10 vppm
<50 vppm
<5 mg/kg
Bestå test
A.1.4 Afvikling
Afvikling vil skulle forberedes og effektueres som for andre typiske industri-/pro-
cesanlæg. Anlæggene skal tømmes og demonteres, eventuelle bygninger skal
nedrives og området eventuelt genetableres. Der er tale om velkendte operatio-
ner og anlægsdele som i nogen udstrækning kan afsættes kommercielt.
A.2
Mellemlager-faciliteter
Mellemlager-faciliteter
etableres typisk i nærheden af CO₂ punktkilderne og på
eller i umiddelbar nærhed af havne- og/eller industriområder, hvor transport
med skib eller lastbil er mulig. Mellemlager-faciliteter vil formentlig omfatte kon-
densering / liquefaction-faciliteter (beskrevet tidligere) og lagring i tanke.
A.2.1 Forundersøgelser
Der forudses ikke særlige tekniske forundersøgelser i forbindelse med et mel-
lemlager. Sikkerhedsforanstaltninger for at forhindre læk, samt minimering af
udslip ved uheld skal vurderes.
A.2.2 Anlæg og etablering
Anlæg og etablering skal foregå som typisk for industrilagre. Dog skal der for
CO₂ lagertanke ikke opstilles spildbarrierer som for andre kemikalietanke.Der
er
her behov for at undgå lavpunkter og lukkede miljøer.
A.2.3 Drift
Mellemlageret er nødvendig som buffer mellem den kontinuerte produktion af
CO₂ og den diskontinuerte lastbils-
og skibstransport. Der kan være behov for
mellemlagre både ved
CO₂-fangstanlægget
og ved eventuelt udskibningssted.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0236.png
80
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Lagerkapaciteten vil afhænge af lastbilernes eller skibenes cyklustid sat i forhold
til produktionen. Den maksimale størrelse af tankene vil være begrænset af,
hvad der er praktisk at transportere fra tankleverandør til installationsstedet. For
mindre kapaciteter under 100 m³ fås isolerede standardtanke. Kugletanke kan
fremstilles med en enhedsstørrelse på 1.000 m³ eller mere, men disse er for
store til vejtransport og kræver derfor adgang til en havn eller konstruktion af
de store tanke på selve sitet. Ved CO₂-terminaler
med lagerkapacitet på flere
1.000 m³ vil mellemlageret bestå af flere tanke. Det vil dog primært afhænge af
det enkelte projekt, hvad der er hensigtsmæssigt.
Lagertanke til flydende CO₂
vil være udstyret med et import- / eksportrør samt
et gasreturrør. Det vil dog være muligt at isolere hver enkelt tank fra systemet
ifm. vedligehold, men der skal dog ske overvejelse omkring forringelse af tanke-
nes levetid ved store temperaturgradienter. Typisk tages kryogene lagertanke
ikke ud af drift. For at holde lagertankene afkølede, fordampes en lille del af den
flydende CO₂ kontinuerligt. Gassen returneres derefter til kondenseringsanlæg-
get, eller udledes til omgivelserne såfremt liquefaction-anlægget er ude af drift
eller der ikke er tilknyttet kondensering til det pågældende mellemlager.
En CO₂
udluftningsventil installeres for at muliggøre kontrolleret udluftning fra lagertan-
kene og dermed fastholde trykket, når kondenseringsanlægget ikke er i drift.
Eksportsystemet består af en hovedrørledning til et antal pumper. Rørledningen
føres til en lastestation til enten skib, tog eller lastbil. Parallelt med påfyldnings-
systemet kan der installeres et retursystem til at føre fortrængte CO₂-gas
fra
skibene tilbage til lagertankene. Derudover ledes rørledningen tilbage til kon-
denseringsanlægget, hvilket muliggør rekondensering af den fortrængte CO₂-
gas. Systemet skal udstyres med sikkerhedsventiler. Der vil skulle være fokus
på vedligehold og korrosionsovervågning for at sikre mod utilsigtede udslip af
CO₂ fra mellemlageret.
A.2.4 Afvikling
Afvikling vil skulle forberedes og effektueres som for andre typiske industrilagre.
Anlæg og tanke skal tømmes og demonteres, eventuelle bygninger skal nedrives
og området eventuelt genetableres. Der er tale om velkendte operationer og an-
lægsdele som i nogen udstrækning kan afsættes kommercielt.
A.3
Geologisk lagring af CO₂ på land
og til havs.
Geologisk
CO₂
lager - grundlæggende forudsætninger
Et geologisk lager består af en række elementer; et reservoir dvs. et geologisk
lag/ bjergart med en vis porøsitet f.eks. en sandsten, en "cap rock"/forsegling
dvs. en impermeabel bjergart som f.eks. lersten og så en lukning dvs. en af-
grænsning af reservoiret i geologiske strukturer som f.eks. antiklinaler/ domer,
forkastnings blokke (forskudte jordlag) eller stratigrafiske afgrænsede lag. Olie,
gas og saltvand findes i undergrunden i sådanne afgrænsede strukturer så som
på dansk sokkel i Nordsøen, men i strukturer med potentiale for CO₂-lagring
land i Danmark er porevæsken oftest saltvand (også kaldet saline akviferer). La-
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0237.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
81
geret kan være mere eller mindre effektivt afhængig af graden af porøsitet, per-
meabilitet og tryk som har betydning for flow i reservoiret. Lignende parametre
er gældende for styrken af forseglingsbjergarten.
For at sikre at CO₂ forbliver i væskefase må det opbevares ved tryk større end
dets kritiske tryk som er 73,9 bar. Det gennemsnitlige tryk i 800 m dybde er 80
bar så lagre dybere end det opfylder kriteriet. Typisk er lagre på 2-3 km dybde
med et tryk på 200-300 bar og en temperatur på 60-100 grader Celsius. Dette
giver en densitet af CO₂ på 0,5-0,8
g/cm
3
. Sammenlignet med CO₂ gas, der har
en densitet på 0,001 g/cm
3
, er CO₂ på væske form altså tungere og fylder me-
get mindre
hvilke betyder, at meget mere CO₂ kan opbevares i porerummet.
Sammenlignet med vand med en densitet på 1 g/cm
3
er CO₂ lettere, hvilket be-
tyder at det vil stige opad i reservoiret. Derfor er en impermeabel "cap
rock"/forseglingsbjergarten vigtig.
Når
CO₂ injiceres i et reservoir vil det presse formationsvandet væk og bevæge
sig ind i porerummet på bjergarten og forme en "plume". I formationen/reser-
voiret vil ske en trykstigning, hvilket kan forårsage meget små forskydninger i
undergrunden (mikrojordskælv). Hvis trykket er meget stort og ikke håndteret
korrekt, kan det forårsage sprækker i forsegling og mulig lækage af CO₂.
I reservoiret er der 4 mekanismer der sammen bidrager til at "fange" og fast-
holde
CO₂
i reservoiret (se Figur 5). En strukturel fælde, f.eks. en dome som
tidligere diskuteret, men også kapillær fangst dvs. CO₂ bliver immobiliseret i po-
rerummet, opløsning af
CO₂ i formationsvandet samt reaktion mellem opløst
CO₂ og bjergartsmineralerne, hvorved nye mineraler dannes
[66].
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0238.png
82
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Figur 5
Forskellige fangst mekanismer der immobiliserer CO₂ i jorden (Stephanie Flude,
CC
BY [67])
Udenlandske erfaringer danner et rimeligt fundament og sammenligningsgrund-
lag for danske lagringsforhold når der er tale om samme reservoirtype (sand-
sten, kalksten etc.), forseglingstype og struktur. Sammenligningen er skal dog
altid laves med forbehold idet forhold såsom lithologi, dybde, kvalitet mv. kan
have en indflydelse lokalt.
Mulige danske lagringsforhold findes diverse steder på land og vand, i diverse
størrelser, dybder og lithologier. CO₂-lagrene
Sleipner Vest og Snøhvit i Norge
er eksempler på offshore CO₂ sandstenslagre som er sammenlignelige med
nogle potentielle danske lagre. På Sleipner Vest foregår injektionen i et salint
sandstensreservoir på 1.000m dybde, i Utsira fomationen der er 200-250m tyk.
Snøhvit er et salint sandstensreservoir i Tubasan formation på 2.550m dybde,
reservoiret er 45-75m tyk. I Danmark er der erfaring med lagring af naturgas i
underjordiske anlæg på land bl.a. i et akviferreservoir i Stenlille på Sjælland.
Stenlille er en antiklinal struktur med et reservoir bestående af Triassisk Gassum
Formation på 1.500 m dybde og en caprock af den Nedre Jurassiske Fjerritslev
Formation.
CCS pilot projektet i Lacq bassinet i Frankrig er et eksempel på et kalkstensre-
servoir. Lagringen foregik i det udtømte Mano resevoir i Rousse feltet. Reservoi-
ret er på 4.500m dybde, strukturen er Jurassisk.
I Danmark består en stor del af de kendte olie- og gasreservoirer af kalksten.
Forståelsen af CO₂ lagring i kalksten i Danmark er ikke fuldt belyst. Kalkstens
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0239.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
83
bjergarter er kendt for lav permeabilitet og det kan være vanskeligt at forudsige
kvaliteten af reservoiret.
Flere Europæiske CCS studier [68] indikerer, at der er større volumen kapacitet i
de danske sandstensreservoirer end i kalksten.
De potentielle danske CO₂ lagre
omfatter sandstensreservoirer, som f.eks. INE-
OS's opererede offshore Nini og Siri felter (Projekt Greensand,1.500-2.000m
dybde, 150-500 MT) [69], de store saline strukturer med triassisk Gassum for-
mation reservoir Hanstholm (near-shore, antiklinal, ca. 1.000m dybde, kapacitet
2.753 MT) og reservoir Havnsø (onshore-near-shore, antiklinal, 1.500m dybde,
kapacitet 926 MT) [70]).
GEUS gennemfører i 2021 en screeening af forskellige potentielt velegnede lag-
ringsstrukturer. Undersøgelserne vil tjene som grundlag for at vælge en eller
flere formationer, der skal undersøges nærmere.
I forslag til Danmarks Havplan, er Hanstholm og et større område ved den vest-
lige grænse i Nordsøen udpeget som udviklingszoner for CO₂-lagring
[70].
Fordelen ved udtømte olie- og gas felter er, at det allerede er bevist at forseglin-
gen virker over geologisk tid, og at der eksisterer en stor mængde data og viden
om reservoiret. Yderligere er der et potentiale for brug af eksisterende infra-
struktur. Saline reservoirer har historisk ikke haft den samme fokus, og her vil
der skulle indsamles en større mængde nye data.
Særlig er lagerpotentialet typisk ikke er eftervist med en boring, hvilket er nød-
vendigt for at kunne bekræfte om lageret er velegnet og sikkert.
Forundersøgelser, etablering, drift og afvikling af
CO₂
lagre
Herunder følger en gennemgang af erfaringer for de forskellige stadier for CO₂
lagre, herunder forskelle og ligheder for henholdsvis lagring på land, offshore el-
ler nearshore. En scenarieoversigt med beskrivelse af de væsentligste aktiviteter
under faserne forundersøgelser, anlæg og etablering, drift og afvikling fremgår
af Tabel 6.
Tabel 6 Scenarieoversigt med beskrivelse af væsentligste aktiviteter
Scenarier
Forundersøgelser
Anlæg og
etablering
Drift
Afvikling
På land
Nyt lager
Lager ikke bevist.
Behov for seismik
og brønddata
Injektionsbo-
ringer etable-
res med
brøndhoved,
pumpe , ca-
sing, filtre.
Reservoir
overvågning,
regelmæssig
seismik
Plug & aban-
don brønd,
forsat perio-
disk seismisk
overvågning
Tidligere
gaslager
Lager bevist og
godt kendskab til
Injektionsbo-
ringer og
Reservoir
overvågning,
Plug & aban-
don brønd,
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0240.png
84
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
reservoir egenska-
ber. Begrænset
behov for ny data
indsamling
etablering af
permanente
installationer
regelmæssig
seismik
forsat perio-
disk seismisk
overvågning
Offshore
Nyt lager
Lager ikke bevist.
Behov for seismik
og brønddata
Injektionsbo-
ringer og
etablering af
permanente
installationer
Reservoir
overvågning,
regelmæssig
seismik
Plug & aban-
don brønd,
forsat perio-
disk seismik
overvågning
Tidligere
O&G
Lager bevist og
godt kendskab til
reservoir egenska-
ber. Begrænset
behov for ny data-
indsamling.
Injektionsbo-
ringer
Reservoir
overvågning,
regelmæssig
seismik
Plug & aban-
don brønd,
forsat perio-
disk seismik
overvågning
Nearshore
Nyt lager
Lager ikke bevist.
Behov for seismik
og brønddata
Injektionsbo-
ringer og
etablering af
permanente
installationer
Reservoir
overvågning,
regelmæssig
seismik
Plug & aban-
don brønd,
forsat perio-
disk seismik
overvågning
A.3.1 Forundersøgelser
Seismik
Indsamling af seismiske data og boringer er en fundamental del af forundersø-
gelserne for at forstå tilstedeværelsen, udbredelsen og kvaliteten af geologiske
lagre. Den seismiske metode svarer til en stor-skala ultralydsskanning af under-
grunden, hvormed det er muligt at identificere laggrænser og strukturer/for-
skydninger af sedimentære lag i undergrunden samt under visse forhold litho-
logi/ bjergarts type og tilstedeværelsen af gas, olie og vand. Seismiske undersø-
gelser kan udføres som 2D- eller 3D kortlægning. 2D kortlægningen består af en
række udvalgte linjer, typisk planlagt i et grovmasket net, med afstande på 1-
5+ km mellem de seismiske profiler. Dette giver en grundlæggende forståelse af
undergrunden, men med større usikkerheder især for tynde lag, i forhold til dyb-
den til toppen af lagene og for forkastninger. For med rimelig sikkerhed at
kunne kortlægge laggrænser, strukturer, udbredelse af reservoiret, evt. interne
forkastninger og sprækkesystemer, anvendes 3D seismik.
3D seismik er grundlæggende en 2D seismisk undersøgelse med større linjetæt-
hed og større antal linjer, samt væsentligt forøget opløselighed vertikalt og hori-
sontalt. En sådant datagrundlag kan muliggøre en detaljeret kortlægning af
strukturen. Den forbedrede kortlægning gælder både en bedre opløselighed af
tynde lag og til dybden til de enkelte lag samt en meget forbedret mulighed for
kortlægning af forkastninger. For eftervisning af lithologien (typen af aflejring,
f.eks. ler eller sand) og til undersøgelse af reservoir- og seglbjergarternes fysi-
ske egenskaber kræves boring af en brønd.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0241.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
85
Der kræves forskelligt udstyr på land og på vand og det er særligt vanskeligt at
dække kystområdet, hvor der er lavvandet og skal bruge en kombination af ud-
styr. Typisk indsamles og analyses 2D som et første skridt for at afdække om
fundamentale elementer, en struktur, er til stede og derefter følges op med 3D
data samt en brønd for detalje kortlægning. Her er det "cost" effektivt at tænke
langsigtet med hensyn til at sikre at 3D kortlægningen kan fungere som et base-
line for senere monitering af reservoiret.
Offshore foregår seismisk dataindsamling med specialbyggede seismiske skibe.
Lydbølger sendes ned i jorden fra såkaldte "airguns"/luftkanoner som trækkes
efter skibet. Disse signaler rammer jordens forskellige lag og reflekteres tilbage
til havoverfladen, hvor de registres af trykfølsomme hydrofoner på et kabel som
trækkes efter luftkanonerne. Dette er kendt som "streamer" seismik (Figur 6).
Til lands benyttes typisk vibratorlastbiler eller sprængladninger til at udsende
lydbølger, som opsamles af geofoner på overfladen. Det er ofte mere besværligt
at indsamle seismik på land end til havs pga. af flere obstruktioner. Landdata er
ofte også mere påvirkelige af støj fra omgivelserne, hvilket kan betyde reduceret
kvalitet af data.
Figur 6 Marin seismik data indsamling (Kilde GEUS efter Niels Ter-Borch, DONG Energy)
Figur 7 Land seismik dataindsamling (Kilde GEUS efter Niels Ter-Borch, DONG Energy)
Boringer
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0242.png
86
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
For at påvise type af bjergart og undersøge egenskaberne af reservoir og for-
segling kræves boring af en brønd. Brønddata bestående af geofysiske logs,
kerne data og tryk data er vigtige at indsamle. Geofysiske logs er vigtige for
tolkning af geologi og kalibrering til seismik. Kernedata er vigtige for forståelsen
af bl.a. bjergarts styrke og mekanik i forsegling samt for reservoir porøsitet og
permeabilitet. Tryk data indsamles gennem brøndtest for at vurdere forseglings-
styrken i forhold til trykket i reservoiret samt permeabilitet/flow i reservoiret.
Offshore bores brønde fra borerigs specificeret efter vanddybde samt dybde og
tryk i reservoiret (Figur 8). Disse er typisk flytbare og med beboelse for mand-
skabet. Nogle permanente produktionsplatforme er også udstyret til at bore
brønde. På land er borerigge typisk noget mindre og kan flyttes med/på lastbi-
ler.
Det er ikke en ufarlig proces at bore brønde, idet man har med tungt maskineri
at gøre og under visse forhold brændbare hydrocarboner, kombineret med mu-
lige overraskelser som f.eks. tryk, geologiske og vejrmæssige forhold. Det er
dog en industri med stor erfaring og med et højt fokus på sikkerhed og på at
processerne er optimeret og udføres sikkert.
Figur 8 Offshore Jack-up borerig (Kilde Maersk [71])
A.3.2 Anlæg og etablering
Injektion af CO
2
i undergrunden kræver som minimum én boring, hvor der bores
igennem det valgte reservoir. En ny injektionsbrønd bores eller en eksisterende
boring konverteres til CO₂-injektion.
På reservoirniveau udføres brønden med nødvendige filtre og det kan være nød-
vendigt at udføre injektionsforberedende test og oprensning f.eks. med kalium-
klorid. Filtret giver adgang til reservoiret og sikrer, at uønskede partikler ikke in-
jiceres og at reservoirets partikler ikke mobiliseres. Brønden fores (cases) for at
sikre at CO₂ ikke kan undslippe ind til andre formationer.
Der etableres et
brøndhoved hhv. på jordoverfladen eller på havbunden. Det skal sikres at CO₂
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0243.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
87
injektionen udføres med et tryk og en temperatur der passer til forholdende i re-
servoiret og der placeres typisk anlæg enten i brønden eller ved brøndhovedet til
tryksætning og opvarmning. Idet lækage kan ske direkte gennem brønden, bør
den udstyres med instrumenter, der kan måle tryk- og temperaturændringer og
derved overvåge evt. lækage. Det er også et krav i henhold til EU Direktiv
2009/31/EC [72].
CO₂ er korrosiv og studier konkluderer, at den vigtigste grund til at injektions-
brønde fejler skyldes, at der er brugt konstruktionsmaterialer som ikke er tilpas-
set CO₂, hvilket har ledt til korrosion af casing
[68]. Ved brug af gamle brønde
ved et eksisterende olie- og gasfelt, er det nødvendigt at renovere boringers op-
bygning så korrosion undgås. Det skal derfor dokumenteres og verificeres at
brøndenes opbygning ikke udgør en risiko inden lageret tages i brug. Bekymrin-
gerne er typisk rettet mod cementen og eventuel reaktion med CO₂
[68].
På Sleipner
Vest CO₂ projektet offshore Norge, sendes CO₂ ned i reservoiret via
en dedikeret injektionsbrønd fra Sleipner A platformen. I Northern Lights projek-
tet planlægges en undersøisk satellit, der forbindes med en rørledning til land
mens monitorerings- og kontrolfunktioner planlægges udført fra Oseberg platfor-
men (offshore [17]. Det planlægges endvidere at benytte forundersøgelsesbrøn-
den til injektion efter re-design (Figur 9). På havbunden planlægges etablering
af en undersøisk satellitfacilitet af størrelse 20,5x12,4x16 m.
Figur 9 Illustration af den planlagte udvikling af Northern Lights injektionsbrønden [17].
Venstre: Boring af forundersøgelses brønd i 2019/2020. Midt: Genåbning,
re-design og færdiggørelse til injektion planlagt i 2022. Højre: Færdig in-
jektionsbrønd i 2023/2024.
A.3.3 Drift
Driften af selve CO₂
lageret består af injektion af CO₂ og monitering af reservoi-
ret. Et omfattende moniteringsprogram er nødvendigt for at demonstrere og do-
kumentere at den lagrede CO₂ forbliver i reservoiret. De fleste metoder er an-
vendelige både offshore og på land.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0244.png
88
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Undersøgelser, der udføres som en del af monitering skal kunne holdes op mod
undersøgelser foretaget inden CO₂ injektion er påbegyndt. Dette refereres til
som basisundersøgelser.
For selve reservoiret og forseglingsbjergarten udgør det 3D seismiske undersø-
gelser, der udføres for at kortlægge strukturen, den vigtigste baseline. Den kan
benyttes til fremtidige, såkaldte 4D undersøgelser. 4D er ganske enkelt udfø-
relse af to identiske 3D seismiske undersøgelser, forskudt i tid. Da udskiftningen
af vand med CO
2
ændrer trykforholdene i reservoiret og dermed den seismiske
respons, kan udbredelsen af CO₂ i reservoiret moniteres ved hjælp af forskellen
i det seismiske signal med f.eks. 5-10 års mellemrum. Også andre metoder be-
nyttes f.eks. mikro-gravimetriske undersøgelser, hvor ændringer af tyngdefor-
holdene måles, idet CO₂ er lettere end det saline vand.
Over 20 års erfaringer fra Sleipner CO₂ injektionsprojekt, verdens første indu-
strielle offshore CCS projekt har netop vist, at gentagne seismiske undersøgelser
(4D/ Timelapse)
har været essentielle for at kunne overvåge CO₂ plumens inde-
slutning i reservoiret (Figur 10). Kombineret med gravimetriske data har det
været muligt at kombinere
CO₂ masseændringer og geometridata for derved at
kunne estimere opløsning af CO₂ i vandet, hvilket er vigtigt for langtidsberegnin-
ger. Det er også vist, at tryk- og temperatursensorer ved brøndhoved og i reser-
voir er nødvendige for god kontrol af betingelser før og under injektion. Ved
brug af disse overvågningsmetoder er det vist at CO₂ er forblevet sikkert nede i
undergrunden [45]. Overvågningen følger krav jf. EU direktiv [72].
Mikro jordskælv (mikro-seismisitet) kan udløses ved injektion. Den geologiske
risiko for betydende jordskælv er meget lille.
I Danmark er der erfaring med pumpning og lagring af naturgas i underjordiske
anlæg på land bl.a. i et akviferreservoir i Stenlille på Sjælland. Der er 20 dybe
brønde på Stenlille sitet, 14 injektions og produktions brønde og 6 overvåg-
ningsbrønde. Stenlille blev overvåget for seismiske events i perioden 2018-2020
og er ikke observeret seismiske events i den periode [73].
Monitering af CO₂'s
mulige indtrængning i grundvandet er også nødvendigt. Mo-
nitoreringen består typisk af et antal overvågningsboringer, hvorfra der kan ind-
samles flowdata og tages jævnlige vandprøver. Da CO₂ kan påvirke den kemiske
sammensætning af grundvandet, bør der sammensættes et relevant laboratorie-
program. Data samles i en grundvandsmodel, der viser flowretning. I Stenlille
gaslageret på Sjælland er grundvandet blevet overvåget via boringer siden an-
lægget blev anlagt i 1989. Kun et læk er blevet observeret, i 1995, relateret til
et teknisk problem under injektion i St14 borigen [73].
Lækket blev hurtigt stoppet. Estimatet er at 5.000 m³ gas blev tabt til lavere lig-
gende geologiske formationer. En uge efter lækket blev der observeret forhøjede
gaskoncentrationer i K1 vandboring, 250m fra St14 boringen. Der var ingen fri
gas i vandprøven, og det blev konkluderet at alt gassen var opløst på det tids-
punkt. Efterfølgende er koncentrationen af opløst gas faldet og i 2012 til under
1mg/l. Der blev også målt en stigning i metan i oktober 2009 i vandboring 558
sydvest for Nyrup. På den baggrund blev det konkluderet af traces af gas fra
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0245.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
89
lækken i 1995 havde migreret ind og gennem et Paleocen sand lag til brønd
558. En begravet dal ved Nyrup har muligvis tilladt gassen at migrere til lavere
dybder, hvor den blev gradvist opløst i grundvandet. Undersøgelserne viste
også, at der var en meget lav pumpe rate i brønden som muliggjorde at detek-
tere gas i vandet. Efter normal pumpe rate var etableret, kunne gas ikke læn-
gere måles [73].
Erfaringerne fra overvågningen af lageret ved Sleipner har givet input til fremti-
dige projekter. Læringen er at valget af overvågningsteknikker, hvornår og va-
righeden af overvågningsundersøgelser bør være projektspecifikke og risk base-
ret, samtidig med at den langvarige tidshorisont for CCS projekter også bør ta-
ges med i overvejelserne.
Figur 10
Sleipner seismisk CO₂ overvågning
[45].
A.3.4 Afvikling
I afviklingsfasen forsegles brøndene med en cement plug og overflade installati-
oner fjernes ligesom for olie- og gasinstallationer. Energistyrelsens boreretnings-
linjer [44] angiver, hvordan brønde bør tilproppes, før de efterlades i henhold til
godkendte procedurer. Brøndstedet skal genetableres i overensstemmelse med
den oprindelige tilstand, og brøndstedet skal verificeres inden det efterlades.
Reservoiret overvåges dog forsat i afviklingsfasen vha. seismik. Når injektionen
stoppes, falder trykket i reservoiret og derfor anses risikoen for brud på forseg-
lingen og induceret seismisitet mindre i denne fase end i driftsfasen.
A.4
Transport af CO₂ på land og til havs
Transport af CO₂ kan ske som en komprimeret gas eller på væskeform. CO
2
transporteres som gas under højt tryk i rørledninger, samt ved mellemtryk og
nedkølet som væske i f.eks. tanke. Rørledningstransport af CO
2
og andre gasser
under tryk er en moden kommercielt tilgængelig teknologi.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0246.png
90
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Der transporteres globalt gas med tankskibe i LPG- og LNG-skibe (Liquified Pe-
troleum/Natural Gas), hvor gassen ligesom CO₂ er hhv. under tryk eller nedkølet
til væskeform. I Northern Lights projektet bygges i første fase to skibe til trans-
port af flydende CO₂. Her er der specifikt tale om et
tilpasset LPG skibsdesign
med tilføjelse af et transportsystem til flydende
CO₂
samt isolering. Hermed be-
nyttes designs, som skibsværfter allerede kender.
Der findes mere end 3.000 km CO
2
-rørledninger i Nordamerika, ca. 135 km fler-
fase rørledning til Snøhvit feltet i Norge og ca. 80-100 km CO
2
-rørledning på
land mellem Rotterdam og Amsterdam. Transport af gas i rørledninger eksisterer
bl.a. som transportform af f.eks. naturgas i Danmark, mens CO₂ til fødevarein-
dustrien i dag typisk transporteres til søs og på lastbil. Transporten til søs fore-
går med relativt små gastankskibe.
Transport af CO₂ som væske vil kræve etablering af et mellemlager
samt op-
varmning og komprimering forud for endelig lagring i undergrunden. Termina-
lerne vil typisk være designet med lastepumper, overførselsrørledninger, marine
lastearme, måle- og genfordampningsanlæg til håndtering af
CO₂ gas
fra lager-
tanke osv. Ved
destinationen til endelig lagring overføres CO₂ fra skib til injekti-
onsfacilitet, hvor CO₂ opvarmes, komprimeres og injiceres.
Der er i det følgende anvendt informationer fra Energistyrelsens teknologikata-
log for transport af energi og CO₂
[74].
Figur 11:
Øverst: Transport af komprimeret CO₂ gas samt kondenseret CO₂.
Nederst:
Transport af CO₂ til injektion near-shore
og offshore. En tredje mulighed er on-
shore og near-shore injicering fra en landbaseret facilitet, hvor kondensering ikke
er nødvendig.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0247.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
91
A.4.1 Forundersøgelser
Rørledning, lastbil, godstog og skib
Der skal udføres forundersøgelser af tracé og transportmidler i forhold til teknisk
egnethed.
Forundersøgelserne forventes ikke at afvige fra forundersøgelser i forbindelse
med transport af f.eks. naturgas og LNG.
A.4.2 Anlæg og etablering
Rørledning
Metoder for anlæg og etablering af rørledninger vil være tilsvarende, hvad der
ses for rørledninger til transport af f.eks. naturgas og LNG.
Lastbil, godstog, skib
Ikke relevant
A.4.3 Drift
Transport i rørledninger
Rørledninger vil være relevant ifm. transport af store mængder CO₂, f.eks. fra
store punktkilder til eksportterminaler samt videre til lagring i undergrunden.
Standarden p.t. for transport over længere strækninger (fx. over 30 km) er tryk
på 80 - 150 bar, hvilket sikrer en margin til trykfald samtidig med, at tykkelsen
af røret kan holdes på et rimeligt niveau ift. materialeomkostninger. For kortere
strækninger kan der anvendes tryk på 10 eller 30 bar alt efter om rørene er
nedgravede. Der findes flere designstandarder for CO₂-rørledninger,
se herunder
DNV-RP-J202 og ISO 27913:2016. Der kan være mulighed for at benytte eksi-
sterende naturgasrørledninger til CO₂-transport.
Dette vil afhænge af, hvorvidt
røret er i en dimension der passer og i det hele taget lever
op til kravene CO₂
transport. Det vil skulle undersøges i de konkrete tilfælde.
Som tidligere nævnt sker der komprimering af CO₂ op til 150 bar samt tørring
inden transport. CO₂-kompressoren
styrer trykket ved indløbssiden af rørlednin-
gen, og ved afbrydelser af kompressoren benyttes ventiler for at afspærre mod
rørledningen, så trykket fastholdes der. På land vil der også blive indsat ventiler
langs rørledningen, så rørsegmenter kan isoleres ved lækage. Længden af hvert
segment vil afhænge af en risikovurdering. F.eks. må der i tætbefolkede områ-
der forventes kortere segmenter end i landdistrikter. Offshore vil der typisk ikke
være afspærringsventiler mellem land og selve brøndhovedet.
Målestationer vil placeres ved kompressionsanlægget i indløbet eller i slutningen
af røret. Er der tale om et egentligt netværk, kan det dog være relevant at etab-
lere flere målestationer. Pumpestationer kan være relevante langs ruten for at
overvinde tryktab, hvis trykket falder til under det minimale rørledningsdriftstryk
(80 bar). Typisk kan dette være for hver 70-140 km. Pumperne placeres i dedi-
kerede stationer / huse langs ruten. For offshore-rørledninger er dette ikke en
mulighed og dimensionen skal derfor vælges, så det resulterende trykfald kan
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0248.png
92
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
tolereres. I praksis betyder det, at diameteren øges med rørledningens længde
ved fastholdt kapacitet.
Allerede eksisterende CO₂-rørledninger
spænder vidt i kapacitet fra 0,06 til 27
mio. ton pr. år. I Danmark forventes behov for transport af 5-10 mio. ton pr. år,
da dette vil dække mange af de største punktkilder. Det vil kræve en nærmere
afdækning af de specifikke forhold i det enkelte projekt for at afgøre, om det er
relevant med etablering af en rørledning ift. f.eks. lastbilstransport. Forventnin-
gen er, at kapaciteter under ca. 50-100
kton CO₂ pr. år vil blive kørt med lastbil.
Der forventes ikke nogen større miljøpåvirkning under almindelig drift, da der
ikke vil være afgivelse af
CO₂
fra rørledningen. Der kan ved vedligeholdelses- el-
ler reparationsarbejde skulle foretages en kontrolleret nedblæsning af sektioner,
hvorved en kort rørstrækning tømmes med udledning af en mindre mængde
CO₂
til følge.
Under den daglige drift skal flow og tryk langs rørledningen overvåges kontinu-
erligt, herunder overføres aflæsningerne fra instrumenterne til et bemandet kon-
trolrum. Nedgravede rørledninger vil desuden normalt også være udstyret med
katodisk beskyttelse ift. ekstern korrosion.
Rørledningen kan også være udstyret med interne inspektions- og rensefacilite-
ter i form af luger til en såkaldt "gris", der anvendes til overvågning af intern
korrosion og tilsmudsning. Sammenholdt med naturgasrørledningerne forventes
mindre intern rensning, da det er ren, tør CO₂-gas,
der transporteres.
Hvor der er risiko for at CO₂ kan ophobes i farlige koncentrationer ved en læk
(herunder CO₂-komprimerings-
/ pumpehuse, doseringshus, ventilhuller mv.),
skal der være CO₂-detektorer
og alarmer.
Flowet ind og ud af rørledningerne bestemmes ved måling som del af afregnin-
gen, når der er overføres mellem forskellige parter. Overvågning af CO₂-
kvaliteten f.eks. fugtindhold, O₂-indhold
og andre urenheder forventes at være
et krav ved indløbet.
Hermed sikres at CO₂-kvaliteten
er tilstrækkelig ift. rørled-
ningsmaterialer og produktspecifikationer.
For en CO₂-rørledning vil der være operationelle risici relateret til CO₂'s
fasead-
færd og belastningsudsving, f.eks. dannelse af væskefase eller tøris under plud-
selige trykfald, frysning af sikkerhedsventiler osv. Vedligeholdelsesstop med fuld
trykaflastning skal udføres i et langsomt tempo for at forhindre frysning.
Sikkerheden ved naturgasrørledninger og relaterede installationer vurderes af
Arbejdstilsynet og Sikkerhedsstyrelsen. Endnu vides ikke, hvilken myndighed
der vil evaluere fremtidige CO₂-rørledninger,
og hvilke sikkerhedskrav der i så
fald vil være.
Skibstransport
Skibe vil være relevant for transport af større
CO₂ over længere afstande. Dette
kan f.eks. være transport fra store punktkilder til offshore lagringsfaciliteter eller
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0249.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
93
havneterminaler. Skibene kan desuden sejle i rutefart mellem flere destinatio-
ner, hvor der indfanges mindre mængder CO₂. P.t. har de eksisterende skibe til
CO₂ transport
en forholdsvis lille lagerkapacitet på 1.000-2.000 m³, hvilket må
forventes at stige på sigt. Ved behov for etablering af ny infrastruktur til skibs-
transport, såsom kajpladser ved industrianlæg og ved udvidelse af eksisterende
havnefaciliteter, kan der forventes en betydelig projektomkostning.
CO₂ transporteres i flydende form, og dette vil typisk ske ved mellemtryksbetin-
gelser (15-18 bar og -27°C til -21°C). Der kan dog også anvendes lavtryksfor-
hold (f.eks. 5-7 bar og ca. -50 ° C) eller højtryksforhold (40-50 bar og +5°C til
+15°C). Forskellen ligger i CO₂ densiteten samt krav til trykbeholdere samt be-
hovet for isolering af systemet.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0250.png
94
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Lastbilstransport
Transport af CO₂ på lastbil sker i flydende form svarende til skibstransportfor-
holdene. Vejtransport
af CO₂ vil være relevant for små til mellemstore mæng-
der, f.eks. fra små punktkilder til CO₂-anvendelsesfaciliteter
eller eksporttermi-
naler. Typisk kapacitet for en lastbil er 25
– 30 ton CO₂.
CO₂-lastbiler
fyldes fra mellemlagertankene. Terminalerne vil have dedikerede
lastepladser med tankningsudstyr og gasreturledninger til stede. En lastbil med
en kapacitet på 30 ton CO₂ kan fyldes med flydende CO₂ på ca. 45 min, hvilket
også forventes som aflæsningstid på destinationen. Tankene på lastbilen er ikke
udstyret med køling, men er i stedet isoleret. Derfor vil temperaturen og trykket
stige en smule under transport.
Flydende CO₂ er en kølevare og transporten bør
derfor minimeres for at undgå for stort varmeoptag. Står tankbilen for længe,
slippes CO₂ ud i en
sikkerhedsventil på tanken. Transporten skal derfor planlæg-
ges.
Miljøpåvirkningen pga. lastbiltransport vil som for skibe hovedsageligt være i
driftsfasen pga. det høje energibehov (brændstof) samt emissioner fra lastbilen.
Transport af CO₂ via lastbil foregår allerede i dag, og CO₂ sættevogne
er derfor
sikkerhedsmæssigt godkendt til vejtransport. Da kapaciteten af lastbilen er be-
grænset, vil en ulykke
med resulterende læk af CO₂
have ret lokal effekt. Så-
fremt ruten involverer veje med områder, hvor luftudskiftningen er mindre,
f.eks. tunneler, vil der dog være større risiko for at nå
farlige niveauer af CO₂
ved en lækage.
Godstog
CO₂-transport
via jernbanen er teknisk muligt, og kryogene godsvogne benyttes
nogle steder i verden til at distribuere
flydende CO₂ til industrielle brugere.
P.t.
er der i Danmark ganske få punktkilder med forbindelse til jernbanenettet, hvor-
for det primært vil være relevant ifm. transport fra f.eks. en havnefacilitet til in-
dustri med
anvendelse af CO₂. Det vil her være et springende punkt, at infra-
strukturen allerede er på plads. Desuden er planlægningen af transporten ander-
ledes end f.eks. benzin, da vognene ikke kan henstilles i længere tid pga. for-
dampning af flydende CO₂.
A.4.4 Afvikling
Rørledning
Afvikling af en CO₂ rørledning stiller ingen specifikke krav eller udfordringer ift.
andre typiske rørledninger til gastransport.
Lastbil, godstog, skib
Afvikling vil være som for andre tilsvarende transporter.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0251.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
95
Bilag B
Opsummering af CCS erfaringer
med sikkerhed, miljø og natur
CO₂ fangstanlæg
inkl. konditionering
Forundersøgelser
Sikkerhed/uheldsscenarier
Miljø
Natur
Ingen særlige sikkerhedsmæssige
forhold identificeret
Ingen særlige sikkerhedsmæssige
forhold identificeret
Ingen særlige miljømæssige forhold
identificeret
Energiforbrug, ressourceforbrug, CO₂
footprint, støj, affald, emissioner til luft
og vand – kan sammenlignes med
andre industrianlæg
Energiforbrug, CO₂ footprint, kemika-
lieforbrug, eventuelle spild, og emis-
sion af aminer og nedbrydningspro-
dukter via luft, vand og affald
Støj, kølevand (varmt)
Chilled ammonia: Udledning af am-
moniak
Oxy fuel – mindre Nox udledning fra
forbrænding
Tilsvarende andre industrianlæg
Ingen særlige naturmæssige for-
hold identificeret
Arealinddragelse samt afledte ef-
fekter af udledninger og emissio-
ner. Tilsvarende andre industrian-
læg
Afledte effekter af udledning og
emissioner. Herudover tilsvarende
andre industrianlæg
Anlæg og etablering
Drift
Udslip/større lækage af CO₂, O₂,
NH₃ eller aminer samt risiko relate-
ret hertil
Afvikling
Ingen særlige sikkerhedsmæssige
forhold identificeret
Sikkerhed/uheldscenarier
Ingen særlige sikkerhedsmæssige
forhold identificeret
Ingen særlige sikkerhedsmæssige
forhold identificeret
Tilsvarende andre industrianlæg
Mellemlager
Forundersøgelser
Miljø
Ingen særlige miljømæssige forhold
identificeret
Energiforbrug, CO₂ footprint, ressour-
ceforbrug, eventuelle spild, støj - Til-
svarende andre industrielle lagerfaci-
liteter
Energiforbrug, CO₂ footprint, kemika-
lieforbrug, eventuel spild, støj, diffuse
udledninger af CO₂ - Tilsvarende an-
dre industrielle lagerfaciliteter
Tilsvarende andre industrielle lagerfa-
ciliteter
Miljø
Natur
Ingen særlige naturmæssige for-
hold identificeret
Arealinddragelse samt afledte ef-
fekter af udledninger og emissio-
ner.
Anlæg og etablering
Drift
Udslip af CO₂, samt risiko relateret
hertil
Arealinddragelse og eventuelle af-
ledte effekter af udledning og emis-
sioner
Afvikling
Ingen særlige sikkerhedsmæssige
forhold identificeret
Sikkerhed/uheldsscenarier
Tilsvarende andre industrielle la-
gerfaciliteter
Natur
Geologisk lagring
Forundersøgelser
Risiko for ved boring at ramme
lagre af kulbrinter, CO₂ og tilhø-
rende risiko for blowout ved boring
Støj, emissioner, energiforbrug, ud-
ledning af kemikalier
Påvirkning af fisk og marine patte-
dyr af offshore seismiske undersø-
gelser
Påvirkning af arealer og forstyrrelse
af dyr ved onshore seismiske un-
dersøgelser
Fysisk forstyrrelse af havbund
Tab af områder
Ophobning af forurenende stoffer
Forringet vandkvalitet
Forstyrrelse af kyst- og havfugle på
grund af skibstrafik
Mindre CO₂ lækage fra offshore la-
ger har kun lokal påvirkning
Risiko for CO₂ lækage til grund-
vand fra onshore lager
Tilsvarende anlæg og etablering
samt forundersøgelser
Anlæg og etablering
Se forundersøgelser
Støj, emissioner, energiforbrug, res-
sourceforbrug, udledning af kemika-
lier
Drift
Risiko for udslip af CO₂ i havmiljø
eller på land via revner mv.
Energiforbrug, udledning af kemika-
lier, diffus emission af CO₂
Afvikling inkl. monito-
rering
Risiko for udslip af CO₂ i havmiljø
eller på land via revner mv
Støj, energiforbrug, udledning af ke-
mikalier, affald
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0252.png
96
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
CO₂ infrastruktur rør
Forundersøgelser
Sikkerhed/uheldsscenarier
Ingen særlige sikkerhedsmæssige
forhold identificeret
Ingen særlige sikkerhedsmæssige
forhold identificeret
Miljø
Ingen særlige miljømæssige forhold
identificeret
Støj, emissioner, energiforbrug, res-
sourceforbrug, eventuelle spild, emis-
sion under opstart af N2, CO₂, MEG -
Tilsvarende påvirkning som ved etab-
lering af f.eks. gasrør
Energiforbrug, CO₂ footprint, kemika-
lieforbrug, eventuel spild, støj fra
kompressorer, nedblæsning af CO₂.
Tilsvarende drift af f.eks. Gasrør mi-
nus kulbrinter
Tilsvarende anlæg inkl. affald
Natur
Ingen særlige naturmæssige for-
hold identificeret
Fysisk forstyrrelse af hav-
bund/areal
Tab /ændring af områder
Forringet vandkvalitet / sediment
Anlæg og etablering
Drift
Udslip af CO₂, samt risiko relateret
hertil
Eventuelle afledte effekter af emis-
sioner og udledning
Afvikling
Ingen særlige sikkerhedsmæssige
forhold identificeret
Sikkerhed/uheldsscenarier
Ingen særlige sikkerhedsmæssige
forhold identificeret
Ingen særlige sikkerhedsmæssige
forhold identificeret
Udslip af CO₂, samt risiko relateret
hertil
Tilsvarende anlæg og etablering
Skib, lastbil, godstog
Forundersøgelser
Miljø
Ingen særlige miljømæssige forhold
identificeret
Ingen særlige miljømæssige forhold
identificeret
Energiforbrug, CO₂ footprint, emissio-
ner, støj
Natur
Ingen særlige naturmæssige for-
hold identificeret
Ingen særlige naturmæssige for-
hold identificeret
Tilsvarende anden mobil transport
inkl. eventuelle afledte effekter af
udledninger
na
Anlæg og etablering
Drift
Afvikling
Ingen særlige sikkerhedsmæssige
forhold identificeret
na
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0253.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
97
Bilag C
Longlist over litteratur
gennemgået
A. C. Rohr, J. D. McDonald, D. Kracko, M. Doyle-Eisele, S. L. Shaw og E. M. Knipping, »Po-
tential toxicological effects of amines used for CCS and their degradation processes,«
Energy Procedia, årg. 37, pp. 759-768, 2013.
A. D. Nielsen, N. P. Christensen, P. Jørgensen og E. L. Lundsteen, »Catalogue of geologi-
cal storage of CO2 in Denmark, Danish Energy Agency,« Rambøll, Copenhagen, 2021.
A. Hosa, M. Esentia, J. Stewart og S. Haszeldine, »Benchmarking worldwide CO2 sa-
line aquifer injections,« March 2010. [Online]. Availa-
ble:
https://www.sccs.org.uk/images/expertise/reports/working-papers/wp-2010-03.pdf
.
A. M. Omar, M. I. García-Ibáñez, A. Schaap, A. Oleynik, M. Esposito, E. Jeansson,
S. Loucaides, H. Thomas og G. Alendal, »Detection and quantification of
CO2 seepage in seawater using the stoichiometric Cseep method: Results from a re-
cent subsea CO2 release experiment in the North Sea,« International Journal of Green-
house Gas Control, årg. 108, nr. 103310, pp. 1-17, 2021.
A. McGillivray og J. Wilday, »Comparison of risks from carbon dioxide and natural gas
pipelines,« Health and Safety Laboratory , 2009.
A.-K. Furre, O. Eiken, H. Alnes, J. N. Vevatne og A. F. Kier, »20 years of monitoring CO2-
injection at Sleipner,« Elsevier, p. 3916
3926, 2017.
Aker Carbon Capture, »Experience-based approaches to lower carbon cement production -
How the Brevik CCS project opens up new possibilities for other cement produ-
cers,« Aker Carbon Capture Norway AS, Lysaker, 2021.
ArkerSolutions, »Arker Solutions starts CCS test program at Preem Refinery in Swe-
den,« may 2020. [Online]. Available: https://www.akersolutions.com/news/news-ar-
chive/2020/aker-solutions-starts-ccs-test-program-at-preem-refinery-in-sweden/. [Senest
hentet eller vist den August 2021].
Batres, Maya; Wang, Frances; Buck, Holly et al.; Environmental and cli-
mate justice and technological carbon removal, The Electricity Journal 34 (2021)
C. Bofeng og e. al, »China Status of CO2 Capture, Utilization and Storage (CCUS) 2019,«
Center for Climate Change and Environmental Policy,Chinese Academy of Environmen-
tal Planning. 2020, 2019.
C. Oldenbrug og L. Pan, »Major CO2 blowouts from offshore wells are strongly attenua-
ted in water deeper than 50 m,« Energy Geosciences Division - Lawrence Berkeley Natio-
nal Laboratory, 2019.
COWI, »Carbon Capture Technology Catalogue,« Kongens Lyngby, 2020.
Department of Energy & Climate Change, »Government Response to the House of Com-
mons Environmental Audit Committee Report: Carbon Capture and Storage (CCS),« Crown
Copyright, 2009.
Det Norske Veritas, »Design and operation of CO2 pipelines,« 2010.
E. Gjernes, L. I. Helgesen og Y. Maree, »Health and environmental impact of amine ba-
sed post combustion
CO₂
capture,« Energy Procedia, årg. 37, pp. 735-742, 2013.
ECHA (europa.eu), »Information om kemikalier - ECHA (europa.eu).,« 2021. [On-
line]. Available: https://echa.europa.eu/da/information-on-chemicals.
EIGA, »MINIMUM SPECIFICATIONS FOR FOOD GAS APPLICATIONS, Doc 126/20,«
EUROPEAN INDUSTRIAL GASES ASSOCIATION, 2020.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0254.png
98
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Energistyrelsen og Energinet, »Technology data - Energy transport,« 2017.
Energistyrelsen og Energinet, »Technology Data - Industrial process heat,« 2020.
Energistyrelsen, »Guidelines for drilling, esploration,« 1988,2009.
Energistyrelsen, »Leverance 5.1: Miljø- og sikkerhedsaspekter i CCS-kæden,« København
V, 2021.
Energistyrelsen, »Standard vilkår for forundersøgelser til havs,« 2017.
Energistyrelsen, »Technology Data - Energy transport,« 2020.
Equinor , »EL001 Northern Lights: Plan for utbygging, anlegg og drift - Del
II: Konsekvensutredning - Oppsummering av høringsuttalelser og tilsvar til
disse,« Equinor ASA, Stavanger, 2020.
Equinor, »EL001 Northern Lights - Mottak og permanent lagring af CO2. Plan for utbygg-
ning, anlegg og drift. Del II - Konsekvensutredning.,« Oktober 2019.
Equinor, »Miljørisiko for EL001, Northern Lights, mottak og permanent lagring av CO2,«
DNV GL AS Region Norway, 2019.
Equinor, »Northern Lights FEED Report,« Equinor, 2020.
Erhvervsministeriet, »Cirkulære om naturgaslager ved Stenlille,« Erhvervsministeriet
, 1991.
Erhvervsministeriet, Cirkulære om naturgaslager ved Stenlille (Til Vestsjællands Amtskom-
mune og Stenlille Kommune), 1991.
EU, »Directive 2009/31/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, of
23 April 2009 on the geological storage of carbon dioxide and amending Council Directive
85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC,
2004/35/EC, 2006,« 2009. [Online].
Europakommissionen og Det Europæiske Råd, »BILAG: Statusrapport om klimaindsatsen,
herunder rapporten vedrørende situationen på kvotemarkedet og rapporten vedrørende
ændring af direktiv 2009/31/EF om geologisk lagring af kuldioxid,« Den Europæiske Uni-
ons Tidende, Årg. %1 af %2COM(2015) 576 final - Annex 2, pp. 1-8, 18 November 2015.
European Environment Agency, »Air pollution impacts from carbon cap-
ture and storage (CCS),« 2011.
F. H. Hedlund, »Past explosive outbursts of entrapped carbon dioxide in salt mines provide
a new perspective on the hazards of carbon dioxide,« Intelligent Systems and Deci-
sion Making for Risk Analysis and Crisis Response, 2013.
F. H. Hedlund, »The extreme carbon dioxide outburst at the Menzengraben potash mine
7 July 1953,« Elsevier, 2011.
F. Harding, »D14 Outline Environmental Impact Assessment,« Pale Blue Dot, 2018.
F. Schilling, G. Borm, H. Würdemann, F. Möller, M. Kühn og C. GROUP, »Status Report on
the First European on-shore CO2 Storage Site at Ketzin (Germany),« Elsevier, Energy Pro-
cedia, p. 7, 2009.
G. Dautzenberg og T. Bruhn, »Environmental impacts from CCS technologies,« Institute
for Advanced Sustainability Studies, Potsdam, 2013.
G. Peridas, »Permitting Carbon Capture and Storage Projects in California,« Lawrence Li-
vermore National Laboratory, 2021.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0255.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
99
Gassnova, »Developing longship - Key lessons learned,« 2020.
GESAMP, »High level review of a wide range of proposed marine geoengineering tech-
niques,« INTERNATIONAL MARITIME ORGANIZATION, London, 2019.
Global CCS Institute, »CCS Targeting Climate Change - Brief for Policymakers,« Glo-
bal Carbon Capture and Storage Institute Ltd, 2019.
Global CCS Institute, »Global CCS Institute facilities database,« 2021. [Online]. Available:
https://co2re.co/ClimateChange.
Global CCS Institute, »Global status of CCS 2020,« 2020. [Online]. Available:
https://www.globalccsinstitute.com/resources/global-status-report/. [Senest hentet eller
vist den August 2021].
Global CCS Institute, »Unlocking private finance to support CCS investments,« Global Car-
bon Capture and Storage Institute Ltd, 2021.
Gov, CA., »California Air Resources Abroad - CSS,« 2021. [Online]. Available:
https://ww2.arb.ca.gov/our-work/programs/carbon-capture-sequestration.
IEA, »20 Years of Carbon Capture and Storage - Accelerating Future Deployment,« Inter-
national Energy Agency & OECD, Paris, 2020.
IEAGHG, »Environmental impacts of amine emissions during post combustion capture -
Workshop 2010/11,« International Energy Agency Environmental Projects Ltd., Chelten-
ham, UK, 2010.
IEAGHG, »Evaluation of reclaimer sludge disposal from post combustion CO2 capture,«
2014.
IEAGHG, »The Process of Developing a Test Injection: Experience to Date and Best Prac-
tice,« International Energy Agency Environmental Projects Ltd., Cheltenham, UK, 2013.
IPCC, »IPCC Special Report on Carbon Dioxide Capture and Storage,« Cambridge Univer-
sity Press, 2005.
J. C. S. Long, »California's Energy Future: The View to 2050,« California Council on Sci-
ence and Technology, Sacramento, California, 2021.
J. L. Lewicky, J. Birkholzer og C.-f. Tsang, »Natural and industrial analogues for leakage of
CO₂ from
storage reservoirs: identification of features, events, and processes and les-
sons learned,« Ernest Orlando Lawrence Berkeley National Laboratory , 2006.
J. L. M. Gibbins, »BAT Review for New-Build and Retrofit Post-Combustion Carbon Dio-
xide Capture Using Amine-Based Technologies for Power and CHP Plants Fuelled by Gas
and Biomass as an Emerging Technology under the IED for the UK,,« 2021. [Online]. Avai-
lable: https://ukccsrc.ac.uk/best-available-technology-bat-information-for-ccs/. [Senest
hentet eller vist den august 2021].
J. M. Neff, »Fate and effects of water based drilling muds and cuttings in cold water en-
vironments.,« Review prepared for Shelle exploration an Production Company Houston Te-
xas, 2010.
K. Fujita, Y. Kato, S. Saito, H. Kitamura, D. Muraoka, M. Udatsu, Y. Handa og K. Suzuki,
»The effect of aerosol characteristics in coal- and biomass-fired flue gas on amine emissi-
ons,« 14th International Conference on Greenhouse Gas Control Technologies, GHGT-14,
pp. 1-10, 2018.
K. M. Novak, N. Gaurina- Medimurec og L. Hrncevic, »Significance of enhanced oil reco-
very in CO2 emission reduction,« Sustainability, årg. 13, 2021.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0256.png
100
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
K. Wallmann, M. Haeckel, P. Linke, L. Haffert og M. Schmidt, »Best Practice Guidance
for Environmental Risk Assessment for offshore CO2 geological storage,« EU: ECO2 - Sub-
seabed CO2 Storage: Impact on Marine Ecosystems, 2015.
KEFM, »Principaftale mellem regeringen (Socialdemokratiet), Venstre, Dansk Folkeparti,
Radikale Venstre, Socialistisk Folkeparti, Enhedslisten, Det Konservative Folkeparti, Liberal
Alliance og Alternativet om En køreplan for lagring af CO2,« Juni 2021 2021. [On-
line]. Availa-
ble:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKE
wiQ3-Pky_HyAhWIz4sKHWjmD5sQFnoECAYQAQ&url=https%3A%2F%2Fkefm.dk%2FMe-
dia%2F637606718216961589%2FPrincipaftale%2520om%2520CO2-
lagring.pdf&usg=AOvVaw1y6rm60I85JFg7tfo1qR0P
. [Senest hentet eller vist den Septem-
ber 2021].
Klima-, Energi- og Forsyningsministeriet, »Bilag 4 - Udenlandske erfaringer,« København,
2020.
L. A. Kyhn, S. Wegeberg, D. Boertmann, P. Aastrup, J. Nymand og A. Mosbech, »On-
shore Seismic Surveys in Greenland,« Aarhus University, DCE
Danish Centre for Environ-
ment and Energy, 2020.
L. Eilertsen, »Northern Lights. Konsekvensvurdering med hensyn på naturmiljø og biolo-
gisk mangfold på land,« Rådgivende Biologer AS, 2018.
L. I. Helgesen og E. Gjernes, »A way of qualifying Amine Based Capture Technologies
with respect to Health and Environmental Properties,« Elsevier, Energy Procedia, p. 13,
2016.
Loria, Patricia and Bright, Matthew B.H, Lessons Captured from 50 years of CCS projects,
The Electricity Journal 34 (2021)
M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, P. S. Fenell, S. Fuss,
A. Galindo, L. A. Hackett, J. P. Hallett, H. J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.
C. Maitland, M. Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M. Reiner, E.
S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P. Webley, J. Wilcox og N. M. Do-
well, »Carbon capture and storage (CCS): the way forward,« Energy and Environmen-
tal Science, årg. 11, pp. 1062-1176, 2018.
M. Hjorth, L. D. Kristensen, C. J. Murray, J. H. Andersen, S. Brooks og K. Sørensen, »Ef-
fects of oil and gas production on marine ecosystems and fish stocks in the Danish North
Sea,« WSP Denmark, NIVA, Teknologisk Institut, 2021.
M. Myersa, C. White, B. Pejcic, A. Feitz, J. Roberts, Y.-Y. Oh, L. Xu, L. Ricard, K. Michael,
A. Avijegon, P. K. Rachakonda, M. Woltering, A. Larcher, L. Stalker og A. Hortle, »CSIRO
In-Situ Lab: A multi-pronged approach to surface gas and groundwater monitoring at geo-
logical CO2 storage sites,« Elseiver, Chemical Geology, p. 18, 2020.
M. N. Toftegaard, »OxyFuel combustion of coal and biomass,« 2011.
M. Roskilde, »Revurdering af miljøgodkendelser Stenlille gaslager,« Miljøministeriet, 2009.
Maersk Drilling, »MaerskDrilling,« [Online]. Available: https://www.maerskdrilling.com.
MAERSK OIL DBU, »Redegørelse for miljømæssige og sociale virkninger - ESIS-Tyra,«
Rambøll, 2017.
Ministry of Petroleum and Energy, »Feasibility study for full-scale CCS in Nor-
way,« Gassnova & Gassco, 2016.
NIPH, »Health effects of amines and derivatives associated with
CO₂
capture: Nitrosamines and nitramines,« 2011. [Online]. Available:
https://www.fhi.no/publ/2011/health-effects-of-amines-and-deriva/.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0257.png
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
101
P. Deda, M. Elbertzhagen og M. Klussmann, »Light Pollution and the Impacts on Biodiver-
sity, Species and their Habitats,« Everglades, nr. Secretariat of the Convention on
the Conservation of Migratory Species of Wild Animals (UNEP-CMS), pp. 133-138, 2007.
P. Harper, »Assessment of the major hazard potential of carbon dioxide (CO2),« Health
and Safety Executive, 2011.
P. J. Rew, P. Gallagher og D. M. Deaves, »Dispersion of subsea releases, review of predic-
tion methodologies,« HSE BOOKS, HSE Executive- offshore technology report, 1995.
Project Greensand, »Project Greensand,« [Online]. Availa-
ble:
https://statics.teams.cdn.office.net/evergreen-assets/safelinks/1/atp-safelinks.html
.
PTRC, »Aquistore: Leading the World in Deep Saline CO2 Geological Storage,« 2021. [On-
line]. Available:
https://ptrc.ca/projects/co2-eor-and-storage/aquistore
.
Rambøll, »CO2 fangst på danske affaldsenergianlæg,« København, 2020.
Rambøll, »LL. Torup Gaslager - Vedligeholdelsesprojekt,« 2016.
S. Benson og P. Cook, »Underground geological storage,« i Special Report on Carbon dio-
xide Capture and Storage, 2018, pp. 195-276.
S. E. Greenberg, »Illinois Basin Decatur Project,« 2015.
S. Flude. [Online]. Available: https://theconversation.com/carbon-capture-and-storage-
has-stalled-needlessly-three-reasons-why-fears-of-co-leakage-are-overblown-130747.
S. Gant, M. Pursell, A. McGillivray, J. Wilday, M. Wardman og A. Newton, »Overview
of carbon capture and storage (CCS) projects at
HSE’s
Buxton Laboratory,« Health and Sa-
fety Executive, 2017.
Scottish Carbon Capture & Storage (SCCS), »Global CCS Map,« [Online]. Available:
https://www.sccs.org.uk/expertise/global-ccs-map.
Scottish Environment Protection Agency, »Review of amine emissions from carbon cap-
ture (version 2.01),« Natural Scotland - Scottish Government, 2015.
Søfartsstyrelsen, »Danmarks havplan,« 2021. [Online]. Availa-
ble:
https://havplan.dk/da/page/info
. [Senest hentet eller vist den 23 august 2021].
Søfartsstyrelsen, »Miljøvurdering af Danmarks Havplan,« COWI, 2021.
T. Bakke, J. Klungsøyr og S. Sanni, »Environmental impacts of produced water and dril-
ling waste discharges from the Norwegian offshore petroleum industry,« Marine Environ-
mental Research, årg. 92, pp. 154-169, 2013.
T. Dahl-Jensen, R. Jakobsen, T. B. Bech, C. M. Nielsen, C. N. Albers, P. H. Voss og T. B.
Larsen, »Monitoring for seismological and geochemical groundwater effects of high-vo-
lume pumping of natural gas at the Stenlille underground gas storage facility, Denmark,«
GEUS Bulletin, p. 8, 2021.
T. Lecomte, J. F. F. d. l. Fuente, F. Neuwahl, M. Canova, A. Pinasseau, I. Jankov, T. Brink-
mann, S. Roudier og L. D. Sancho, »Best Available Techniques (BAT) Reference Document
for Large Combustion Plants,« 2017.
T. Nguyen, M. Hilliard og G. Rochelle, »Volatility of aqueous amines
in CO₂
capture,«
Energy Procedia, årg. 4, pp. 1624-1630, 2011.
The Danish Hydrocarbon Research and Technology Centre, »CO2 storage in Danish Oil &
Gas fields,« DTU, Kongens Lyngby, 2020.
Total, »Carbon capture and storage, The Lacq pilot - results and outlook,« 2013.
https://cowi.sharepoint.com/sites/A231499-project/Shared Documents/60-WorkInProgress/10-Documents/Rapport om CCS Erfaringer med sikkerhed natur og miljø final01.docx
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0258.png
102
CCS ERFARINGER - SIKKERHED, NATUR OG MILJØ
Total, »Carbon capture and storage, the Lacq pilot, project and injection period 2006-
2013,« 2014.
UK Environmental Agency, »Guidance, Post-combustion carbon dioxide capture: best avai-
lable techniques (BAT),« july 2021. [Online]. Availa-
ble:
https://www.gov.uk/guidance/post-combustion-carbon-dioxide-capture-best-
available-techniques-bat#who-this-guidance-is-for
. [Senest hentet eller vist den August
2021].
US National Energy Technology Laboratory; Overview of potential failure modes and ef-
fects associated
with CO₂
injection and storage operations in saline formations; december
2020, DOE/NETL-2020/2634
US National Energy Technology Laboratory; Best practices manu-
als;
https://www.netl.doe.gov/coal/carbon-storage/strategic-program-support/best-
practices-manuals
US Office of Fossil Energy and Carbon Management, »Report of the Interagency task force
on Carbon Capture and Storage,« 2010.
W. Leiss og D. Krewski, »Environmental scan and issue awareness: risk management chal-
lenges for CCS,« Int. J. Risk Assessment and Management, pp. 234-253, 2019.
ZEP, »CO2 Storage Safety in the North Sea: Implications of the CO2 Storage Directive -
TWG Collaboration across the CCS Chain,« European Zero Emission Technology and Inno-
vation Platform, 2019.
ZEP, »Future CCS Technologies,« European Zero Emission Technology and Innovation
Platform, 2017.
CCS-Erfaringer sikkerhed, natur og miljø
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0259.png
Kontor/afdeling
Center for Systemanalyse
Punktkilder til CO
2
– potentialer for CCS og CCU
Dato
15-06-2021
Hovedkonklusioner
I 2040 vurderes potentialet for CO
2
-fangst fra punktkilder, under stor
usikkerhed, at udgøre ca. 4,5-9 mio. ton CO
2
, hvoraf ca. 3,5-6 mio. ton
stammer fra biogene kilder. Dertil kommer et potentielt meget stort
potentiale for CO
2
-fangst fra atmosfæren (DAC).
Hovedparten af potentialet (op mod ca. 6,5 mio. ton CO
2
) i 2040 stammer
fra punktkilder koncentreret i 5 klynger omkring København, Aarhus,
Aalborg og i Sydjylland.
Der kan forventes at være et betydeligt potentiale for fangst af CO
2
fra
punktkilder i Danmark frem mod 2030 og 2040. Potentialet er følsomt over
for en række faktorer, herunder særligt størrelsen på den enkelte
punktkilde og fremtiden for de biomassefyrede anlæg i el- og
fjernvarmesektoren.
Teknologi til opsamling af CO
2
fra mindre punktkilder under 100.000 ton
CO
2
per år kan blive afgørende for realisering af potentialet.
Størstedelen af potentialet (ca. 6-8 mio. ton) vurderes at være forbundet
med omkostninger til fangst (heri ikke indregnet omkostninger til transport,
mellemlagring og lagring) under 800-1.000 kr./ton.
Behov for yderligere viden og teknologiudvikling
Potentialet er følsomt over for størrelsen af de medregnede punktkilder,
herunder økonomien i opsamling af CO
2
fra kilder under 100.000 ton per
år. Disse kilder vurderes at ville kunne anvende standardiseret
fangstteknologi, som er under anvendelse på biogasopgraderingsanlæg i
dag. Der kan med fordel iværksættes undersøgelser i mulighederne for
opsamling fra anlæg i denne størrelsesorden.
Potentialet for punktkilder er af begrænset størrelse, sammenlignet med
størrelsen af udledninger i andre sektorer. Der kan være behov for at øge
Energistyrelsen
Carsten Niebuhrs Gade 43
1577 København V
T: +45 3392 6700
E: [email protected]
www.ens.dk
Side 1/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0260.png
mængden af biogens kulstof fx gennem fremme af udviklingen af teknologi
til opsamling af CO
2
fra atmosfæren.
Side 2/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0261.png
Analysen
INDHOLD
Leverance 1.1 Punktkilder til CO
2
– potentialer for CCS og CCU ............................. 1
Hovedkonklusioner .................................................................................................... 1
Analysen .................................................................................................................... 3
INDHOLD ................................................................................................................... 3
Indledning .................................................................................................................. 4
Formål med analysen ............................................................................................ 5
Opsamling af CO
2
fra punktkilder .......................................................................... 5
Metode ....................................................................................................................... 6
Afgrænsning af potentialet ..................................................................................... 7
Relevante størrelser af punktkilder for opsamling ..................................................... 7
Opgørelse af punktkilder i Danmark ........................................................................ 10
Perspektivering til andre punktkildeopgørelser .................................................... 12
Sektorspecifikke overvejelser .................................................................................. 15
Industri ................................................................................................................. 15
Affaldsforbrænding ............................................................................................... 18
El- og fjernvarmeproduktion ................................................................................. 20
Anlæg til opgradering af biogas ........................................................................... 25
Opgørelse af potentialet efter omkostninger ........................................................... 27
Geografisk fordeling af punktkilder .......................................................................... 28
Bilag 1 – Metode ...................................................................................................... 40
Afgrænsning af potentialet ................................................................................... 41
Omkostninger til CO
2
-fangst ................................................................................ 41
Side 3/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0262.png
Indledning
Teknologierne CCS (fangst og lagring af CO
2
) og CCU (fangst og anvendelse af
CO
2
) afhænger begge af, at CO
2
opsamles, hvorefter det enten kan lagres
geologisk eller anvendes til produktion af brændstoffer eller kemikalier. I det
perspektiv kan CO
2
opfattes som en ressource, der er nødvendig, for at de givne
teknologier (CCU og CCS) kan levere de nødvendige ”klimatjenester”. I tilfælde af
CCU er tjenesten
fossilfrigørelse
gennem produktion af grønne ækvivalenter til
nuværende fossile forbrug af brændstoffer eller kemikalier. I tilfælde af CCS lagres
CO
2
’en geologisk i undergrunden. Hvis kulstoffet stammer fra fossile brændsler
eller lign., er CCS-tjenesten
nulemission.
Er der derimod tale om klimaneutral,
biogen CO
2
, eller CO
2
der stammer fra luften, er tjenesten
negative emissioner.
Dette illustreres i Figur 1 nedenfor. I denne sammenhæng er udledninger fra
kemiske processer i industrien (altså ikke fra anvendelsen af brændsler) at regne
for fossile, såfremt de kommer fra raffinaderiproduktion, mineralogiske processer
eller lign. som fx cementproduktion, hvorimod udledninger fra biologiske processer i
industrien som fx gæring er at regne for biogene.
Figur 1 - Principper for CO
2
-udledninger i forskellige anvendelser
1 ton
1 ton
1 ton
1 ton
1 ton
Fossile brændsler:
Ved anvendelse af fossile
brændsler udledes CO
2
til atmosfæren.
Klimaneutral biomasse:
Ved anvendelse af klimaneutral
biomasse, udledes i princippet samme mængde CO
2
, som
biomassen har opsamlet
1 ton
1 ton
1 ton
CCS:
Ved deponering af fossile udledninger udledes
næsten ingen CO
2
. Udledningerne reduceres.
1 ton
1 ton
1 ton
1 ton
BECCS:
Ved deponering af CO
2
fra klimaneutral biomasse
trækkes CO
2
i princippet ud af atmosfæren.
1 ton
1 ton
1 ton
1 ton
1 ton
CCU:
Ved anvendelse af CO
2
fra fossile brændsler
til produktion af brændstof, som erstatter fossilt
brændstof, udledes stadig CO
2
. Dog mindre end
ved anvendelse af fossilt brændstof – brændstoffet
er ikke CO
2
-neutralt.
BECCU:
Ved anvendelse af CO
2
fra klimaneutral biomasse
til produktion af brændstof, som erstatter fossilt brændstof,
udledes i princippet kun den mængde CO
2
, biomassen har
opsamlet. – brændstoffet er CO
2
-neutralt.
Potentialet for anvendelse af teknologierne afhænger derfor bl.a. af den mængde
CO
2
, der er til rådighed, og som det er teknisk muligt og økonomisk
hensigtsmæssigt at opsamle.
Side 4/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0263.png
Formål med analysen
Formålet med nærværende analyse er at opgøre de forventede udledninger fra
punktkilder samt hvilken andel af dette potentiale, der vurderes at være tilgængeligt
for opsamling og efterfølgende lagring eller anvendelse i 2025, 2030 og 2040.
Frem mod 2030 og 2040, forventes der at være CO
2
til rådighed for fangst fra
anlæg, som allerede eksisterer i dag og fra nyetableringer, som endnu ikke er
kendte. Denne analyse beskæftiger sig med kendte anlæg samt reinvesteringer og
nyetablerede anlæg i affaldsforbrændingssektoren, el- og fjernvarmesektoren og
for biogasopgraderingsanlæg. Der er således ikke taget stilling til muligheden for
etablering af nye store industrianlæg, kraftvarmeværker eller lign.
Opsamling af CO
2
fra punktkilder
Den bedst kendte teknologi til CO
2
-fangst er aminbaseret røggasrensning, som
ifølge Energistyrelsens teknologikatalog kan opsamle op mod 90-95 pct. af CO
2
i
røggassen
1
. Med denne teknologi ledes røggassen fra fx et kraftvarmeværk
gennem en reaktor hvor CO
2
”vaskes” ud af røggassen med en vandig amin-
opløsning. Den nu CO
2
-holdige væskestrøm varmes op i en anden reaktor, hvorved
CO
2
frigives og kan renses og komprimeres, før den transporteres til deponering
eller anvendelse. Denne type anlæg er komplicerede proceskemiske anlæg, som
vurderes typisk at være underlagt skalaøkonomi (enhedsomkostningerne falder, jo
større anlæg der kan etableres), ligesom den efterfølgende transport og lagring er.
Dette giver et naturligt fokus på store punktkilder til CO
2
. Det vurderes fx ikke at
være rentabelt, at etablere CO
2
-opsamling på fx gasfyr, lastbiler eller tilsvarende
meget små, spredte kilder.
Store CO
2
-punktkilder kan fx være fossile eller biomassefyrede kraftvarmeværker,
affaldsforbrænding eller industrianlæg, der enten anvender brændsler til deres
processer, eller hvor processen i sig selv udleder CO
2
(eksempelvis
cementindustri). Der kan også være tale om mindre kilder som fjernvarmeværker,
mindre industrianlæg, off-shore anlæg eller anlæg til opgradering af biogas, hvor
CO
2
’en allerede i dag separeres fra biogassen og udledes til atmosfæren, inden
biogassen kan fødes ind i naturgasnettet. De ovennævnte typer af anlæg fordeler
sig på fem sektorer, som det fremgår nedenfor.
Ifølge Energistyrelsens seneste
Klimastatus og -fremskrivning 2021
(KF21)
forventes der i 2025 at være i alt ca. 21,5 mio. ton CO
2
-udledninger pr. år fra de
pågældende sektorer, faldende til ca. 17,5 mio. ton i 2030. Herefter vurderes
udledningerne af falde yderligere til ca. 16 mio. ton i 2040.
2
Disse tal inkluderer
biogene udledninger, som ikke tælles med i det nationale CO
2
-regnskab ift.
opfyldelse af 70-pct. målsætningen. Biogene kilder er dog relevante i forbindelse
1
Energistyrelsens teknologikatalog for procesvarme og carbon capture,
https://ens.dk/service/fremskrivninger-analyser-modeller/teknologikataloger/teknologikatalog-
procesvarme-og-carbon
2
Fremskrivningsmetoden beskrives nærmere i afsnittet ”Metode” og i Bilag 1.
Side 5/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0264.png
med både deponering og anvendelse af CO
2
som beskrevet ovenfor, og de
opgøres derfor også i dette notat. Den langsigtede udvikling for alle punktkildernes
CO
2
-udledninger er dog behæftet med betydelig usikkerhed.
Samlede udledninger fra punktkilder
Årlige CO
2
-udledninger, mio. ton per år
25
20
15
10
5
0
2025
Affaldsforbrænding
Industri
Off-shore
Biogen
2030
El og fjernvarme
Biogasopgradering
Fossil
2040
Figur 2 CO
2
-udledninger inkl. fossile udledninger, biogene udledninger og procesudledninger
fra sektorer med punktkilder i Danmark. Affaldsforbrænding, el- og fjernvarmeproduktion
samt industri indeholder både fossile og biogene udledninger. Industrisektoren indeholder
tillige procesudledninger. Tallene kan ikke sammenlignes med opgørelser af udledninger i
KF21, jf. Bilag 1, eller opgørelser af de nationale udledninger eller mankoen ift.
målopfyldelse i 2030, da biogene udledninger ikke indgår i opgørelsen ift. 70 pct.-målet.
Kilde: Energistyrelsen
Metode
Opgørelserne i dette notat tager udgangspunkt i Energistyrelsens Klimastatus og –
Fremskrivning 2021 (herefter KF21), som indeholder en
frozen policy-fremskrivning
af udviklingen i det danske energisystem frem til 2030 – det som tidligere var kendt
som Energistyrelsens basisfremskrivning. Sektorerne affaldsforbrænding, el- og
fjernvarmeproduktion samt off-shore fremskrives direkte i KF21, mens industri og
biogasopgradering er fremskrevet på baggrund af aggregerede forløb fra KF21.
Perioden mellem 2030 og 2040 indgår ikke i KF, men er i stedet vurderet ud fra
tendenserne i KF21 og fremskrevet frem til 2040. Dette beskrives nærmere i
Bilag
1 – Metode.
Opgørelsen tager udgangspunkt i udledninger fra alle kendte punktkilder i de
pågældende sektorer, og er aggregeret efter sektorer på en anden måde end i
KF21. Hertil kommer, at rene kondensværker (elproduktion uden samtidig
Side 6/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0265.png
varmeproduktion) ikke er medtaget i denne opgørelse, da disse anlæg kun har få
årlige driftstimer og derfor ikke er relevante for CO
2
-fangst.
Afgrænsning af potentialet
Fra fremskrivningen beskrevet ovenfor opnås de samlede udledninger for de
forskellige sektorer i 2025, 2030 og 2040. Ikke alle disse udledninger vil kunne
opsamles i praksis. Derfor afgrænses potentialet på følgende måde:
Først og fremmest kan typiske aminanlæg til CO
2
-fangst i dag maksimalt opsamle
omkring 90 pct. af CO
2
-indholdet i røggas. Derfor nedskrives potentialerne for alle
sektorer på nær biogasopgradering
3
med 10 pct. Herefter baseres det øvre skøn
for fangstpotentialet ift. punktkildernes størrelse for hver sektor, og det nedre skøn
beror på en følsomhedsvurdering for de enkelte sektorer. Dette beskrives løbende i
resten af notatet.
Off-shore medregnes ikke
Offshore-sektoren dækker over olie- og gasudvinding i Nordsøen, og sektoren
tegner sig samlet set for godt 1 mio. ton i 2025. Emissionerne stammer fra en
række mindre kilder, som umiddelbart vurderes vanskelige og omkostningstunge at
indsamle, samt anvende/deponere. Det kan dog ikke afvises, at udledningerne fra
sektoren vil kunne opsamles og deponeres i undergrunden under Nordsøen.
Omvendt, vurderes hovedparten af udledningerne at stamme fra energiproduktion,
som har et vist elektrificeringspotentiale. Dette analyseres i den igangværende
elektrificeringsanalyse jf. Nordsøaftalen fra december 2020. Endelig vurderes olie-
og gasaktiviteterne at blive udfaset frem mod 2050. Det er derfor uafklaret hvorvidt
CO
2
udledninger fra offshore-sektoren vil være egnede til indfangning af CO
2
, og
sektorens udledninger er derfor ikke behandlet nærmere i denne analyse.
Relevante størrelser af punktkilder for opsamling
Energistyrelsens teknologikatalog viser, at der må forventes at være en vis
storskalafordel forbundet med CCS-anlæg
4
. Dette gælder både selve anlægget til
fangst og efterbehandling af CO
2
men også for transport og mellemlagring. Dermed
må det – alt andet lige – forventes at være billigere at opsamle, transportere og
lagre et ton CO
2
fra én stor punktkilde placeret tæt på andre punktkilder og tæt på
lageret end fra mange små kilder placeret langt fra hinanden.
Dette giver et naturligt fokus på store punktkilder og punktkilder i klynger tæt på
havne som oplagte kandidater til tidlige indsatser. Samtidig vurderes det for
3
Udledningerne fra biogasanlæg er allerede separeret fra røggassen og kan anvendes efter rensning
og tryksætning. De opgjorte udledninger skal derfor ikke gennem et nyt aminanlæg først og mister derfor
ikke de 10 pct.
4
Kilde: Energistyrelsens teknologikatalog for procesvarme og carbon capture,
https://ens.dk/service/fremskrivninger-analyser-modeller/teknologikataloger/teknologikatalog-
procesvarme-og-carbon.
Side 7/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0266.png
nuværende, at der er CO
2
-kilder, som er for små til, at det kan betale sig at
opsamle CO
2
fra dem.
Boks 1 Opgradering af biogas – eksisterende CO
2
-fangst
Der eksisterer i dag mere end 50 anlæg, der fanger CO
2
i forbindelse med opgradering af
biogas i Danmark. I disse processer separeres CO
2
-indholdet (ca. 30-40 pct.) i den rå
biogas og udledes til atmosfæren, inden den opgraderede (CO
2
-fri) biogas indfødes i
naturgasnettet. Disse anlæg findes i drift i størrelser mellem 1.000 og 50.000 ton CO
2
per
år. Disse anlæg vil kunne blive opfattet som værende for små til, at det kan betale sig at
etablere fangstanlæg til at opsamle CO
2
’en. Punktkildeopgørelsen i regeringens
Klimaprogram 2020
arbejder med en minimumsstørrelse for punktkilder i affaldssektoren,
fjernvarmesektoren og industrien på 50.000 ton per år. Da CO
2
’en allerede separeres fra
biogassen, vurderes disse anlæg alligevel at være relevante som punktkilder til CO
2
. Da
CO
2
’en fra biogasanlæg ikke er behæftet med bæredygtighedsproblematikker i samme
omfang som andre biogene kilder, vurderes CO
2
’en fra biogasanlæg desuden at kunne
have en merværdi ift. CCU.
Separering af CO
2
i forbindelse med opgradering af biogas, jf. boks 1 foregår i mindre
modulære anlæg i modsætning til de store specialbyggede anlæg, der kan anvendes på
fx centrale kraftvarmeværker. Det vurderes, at masseproduktion og standardisering af
denne type mindre CO
2
-separeringsanlæg potentielt muliggør, at anlægsomkostningerne
for denne type anlæg kan være lavere end for store anlæg. Der er indikationer på, at
dette kan medføre lavere fangstomkostninger for små anlæg, og der er eksempler på bl.a.
affaldsforbrændingsanlæg, der er i gang med at etablere CO
2
-fangst svarende til ca.
50.000 ton per år baseret på teknologien fra biogasopgradering.
De ovenstående overvejelser kunne tale for at anvende en lavere grænse for
punktkilder i forbindelse med potentialeopgørelsen. I tillæg til størrelsen (CO
2
-
udledning per år), spiller en række andre faktorer dog ind på økonomien i fangst af
CO
2
:
Størrelse af punktkilden (ton per år)
Transportafstand til mellemlager og udskibning/lagring/anvendelse
Afstand til andre punktkilder/placering i klynger
Etableringsomkostninger (CAPEX) og dermed også den forventede
forrentning (WACC)
Årlig driftstid for anlægget (antal fuldlasttimer), som definerer CAPEX andel
af omkostningen per opsamlet ton CO
2
Placering ift. et fjernvarmenet af en vis størrelse, der muliggør udnyttelse af
overskudsvarme fra fangstprocessen, hvilket kan give et bidrag til
økonomien.
Side 8/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0267.png
Der er ikke udarbejdet en konkret analyse af samspillet af disse faktorer for de
hundredevis af mindre punktkilder i Danmark, da dette i en vis udstrækning vil
kræve individuelle konkrete vurderinger. I Figur 3 vises dog en opgørelse af
potentialet i 2040 baseret på forskellige afskæringer i størrelse.
Udledninger i 2040 efter størrelse af kilden
Årlige CO
2
-udledninger, mio. ton per år
14
12
10
8
6
4
2
0
alle
min. 25.000
min. 50.000
ton CO
2
per år
El og fjernvarme
Industri
min. 100.000
Affaldsforbrænding
Biogasopgradering
Figur 3 Opgørelse af udledninger i 2040 afhængig af størrelsen på kilderne, der indgår.
Fremtidige biogasopgraderingsanlæg er antaget at have størrelser over 50.000 ton per år.
Figuren viser, at det samlede potentiale i vid udstrækning afhænger af, hvor små
punktkilder, der medregnes. Opgørelsen viser yderligere en række karakteristika
ved store og små punktkilder og afhængighed af forskellige sektorer.
De største punktkilder ligger generelt i byer ved vandet
De største punktkilder i landet findes i affaldssektoren, industrien og de store
kraftvarmeværker. Heraf ligger stort set alle de største punktkilder i eller tæt ved de
fem største byer i landet, som alle er havnebyer. Undtagelser herfor er tre af de ti
største affaldsforbrændingsanlæg i 2025 (Maabjergværket i Holstebro,
Vestforbrænding i Glostrup og ARGO i Roskilde) og to af de ti største udledere i el-
og fjernvarmesektoren (Herningværket og Randers Kraftvarmeværk). Dermed
ligger hovedparten af de store udledere og dermed hovedparten af potentialet i
klynger omkring de store byer, hvor koncentrationen af store kilder forventes at
kunne bidrage positivt til økonomien i transport, mellemlagring samt
deponi/anvendelse. Dette taler for at basere opgørelsen primært på de største
punktkilder. Små og mellemstore udledere kan dog blive særligt interessante, hvis
de ligger tæt på større klynger eller kan organiseres i egne klynger, eller hvis de
ligger i nærheden af anden industri eller lign., som kan tænkes at anvende
opsamlet CO
2
. Den geografiske fordeling af punktkilderne behandles nærmere i
slutningen af dette notat.
Side 9/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0268.png
Store punktkilder ligger i store fjernvarmenet
Placering i store fjernvarmenet muliggør potentielt udnyttelse af overskudsvarme
fra fangstprocessen. Der er behov for fjernvarmenet af en vis størrelse, for at sikre,
at disse fleksibelt kan aftage de relativt store mængder overskudsvarme, der
potentielt kan være til rådighed fra fangstanlæggene. Dette vil være størst til fordel
for store punktkilder nær store byer sammenlignet med mindre punktkilder, da de
store kilder alt andet lige vurderes at ville have nemmere ved at afsætte
overskudsvarmen og herved opnår et positivt bidrag til økonomien i projektet.
Industrien har typisk højere forrentningskrav end forsyningssektoren
CO
2
-fangst er forbundet med store initialomkostninger til ombygning og etablering
af nye anlæg, og de aktører, der skal etablere anlæggene, må forventes at have
visse forrentningskrav til investeringerne. Disse krav kan forventes at være højere
end de relevante sektorers normale forrentningskrav (WACC), da der i nogen grad
er tale om ny teknologi og nye markeder, hvilket øger investeringernes risici. De
fleste industrivirksomheder arbejder desuden med interne forrentningskrav, som er
markant højere end de kendes fra fx forsyningssektorerne. Dette kan potentielt
betyde, at særligt industrisektoren kan finde investeringer i CO
2
-opsamling
uinteressante, også set i relation til, at energi og miljø sjældent er en del af
virksomhedens hovedforretning. Dette taler for, at anlægge en højere
minimumsgrænse for industrisektoren i forbindelse med opgørelsen.
Opsamling
Baseret på ovenstående, vurderes punktkilder over 50.000 ton CO
2
/år i industrien,
affaldsforbrænding samt el- og fjernvarmesektoren relevante for opsamling i tillæg
til alle biogasopgraderingsanlæg, at være relevante for opsamling og efterfølgende
anvendelse eller deponering. Dette uddybes yderligere i beskrivelserne for de
enkelte sektorer nedenfor.
Opgørelse af punktkilder i Danmark
I det følgende redegøres for CO
2
punktkilder i Danmark, herunder mængden af
CO
2
-udledning frem mod 2025, 2030 og 2040, typer af punktkilder mv. for de fire
sektorer affaldsforbrænding, industri, el og fjernvarme samt biogasopgradering.
Der er forskel på punktkilderne i de fire sektorer, både i forhold til CO
2
-
koncentration i røggassen, antallet af årlige driftstimer, økonomiske forhold og
regulering omkring de pågældende aktører, placering og i forhold til usikkerheden
om, hvorvidt kilderne er tilgængelige og velegnede til indfangning af CO
2
i
fremtiden. Baseret herpå vurderes det, at indfangningspotentialet fra punktkilder i
2040 er ca. 4,5-9 mio. ton pr. år. Dette kunne fordele sig på sektorerne som angivet
nedenfor. Heraf forventes op til ca. 3 mio. ton at stamme fra fossile brændsler og
procesudledninger i industrien og en mindre mængde fossilt forbrændingsaffald,
mens op mod ca. 6 mio. ton forventes at stamme fra biogene kilder.
Side 10/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0269.png
Det estimeres, at nedenstående udledninger vil være teknisk tilgængelige til
indfangning i 2040 for de forskellige sektorer. Vurderingerne, der ligger til grund for
de enkelte potentialeskøn gennemgås efterfølgende.
Affaldsforbrænding:
Ca. 1,5-2,5 mio. ton CO
2
pr. år fra anlæg over
50.000 ton per år. Heraf vurderes knap 1 mio. tons at kunne komme fra de
tre største affaldsværker i Storkøbenhavn.
El- og fjernvarmeproduktion:
Ca. 1-2 mio. tons CO
2
pr. år fra anlæg over
50.000 tons per år med driftstider over 2.500 fuldlasttimer per år, hvoraf det
største centrale biomassekraftvarmeværk, Amagerværkets Blok 4
forventes at udlede op mod 1 mio. tons alene.
Industri:
Ca. 1-3 mio. tons CO
2
pr. år, som for det høje skøn svarer til
udledningerne fra Aalborg Portland, såfremt de erstatter deres forbrug af
petrokoks med ledningsgas og fra raffinaderierne i Kalundborg og
Fredericia samt øvrige industrielle udledere over 50.000 ton per år.
Biogasopgradering:
ca. 0,7-1,3 mio. tons CO
2
pr. år, spredt over mange
(>50) mindre punktkilder. Biogasanlæggende medtages, da CO
2
allerede
separeres i processen til biogasopgradering.
Skønnede fangstpotentialer fordelt på sektorer
Årlige CO
2
-udledninger, mio. ton per år
12
10
8
6
4
2
0
Højt skøn Lavt skøn
Højt skøn Lavt skøn
Højt skøn Lavt skøn
2025
Affaldsforbrænding
2030
El og fjernvarme
Industri
2040
Biogasopgradering
Figur 4 Øvre og nedre skøn over opsamlingspotentialer fordelt på sektorer frem til 2040. Det
er behæftet med usikkerhed, hvorvidt punktkilderne vil være til stede i 2030 og 2040, samt
hvor meget driftstid – og dermed udledninger – de enkelte anlæg har på sigt.
Kilde: Energistyrelsen
Side 11/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0270.png
Perspektivering til andre punktkildeopgørelser
Figur 4 viser Energistyrelsens skøn for fangstpotentialerne i denne opgørelse.
Spændene i de enkelte år udgør samlet set ca. 4,5-10 mio. ton CO
2
per år i 2030
og ca. 4,5-9 mio. ton CO
2
per år i 2040. Tabel 1 viser en sammenligning med skøn
fra andre opgørelser.
Som det fremgår udgør nærværende opgørelse en mindre nedjustering ift.
potentialeopgørelsen i Klimaprogram 2020. Årsagen til dette skal findes i flere
modsatrettede udviklinger: Den mere indgående behandling af mindre punktkilder
samt den opjusterede prognose for biogasopgradering trækker opad, mens
sænkningen i forventede udledninger fra særligt affaldsforbrænding som følge af
Klimaplan for en grøn affaldssektor og cirkulær økonomi
og en mere indgående
behandling af biomassekraftvarme trækker nedad.
Tabel 1 Sammenligning af opgørelser af fangstpotentiale.
Opgørelse
Denne analyse
Klimaprogram 2020
Dansk Energi, 2021
DØRS, 2021
Potentialeskøn, mio. ton CO
2
per år
2030
2040
Total
Heraf
Total
Heraf
fossil
fossil
4,5 - 10
1–3
4,5 – 9
0,5 – 3
5 - 10
6,9
3,5 - 6,5
-
1,8
0,5 - 1
5 - 10
6,3
-
-
1,8
-
-
Klimarådet, 2020
4,5
-
7,5
a
Noter:
a
: Klimarådets opgørelse indeholder ikke et potentiale for 2040, men et samlet
langsigtet potentiale, her anført i kolonnen for 2040.
Potentialet ligger endvidere lidt højere end potentialeopgørelserne fra Dansk Energi
(DE), 2021
5
, De Økonomiske Råd (DØRS), 2021
6
og Klimarådet, 2020
7
jf. tabellen.
Opgørelserne fra DE og DØRS udgør økonomiske potentialer, der på baggrund af
en række antagelser identificerer en andel af de samlede udledninger som egnede
til opsamling, givet en bestemt betalingsvillighed. Begge opgørelser medregner kun
i begrænset omfang mulighederne for billig opsamling fra små punktkilder baseret
på modulær teknologi fra biogasopgradering, og opgørelsen fra DØRS medregner
ikke potentialerne for opsamling fra biogas. Opgørelsen fra Klimarådet er en
teknisk opgørelse baseret på økonomiske overvejelser, som kun medregner én
punktudleder fra el- og fjernvarmesektoren. Klimarådet angiver i øvrigt ikke et
5
Potentialet for CO2-fangst i Danmark til den grønne omstilling, Dansk Energi, 2021,
https://www.danskenergi.dk/udgivelser/potentialet-co2-fangst-danmark-til-groenne-omstilling
6
Økonomi og Miljø 2020, Kapitel I: Dansk klimapolitik frem mod 2030, Det Økonomiske Råds
Sekretariat,
https://dors.dk/vismandsrapporter/oekonomi-miljoe-2020
7
Kendte veje og nye spor til 70 procents reduktion, Klimarådet, 2020,
https://klimaraadet.dk/da/rapporter/kendte-veje-og-nye-spor-til-70-procents-reduktion
Side 12/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0271.png
potentiale i 2040, men opererer med et samlet potentiale (angivet i kolonnen for
2040 i tabellen), hvoraf en andel vurderes at kunne realiseres i 2030. Nærværende
opgørelse forholder sig ikke til, hvad der vil kunne realiseres inden 2030 eller 2040.
Sammenligningen peger også på de centrale usikkerheder i nærværende
opgørelse:
Særligt i el- og fjernvarmesektoren består en stor del af det opgjorte
potentiale af mindre og mellemstore kilder. De økonomiske perspektiver i
opsamling af CO
2
fra disse kilder vurderes at afhænge af, at teknologien fra
biogasanlæg kan udbredes til fjernvarmesektoren med lavere
omkostninger til følge.
En væsentlig udfordring ved de små punktkilder – givet at
opsamlingsteknologien er billig nok – er transportafstande. Her henledes
opmærksomheden på det samlede potentiale opgjort for de fem klynger i
slutningen af dette notat, som i 2040 vurderes at udgøre op mod 7 mio. ton
CO
2
per år. Omkring 75 pct. af det i denne analyse opgjorte potentiale
vurderes altså at have relativt korte transportafstande i områder med andre
store udledere, hvilket vurderes at kunne fremme økonomien i nedstrøms
dele af værdikæden.
Fremtiden for anvendelse af biomasse til energiformål, herunder særligt
kraftvarme- og varmeproduktion, har afgørende indflydelse på størrelsen af
fangstpotentialet. I denne opgørelse medtages anlæg med flere end 2.500
fuldlasttimer i det øvre skøn, hvilket giver et potentiale fra sektoren på knap
2 mio. ton. Hæves grænsen derimod til 3.500 fuldlasttimer, falder
potentialet til ca. 0,5 mio. ton, bl.a. i kraft af, at de ca. 1 mio. ton fra
Amagerværkets Blok 4 så ikke medregnes. Det øvre spænd for punktkilde-
opgørelsen er således særligt sårbar for udviklingen i el- og varmesektoren
i perioden 2030-2040, som ikke indgår i KF21.
Ovenstående taler dels for, at de nedre skøn for særligt el- og fjernvarmesektoren
og i nogen grad affaldssektoren tillægges størst vægt. Anvendelse af potentialer
over det nedre skøn kan således medføre risici for, at der bevares CO
2
-udledninger
fra punktkilder, med afsætning til CCUS, som alternativt ville være lukket eller
reduceret af sig selv.
Hertil peger overvejelserne på, at der er behov for en yderligere kvalificering af
omkostningerne ved opsamling af CO
2
fra de forskellige punktudledere, og særligt
på et behov for øget viden om opsamling af CO
2
fra mindre anlæg med anvendelse
af standardkomponenter kendt fra biogasopgradering.
Side 13/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0272.png
Fossil eller biogen CO
2
Som det fremgår af indledningen, indtager biogen CO
2
en særlig rolle, idet disse
kilder kan anvendes til produktion af CO
2
-neutrale brændstoffer (CCU) eller
negative emissioner til kompensation for udledninger i andre sektorer (BECCS).
Figur 5 viser fangstpotentialet i denne opgørelse fordelt på fossile, biogene og
procesudledninger, hvoraf de biogene vurderes at udgøre ca. 3,5-6 mio. ton i 2040.
Som nævnt i indledningen bør procesudledninger fra fx cementindustri og
raffinaderier medregnes som fossile udledninger. Til sammenligning vurderer
Dansk Energi, at potentialet for opsamling af biogen CO
2
i 2040 beløber sig til ca.
4,5 mio. ton. Forskellen mellem DE’s opgørelse og det høje skøn i nærværende
analyse stammer hovedsageligt fra affaldssektoren og fra industrien. Fsva.
affaldssektoren vurderes forskellen at stamme fra overvejelserne om størrelser af
punktkilderne, som beskrevet ovenfor, mens forskellen i industrien vurderes at
afvige pga. forskellige forudsætninger vedrørende omstilling til VE-gas (biogas og
andre grønne gasser som brint) i industrien.
Skønnede fangstpotentialer fordelt efter type af CO
2
Årlige CO
2
-udledninger, mio. ton per år
12
10
8
6
4
2
0
Højt skøn Lavt skøn
Højt skøn Lavt skøn
Højt skøn Lavt skøn
2025
Fossil
2030
Proces
Biogen
2040
Figur 5 Øvre skøn over opsamlingspotentialer fordelt på biogene, fossile og
procesudledninger frem mod 2040. Kilde: Energistyrelsen.
Der må forventes en betydelig efterspørgsel efter biogen CO
2
i fremtiden. Med en
simpel omregning af PtX-potentialet i Klimaprogram 2020, anslås et CO
2
-behov på
op mod ca. 1,5 mio. ton om året i 2030, mens Dansk Energi har opgjort
efterspørgslen alene til produktion af PtX-brændstoffer i transportsektoren til 1,8
mio. ton i 2030 og 4,4 mio. ton i 2040. Hertil kommer potentielle behov for grøn CO
2
til negative emissioner.
Det falder uden for formålet med dette notat at opgøre det samlede behov for grøn
CO
2
til negative emissioner og PtX-brændstoffer – særligt frem mod klimaneutralitet
Side 14/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0273.png
i 2050. Dansk Energi peger dog på, at der allerede i 2040 vil opstå mangel på grøn
CO
2
til dækning af disse behov, hvilket ikke umiddelbart afkræftes af nærværende
potentialeopgørelse. En mulig tilgang til denne ubalance kan være øget import af
biomasse. En anden kan være udvikling af teknologier til direkte opsamling af CO
2
fra atmosfæren, kaldet DAC (direct air capture), hvilket Klimarådet også peger på
8
.
Sektorspecifikke overvejelser
Forskellige karakteristika præger de fire sektorer mht. både CO
2
-koncentration i
røggassen, antallet af årlige driftstimer, økonomiske forhold og regulering omkring
de pågældende aktører, placering og i forhold til usikkerheden om, hvorvidt kilderne
er tilgængelige og velegnede til indfangning af CO
2
i 2040.
De forskellige sektorer og deres særlige karakteristika ift. CO
2
-fangst gennemgås
nedenfor, hvoraf det fremgår hvilken tilgang, der er valgt til afskæring ifht. størrelse
og vurdering af egnethed til CO
2
-opsamling.
Industri
Opgørelsen er baseret på de 30 største industrielle CO
2
-udledere i Danmark, som
forventes at have samlede udledninger på knap 4,5 mio. tons i 2025, heraf godt 3,5
mio. tons fra fossile udledninger og procesudledninger. Dette skønnes herefter at
være stort set uændret frem mod 2040.
Den danske industrisektor er præget af tre meget store udledere, og en lang række
mindre og meget små udledere, særligt inden for tegl, fødevarebranchen mv. Dette
illustreres i Figur 6, der viser de 30 største industrielle udledere. Efter de tre største
udledere, er der kun syv udledere med mere end 50.000 ton CO
2
om året og
herefter yderligere syv udledere med mere end 25.000 ton om året.
8
Kendte veje og nye spor til 70 procents reduktion, Klimarådet, 2020,
https://klimaraadet.dk/da/rapporter/kendte-veje-og-nye-spor-til-70-procents-reduktion
Side 15/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0274.png
Udledninger fra de 30 største industrielle udledere
Årlige CO
2
-udledninger, mio. ton per
år
2,5
2,0
1,5
1,0
0,5
0,0
2025
Figur 6 Størrelser for de 30 største industrielle CO
2
-udledere baseret på kvoteregisteret og
fremskrevet på baggrund af KF21.
For nogle af de industrielle punktudledere er elektrificering ikke muligt, da de
industrielle processer foregår ved høje temperaturer og anvendelse af brændsel
direkte i produktionsprocessen, eksempelvis i forbindelse med produktion af
cement, kalk, glasuld osv. Disse udledere må forventes fortsat at have et
brændselsforbrug – og dermed CO
2
-udledninger – fremover. Dog ikke
nødvendigvis fossile. Punktudledere med et lavere temperaturbehov, og som pt.
anvender gas- eller oliekedler, vil på sigt have et potentiale for at omstille til
procesvarmepumper eller andre vedvarende energikilder. Generelt vurderes der at
eksistere et betydeligt potentiale for omstilling til VE, elektrificering og
energieffektiviseringer i industrien, som i KF21 ikke forventes realiseret uden
yderligere tiltag. Det vurderes, at realisering af væsentlige dele af dette potentiale
vil være billigere end CCS, og vil kunne forekomme gennem eksempelvis
stigninger i ETS kvoteprisen eller nye nationale virkemidler. Dette taler for, at det
langsigtede potentiale for CO
2
-fangst i industrien er lavere end de fremskrevne
udledninger i KF21. Hertil kommer, at der må forventes en vis omlægning fra
fossile til biogene udledninger, særligt fra skift fra naturgas til biogas som følge af
den stigende VE-andel i gasnettet. Dette afspejles i et sænket ”lavt skøn” for
industrisektoren.
Der antages en minimumsstørrelse på 50.000 ton CO
2
per år for industrielle
punktudledere i opgørelsen af det fangstpotentialet. Det samlede fangstpotentiale i
industrien bliver dermed omkring 1-3 mio. ton CO
2
per år, jf. Figur 7.
Side 16/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0275.png
Årlige CO
2
-udledninger, mio. ton per år
Udledninger og fangstpotentialer fra industri
4,5
4,0
3,5
3,0
2,5
2,0
1,5
1,0
0,5
0,0
2025
2030
Fossil Proces
2040
Biogen
Figur 7 Samlede udledninger og fangstpotentialer for CO
2
-opsamling i industrien. De
samlede udledninger er baseret på oplysninger fra kvoteregisteret, som er fremskrevet på
baggrund af KF21 og herefter forlænget frem til 2040. Forlængelsen frem mod 2040 er ikke
en del af den konsoliderede fremskrivning, og er derfor forbundet med væsentlig usikkerhed
Fangstpotentialer er begrænset til udledere over 50.000 ton per år, og heri indgår endvidere
nedenstående eksempelberegning for Aalborg Portlands annoncerede omstilling til
ledningsgas.
Aalborg Portland
Cementfabrikken Aalborg Portland er landets største industrielle udleder af CO
2
, og
forventes i KF21 at udlede godt 2,2 mio. ton CO
2
i 2030. Produktionen og dermed
udledningen af CO
2
vurderes at være relativt konstant året rundt. CO
2
-
koncentrationen i røggassen anslås til ca. 16 pct. for cementfabrikker generelt.
9
Aalborg Portland indgik i september 2020 en aftale med regeringen om at sikre
CO
2
-reduktioner på samlet set 660.000 tons per år og til at samarbejde om
yderligere reduktioner
10
. Dele af denne aftale indgår i vurderingen af udledningerne
fra Aalborg Portland i KF21’s grundforløb
11
.
I foråret 2021 indgik virksomheden endvidere en aftale med Evida
12
om forsyning
med ledningsgas fra 2022. Det danske gasnet indeholder omkring 20 pct.
opgraderet biogas iblandet den fossile naturgas og forventes i Energistyrelsens
9
https://www.spglobal.com/platts/en/market-insights/latest-news/coal/010820-us-45q-tax-credit-key-to-
developing-carbon-capture-facility-in-colorado
10
Klima-, energi og forsyningsministeriet, 2020,
https://kefm.dk/aktuelt/nyheder/2020/sep/aalborg-
portland
11
KF21 forudsætningsnotat om cementproduktion, Energistyrelsen, 2021,
https://ens.dk/sites/ens.dk/files/Basisfremskrivning/7d_kf21_forudsaetningsnotat_-
_cementproduktion.pdf
12
Evida, 2021,
https://evida.dk/nyheder/evida-kobler-aalborg-portland-pa-gasnettet/
Side 17/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0276.png
Analyseforudsætninger til Energinet 2020
(AF20) at stige til op mod 100 pct. i 2040.
Dette kan bidrage til at sænke udledningerne fra Aalborg Portland, da naturgas
udleder mindre CO
2
per GJ energiindhold end den petrokoks, som Aalborg
Portland bl.a. anvender i dag. Gasnettets stigende andel af biogas vil desuden give
anledning til et delvist skift fra fossile til biogene CO
2
-udledninger. Den præcise
udformning af de tekniske løsninger og de resulterende udledninger fra Aalborg
Portland i fremtiden er ikke kendt. I denne opgørelse er det derfor antaget, at det i
KF21 forventede energiforbrug af kul og petrokoks erstattes 1:1 med ledningsgas,
hvor der er forsøgt at tage højde for den lavere energitæthed i gas ift. kul og
petrokoks, hvilket giver anledning til lavere samlede udledninger og let stigende
biogene udledninger.
En omlægning af Aalborg Portlands produktion til gas skaber en væsentligt øget
efterspørgsel efter ledningsgas, uden der nødvendigvis skabes et større udbud af
opgraderet biogas. Denne effekt vurderes – alt andet lige – at ville sænke andelen
af opgraderet biogas i nettet for øvrige aftagere af ledningsgas i opgørelsen.
Raffinaderierne
Equinor og Shell raffinaderierne i hhv. Kalundborg og Fredericia forventes i KF21 at
udlede knap 1 mio. ton CO
2
tilsammen i 2030 og er dermed de næststørste
udledere af CO
2
i den industrielle sektor. Raffinaderiernes rolle i det fremtidige
energisystem er uvis, og de fremtidige udledninger herfra er derfor behæftet med
betydelig usikkerhed. Frem mod 2040 forventes der dog stadig at være et forbrug
af olieprodukter. På linje med øvrige industrivirksomheder vurderes
fangstpotentialet fra raffinaderierne at ligge lavere end de samlede udledninger
opgjort i KF21.
Affaldsforbrænding
Udledningerne fra affaldsforbrænding forventes at være knap 4 mio. tons i 2025, og
forventes i KF21 at falde til ca. 3 mio. tons i 2030, bl.a. som følge af aftalen om
Klimaplan for en grøn affaldssektor og cirkulær økonomi
fra juni 2020. Herefter
vurderes kun et mindre fald frem mod 2040. Heraf forventes fossile udledninger at
udgøre ca. 0,5 mio. ton i 2040. De tre største punktkilder forventes under betydelig
usikkerhed at udgøre knap 1,5 mio. tons i 2040. Den største udleder af CO
2
blandt
affaldsværkerne er Amager Ressourcecenter (ARC).
Affaldsforbrændingsanlæg er generelt kendetegnet ved at køre i fuld drift det meste
af året, da driften defineres af behovet for behandling af affald og ikke af et
svingende forbrug af el og fjernvarme. Dette er illustreret i Figur 8 nedenfor, hvor
brændselsforbruget til afbrænding af affald er vist for 2019. Her fremgår det, at
variationen over året er begrænset. Det betyder, at udledningen af CO
2
hen over
året ligeledes forventes at være stabil. I fremskrivningen, der ligger til grund for
denne opgørelse, vurderes alle affaldsforbrændinger at have høje antal
fuldlasttimer – typisk mellem 6.000 og 8.000 fuldlasttimer.
Side 18/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0277.png
Figur 8 Brændselsforbrug på affaldsforbrændingsanlæg hen over året i 2019.
Kilde: Hovedbrændselsopgørelsen.
Den stabile drift medvirker til at sænke omkostningerne til afskrivning af
fangstanlægget. I tillæg hertil kommer, at affaldsforbrænding frem mod 2040
vurderes fortsat at indeholde en fossil fraktion, som de fortrinsvist kommunalt ejede
affaldsforbrændingsanlæg må forventes at have ønsker om at håndtere som end el
af lokale målsætninger. Affaldsforbrændingsanlæg må derfor forventes at have
relativt lave interne forrentningskrav.
Baseret på ovenstående medtages CO
2
-udledninger fra affaldsforbrændingsanlæg
med flere end 50.000 ton CO
2
om året i opgørelsen af fangstpotentialet, som
vurderes at være knap 1,5-2,5 mio. ton per år i 2040, jf. Figur 9. Det lave skøn
repræsenterer en situation, hvor kun de største anlæg i de største byer etablerer
CO
2
-fangst.
Side 19/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0278.png
Årlige CO
2
-udledninger, mio. ton per år
Udledninger og fangstpotentialer fra affaldsforbrænding
4,5
4,0
3,5
3,0
2,5
2,0
1,5
1,0
0,5
0,0
2025
2030
Fossil Biogen
2040
Figur 9 Samlede udledninger og fangstpotentiale for affaldsforbrænding. Fangstpotentialet er
begrænset til udledere over 25.000 ton per år for det høje skøn og til udledere over 100.000
ton per år i de største byer for det lave skøn. Kilde: Energistyrelsen.
El- og fjernvarmeproduktion
CO
2
-udledningerne fra el- og fjernvarmeproduktion kommer i dag primært fra de
store centrale kul-, og biomassefyrede kraftvarmeværker. Kraftvarmeværkerne og
en lang række rene varmeværker forventes samlet set at stå for en udledning på
ca. 7,5 mio. ton CO
2
i 2030, som primært kommer fra de centrale, biomassefyrede
værker. Ca. 3,5 mio. tons kommer fra de ti største centrale værker og omkring 2,0
mio. ton fra sektorens tre største udledere. I perioden efter 2030 forventes flere
store kraftværksblokke at lukke, jf. bl.a. Energistyrelsens
Analyseforudsætninger til
Energinet 2020
(AF20)
13
. Herefter vurderes omkring halvdelen af sektorens
resterende punktkildeudledninger på i alt ca. 6,5 mio. ton at stamme fra de 8
største punktkilder. Såfremt der indføres initiativer til reduktion af
biomasseforbruget i Danmark, jf. nedenfor, må CO
2
-udledningerne herfra forventes
reduceret tilsvarende.
Den største udleder for denne sektor forventes at være Amagerværkets Blok 4. Det
sidste kulfyrede værk forventes at blive udfaset i 2028, og det vil således kun være
udledninger fra biomasseværker, som potentielt kan indfanges. CO
2
-
koncentrationen i røggassen på biomasseværkerne anslås at være ca. 10-13 pct.
Opsamling af CO
2
fra biomassekraftvarmeværker
Produktionen på biomassekraftvarmeværkerne følger i høj grad
varmeefterspørgslen, og udledningen herfra er derfor begrænset i sommerhalvåret,
jf. Figur 10. Dette medfører, at fangstanlæg samt nedstrømsanlæg som CO
2
-
13
Energistyrelsens analyseforudsætninger til Energinet, 2020,
https://ens.dk/service/fremskrivninger-
analyser-modeller/analyseforudsaetninger-til-energinet
Side 20/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0279.png
rensning, komprimering, transport og mellemlagring har behov for stor kapacitet til
at dække det høje forbrug i vintermånederne, mens der vil være stor ledig kapacitet
i sommermånederne.
Figur 10 Biomasseforbrug på centrale kraftvarmeværker fordelt hen over året i 2019 og
foregående år. Enhed i TJ. Kilde: Energistyrelsens Energistatistik
Et mål for, i hvor høj grad kapaciteten i et anlæg udnyttes, er anlæggets antal af
såkaldte fuldlasttimer på et år. Hvis et anlæg har 8760 fuldlasttimer, er 100 pct. af
kapaciteten udnyttet i alle årets 8760 timer. Har et anlæg derimod 4380
fuldlasttimer (halvdelen af 8760), svarer det til, at anlægget kører med halv
kapacitetsudnyttelse i alle årets timer eller fuld kapacitetsudnyttelse i halvdelen af
årets timer. Eller en kombination af disse. Typiske grundlastanlæg som flisfyrede
kraftvarmeværker har i dag typisk mellem 4.500 og 5.000 fuldlasttimer om året.
De store udsving i produktionen betyder, at kapaciteten på både
varmeproduktionsanlægget og fangstanlægget udnyttes dårligere, da der i mange
timer vil være uudnyttet kapacitet. Dermed må afskrivningerne på investeringen i et
fangstanlæg fordeles på færre ton opsamlet CO
2
. Dette øger omkostningerne per
ton CO
2
til afskrivning af anlægget markant, som eksempelberegningerne i Figur 11
viser. Dette vurderes at gælde for alle kraftvarme- og fjernvarmeanlæg, selvom
udsvingene vurderes at være mere udtalte for de store anlæg i de store
fjernvarmeområder, hvor affaldsforbrænding og overskudsvarme typisk dækker det
meste af varmebehovet om sommeren.
Side 21/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0280.png
6.000
Fangstomkostninger, kr./ton CO
2
Estimerede fangstomkostninger afhængig af
fuldlasttimer
5.000
4.000
3.000
2.000
1.000
0
1000
1500
2000
2500
3000
3500
4000
4500
5000
Figur 11 Regneeksempel for fangstomkostninger ved et ”post-combustion” anlæg til CO2-
fangst afhængig af antallet af årlige fuldlasttimer på anlægget. Kilde: Energistyrelsens
teknologikatalog for ”Post combustion – large biomass”.
Ovenstående har også en markant indflydelse på det økonomiske potentiale for
opsamling af CO
2
fra el- og fjernvarmeproducerende anlæg. Dette illustreres i Figur
12, der viser det samlede potentialet for CO
2
-fangst fra alle anlæg over 50.000 ton
CO
2
per år, afhængig af hvor mange fuldlasttimer der kræves for, at anlægget
tælles med. Den grønne kolonne til venstre for hvert år viser alle anlæg med mindst
1 fuldlasttime om året (alle anlæg i drift), mens fx den røde kolonne viser potentialet
fra alle anlæg med mindst 2.000 fuldlasttimer om året osv.
Side 22/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0281.png
Fangstpotentiale efter minimum antal fuldlasttimer
Årlige CO
2
-udledninger, mio. ton per år
9
8
7
6
5
4
3
2
1
0
2025
2030
2040
Minimum antal årlige fuldlasttimer: 1
1000
2000
2500
3000
4000
Figur 12 Fangstpotentialer i 2025, 2030 og 2040 opgjort for anlæg over 50.000 ton CO
2
per
år med forskellige minimum antal af årlige fuldlasttimer. Enkelte fossile kraftvarmeværker
indgår i figuren, uden at det flytter på konklusionen. Kilde: Energistyrelsen.
CO
2
-fangst fra el- og fjernvarmeanlæg er altså økonomisk udfordret pga. relativt
lave antal driftstimer. Dermed bliver kravene til placering af biomassefyrede anlæg
større, fordi der kræves kortere transportafstande og storskalafordele i forbindelse
med fx klynger af andre udledere, hvor transportinfrastruktur mv. kan deles med
andre anlæg.
Biomasseforbruget i fremtiden
Biomasseværkernes driftsmønster og fremtid særligt i et længere perspektiv er
usikkert pga. øget konkurrence fra andre kilder mv. På baggrund af
Klimaaftalen for
Energi og Industri 2020
er en analyse under udarbejdelse, der skal vurdere
konsekvenserne for biomasseforbruget, elforsyningssikkerhed, fjernvarmepriser
mv. forbundet med forskellige tilgange til at begrænse anvendelsen af biomasse til
energiformål. Analysen er ikke færdig. Men det vurderes indledningsvis, at en
begrænsning af biomasseforbruget kan medføre tre overordnede tendenser:
1. Begrænsning af forbrug medfører færre, mindre biomassebaserede
punktkilder og dermed færre CO
2
-udledninger.
2. Af hensyn til forsyningssikkerhed vedr. både el- og varmeforsyning, kan en
række biomassefyrede anlæg forventes fastholdt – dog evt. i ændrede
roller, hvor de i højere grad anvendes som spidslastanlæg for
fjernvarmenettet og spids- og reservelastanlæg i elsystemet. Der vurderes
dog også at være en vis sandsynlighed for at disse ydelser i stigende
omfanget bliver leveret af gasturbiner og gasmotorer baseret på biogas.
Dette vurderes at kunne medføre et sænket antal fuldlasttimer for de
pågældende anlæg.
Side 23/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0282.png
3. Der kan muligvis også forventes et lagsigtet skift væk fra biomassefyrede
kraftvarmeværker over mod biomassekedler til ren varmeproduktion i
vinterhalvåret som supplement til varmepumper og overskudsvarme.
Alle tre effekter må forventes at medføre forringede økonomiske vilkår for angst,
lagring og anvendelse af CO
2
fra de større punktkilder, mens mindre punktkilder,
under betydelig usikkerhed vurderes at levere hovedparten af udledningerne.
En mulig modsatrettet effekt kan opstå, såfremt der etableres et marked for
opsamlet CO
2
eller på anden måde gives økonomiske incitamenter til CO
2
-fangst.
Det kan ikke udelukkes, at sådanne økonomiske incitamenter kan forbedre
driftsøkonomien i biomassekraftvarmeværker og biomasse-varmeværker. Dette
kan give eksisterende anlæg flere driftstimer, eller give incitamenter til fastholdelse,
levetidsforlængelse eller etablering af nye biomasseforbrugende anlæg. Dette er
ikke nærmere analyseret i nærværende analyse.
De store biomassefyrede værker, som er etableret/konverteret for nyligt, må dog
forventes at producere en vis periode fremover, uanset hvilken tilgang, der vælges.
Baseret på ovenstående vurderes el- og fjernvarmeproducerende anlæg at være
relevante for CO
2
-opsaling i størrelser over 50.000 ton CO
2
per år. Samtidig
vurderes anlæg med mindre end 2.500 årlige fuldlasttimer at medføre for høje
omkostninger til at det er rentabelt at opsamle CO
2
’en, jf. Figur 11. Dermed
skønnes fangstpotentialet fra el- og fjernvarmeproduktion omkring 1-2 mio. ton per
år i 2040, jf. Figur 13. Det vurderes, at det mest sandsynlige udfald ligger i den
nedre del af spændet.
Side 24/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0283.png
Årlige CO
2
-udledninger, mio. ton per år
Udledninger og fangstpotentialer fra el og fjernvarme
12
10
8
6
4
2
0
2025
2030
Fossil Biogen
2040
Figur 13 Samlede udledninger og fangstpotentiale for CO
2
-opsamling fra el- og
fjernvarmeproducerende anlæg. Det høje skøn er begrænset til udledere over 50.000 ton per
år. Kilde: Energistyrelsen.
Anlæg til opgradering af biogas
Biogas fra biogasanlæg indeholder generelt omkring 60-70 pct. metan og omkring
30-40 pct. CO
2
. Som et led i opgraderingen af biogassen forud for indfødning i
gasnettet, separeres og udledes CO
2
-fraktionen ved hjælp af aminbaseret CO
2
-
fangst på samme måde som røggas kan renses på kraftværker eller lign. Den
udledte CO
2
stammer fra biomasseinputtet i anlægget, og opfattes som
klimaneutral.
Der er i dag ca. 50 opgraderende biogasanlæg i Danmark. Der er store forskelle på
produktionen på de enkelte anlæg og dermed også på CO
2
-udledningerne, som
vurderes at ligge mellem ca. 1.000 og ca. 50.000 ton per år. Figuren viser den
årlige CO
2
-udledning fra de 54 eksisterende biogasopgraderingsanlæg i Danmark.
Side 25/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0284.png
Udledninger fra eksisterende biogasopgraderingsanlæg
Årlige CO
2
-udledninger, kton per år
70
60
50
40
30
20
10
0
2025
2030
Figur 14 Årlige udledninger fra kendte biogasopgraderingsanlæg i Danmark baseret på KF21
for 2025 og 2030.
Kilde: Energistyrelsen.
Biogasprognosen og KF21 indeholder en fremskrivning af produktionen for de
eksisterende anlæg til 2030 samt en vurdering af den yderligere produktion, der vil
komme som følge af de seneste biogasudbud samt de udbud til biogas og andre
grønne gasser, der forventes iværksat fra 2022 eller 2023. De langsigtede
udledninger er fastholdt fra 2030 til 2040, dog med en mindre justering som følge af
ophør af støtteordninger i starten af 2030’erne.
Det forventes, at nye, kommende biogasanlæg vil være i samme størrelsesorden
som de større anlæg bygget i 2019 og 2020. Derfor medregnes de kommende
anlæg alle med størrelser over 50.000 ton per år.
Som beskrevet separeres CO
2
allerede i dag fra biogassen som led i
opgraderingsprocessen. CO
2
-udledningerne fra biogasanlæg er derfor i princippet
klar til anvendelse. Dermed får punktkildens størrelsen mindre betydning for
økonomien i opsamling. Der vurderes dog at være behov for yderligere rensning og
komprimering samt evt. et mellemlager, såfremt CO
2
-en skal klargøres til transport
eller anvendes, hvilket dog vil være forbundet med markant lavere omkostninger
end CO
2
-fangst fra røggas på større anlæg. Hertil kommer, at der kan være en
øget betalingsvillighed for CO
2
fra biogasanlæg, da den anvendte biomasse i
mindre grad er udfordret mht. bæredygtighed og klimaneutralitet end fx importeret
træbiomasse i centrale kraftværker. Derfor inkluderes alle
biogasopgraderingsanlæg i opgørelsen.
Det samlede CO
2
-fangstpotentiale for biogasopgradering skønnes dermed at være
omkring 0,5-1 mio. ton CO
2
i 2025 og forventes at stige til 0,7-1,3 mio. ton i 2040.
Side 26/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0285.png
Årlige CO
2
-udledninger, mio. ton per år
Udledninger og fangstpotentialer fra biogasopgradering
1,6
1,4
1,2
1,0
0,8
0,6
0,4
0,2
0,0
2025
2030
Fossil Biogen
2040
Figur 15 Samlede udledninger og fangstpotentiale for CO
2
-opsamling fra
biogasopgraderingsanlæg. Det samlede potentiale er baseret på KF21 frem til 2030,
hvorefter produktion og dermed udledninger er fastholdt med en mindre justering frem til
2040. Alle kendte og forventede biogasanlæg er medtaget i det økonomiske potentiale.
Opgørelse af potentialet efter omkostninger
Som beskrevet ovenfor, er der store forskelle på omkostningerne forbundet med
CO
2
-fangst fra forskellige typer af anlæg baseret på størrelse, driftsmønster,
anlægstype mv. I det følgende anskueliggøres dette gennem en opdeling af det
vurderede fangstpotentiale efter omkostningerne til fangst af CO
2
’en.
Fangstomkostningerne er beregnet for hvert enkelt anlæg, der indgår i analysen på
baggrund af de fremskrevne udledninger samt fremskrevne eller antagne antal af
årlige fuldlasttimer. Der medregnes ikke omkostninger til transport eller
mellemlagring af CO
2
. Fordelingen afspejler derfor ikke variation i omkostninger ift.
anlæggenes placering. Metoden for beregningerne er beskrevet i
Bilag 1 – Metode.
Tabel 2 viser fordelingen af potentialet afhængig af, hvilken øvre grænse, der
lægges for fangstomkostningerne. Der tages udgangspunkt i det øvre
potentialeskøn jf. ovenfor.
Side 27/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0286.png
Tabel 2 Fordeling af fangstpotentialet efter omkostninger til fangst
Enhed:
mio. ton CO
2
/år
Affaldsforbrænding
Fjernvarme
Industri
Biogasopgradering
Sum
Total
2040-udledninger
Fossil
0,4
0,1
3,4
0,0
3,9
14,9
Biogen
2,4
6,4
0,8
1,3
11,0
< 600 kr./ton
Fossil
0,2
0,0
0,0
0,0
0,2
3,0
Biogen
1,4
0,1
0,0
1,3
2,8
< 800 kr./ton
Fossil
0,3
0,0
0,1
0,0
0,4
4,3
Biogen
2,1
0,3
0,2
1,3
3,9
< 1.000 kr./ton
Fossil
0,4
0,0
2,4
0,0
2,8
8,9
Biogen
2,1
1,9
0,8
1,3
6,1
< 1.200 kr./ton
Fossil
0,4
0,0
2,4
0,0
2,8
8,9
Biogen
2,1
1,9
0,8
1,3
6,1
Fordelingen af fangstpotentialet i Tabel 2 opgøres efter en øvre grænse for
fangstomkostningerne. Til sammenligning vurderes omkostningerne til transport
mellemlagring og lagring i undergrunden at udgøre i omegnen af 200-600 kr./ton
afhængig af punktkildernes beliggenhed, transportformer, lagerets udnyttelse og en
række antagelser. I dette notat er potentialet indledningsvist opgjort for øvre
grænser på hhv. 600, 800, 1.000 og 1.200 kr./ton, jf. tabellen.
Geografisk fordeling af punktkilder
De forskellige punktkilder til CO
2
ligger spredt ud over landet efter forskellige
trends: Affaldsforbrændinger og fjernvarmeanlæg ligger fx omkring større byer,
mens biogasopgraderingsanlæg typisk ligger på landet. Figur 16 viser fordelingen
af punktkilder for de fire sektorer behandlet i dette notat.
Side 28/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0287.png
Figur 16 CO
2
-punktkilder for de fire opgjorte sektorer i 2040. Kilde: Energistyrelsen
De store punktkilder i fremtiden er koncentreret omkring store og større byer. Dette
kommer særligt af, at affaldsforbrænding og de største fjernvarmeproducenter
udgør hovedparten af potentialet, og at disse anlæg normalt er placeret i eller i
nærheden af de byer, de servicerer.
På denne baggrund, er det høje skøn for fangstpotentialet opgjort for fem
forskellige geografiske områder centreret omkring København, Aalborg, Aarhus,
Esbjerg og Fredericia. Dette fremgår af Tabel 3 nedenfor. For hvert område er
udledningerne fra de største udledere (særligt affaldsforbrænding og store
kraftvarmeanlæg) opgjort. Udledningerne fra de enkelte virksomheder aggregeres
af hensyn til potentielt kommerciel følsomhed af oplysningerne. Opgørelserne er
særligt følsomme over for fremtiden for de biomassefyrede kraftvarmeværker, som
forventes delvist udfaset gennem perioden, men som potentielt kan opnå forbedret
Side 29/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0288.png
driftsøkonomi, hvis der gives økonomiske incitamenter til CCS. Herunder vises de
øvrige udledninger i potentialeopgørelsen i nærheden af de store punktkilder
aggregeret for hver sektor. Disse opgørelser er behæftet med betydelig usikkerhed,
og afhænger af de valgte transportafstande for punktkilder i oplandet. Figur 16 viser
en geografisk fremstilling af punktkilderne, som er indeholdt i de fem klynger i Tabel
3.
Tabel 3 Fangstpotentialer for punktkilder fordelt i geografiske områder. Skønnene er
behæftet med stor usikkerhed, da de afhænger af de valgte transportafstande. Summen er
mindre end summen af de enkelte klynger, da der er overlap mellem oplandet til Esbjerg og
Fredericia.
Storkøbenhavn
Nordjylland
Århus
Esbjerg
Fredericia
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
4,3
3,1
2,8
2,1
2,2
2,3
1,6
0,6
0,4
0,5
0,5
0,5
0,8
0,7
0,6
9,3
7,0
6,7
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
3,7
2,8
2,6
0,6
0,8
0,9
1,5
0,6
0,4
0,5
0,5
0,5
0,4
0,3
0,2
6,6
4,9
4,7
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,6
0,3
0,2
1,6
1,3
1,4
0,0
0,0
0,0
0,1
0,0
0,0
0,4
0,4
0,4
2,7
2,1
2,0
Side 30/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0289.png
Figur 17 Geografisk fremstilling af de fem identificerede klynger fra Tabel 3. Størrelsen af
den grønne cirkel angiver den samlede udledning i klyngen i 2025, mens den grå cirkel viser
den andel, der stammer fra fossile brændsler og procesudledninger.
Tallene er udspecificeret for de enkelte geografiske områder i det følgende.
Storkøbenhavn
Samlingen af store CO
2
-udledere omkring København vurderes i 2040 at omfatte
Amager Ressourcecenter (ARC), Vestforbrænding, Amagerværkets Blok 4,
Avedøreværket og ARGO i Roskilde. Ud over disse store punktkilder indeholder
klyngen få mindre anlæg, afhængig af hvilken afstand der lægges til grund.
Udlederne er illustreret i Figur 17 og potentialet er vist i Tabel 4. Avedøreværket er
Side 31/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0290.png
medtaget, selvom værket i denne opgørelse vurderes at have for få årlige
fuldlasttimer i 2040 til, at CO
2
-opsamling vil være rentabel og anlægget ikke
forventes at være i drift efter 2040, jf. Energistyrelsens analyseforudsætninger til
Energinet. Denne vurdering er dog særdeles usikker, og værket er derfor medtaget
her. Det er derfor væsentligt at være opmærksom på, at eventuelle CCUS-anlæg
knyttet til Avedøreværket kan medføre, at der udledes og fanges CO
2
fra anlægget
som alternativt ville have væsentligt færre driftstimer eller være helt lukket. Det
samme gør sig principielt gældende for andre anlæg.
Figur 18 Overblik over punktkilder i Storkøbenhavn. Kilde: Energistyrelsen.
Side 32/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0291.png
Tabel 4 Fangstpotentialer for store og små punktkilder omkring Storkøbenhavn. Der er
anvendt samme skæringspunkter vedr. størrelser og antal fuldlasttimer som for
sektoropgørelserne i øvrigt. Udledningerne fra de enkelte virksomheder er aggregeret af
hensyn til potentielt kommerciel følsomhed af oplysningerne.
Store udledere
- Amager
Ressourcecenter
- Vestforbrænding
- Amagerværket, Blok 4
- Avedøreværket
- ARGO
Øvrige mindre udledere
- Affaldsforbrænding
- El og fjernvarme
- Industri
- Biogasopgradering
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
4,3
2,9
2,7
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
3,7
2,6
2,5
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,6
0,3
0,2
0,0
0,0
0,0
0,0
4,3
0,1
0,1
0,0
0,0
3,1
0,2
0,0
0,0
0,0
2,8
0,0
0
0
0,0
3,7
0,1
0,1
0
0,0
2,8
0,1
0
0
0,0
2,6
0,0
0,0
0
0,0
0,6
0,0
0,0
0
0,0
0,3
0,0
0,0
0
0,0
0,2
Noter.:
1
: Avedøreværket forventes at have for få driftstimer fremover til at være inkluderet i det samlede potentiale for CO -fangst i
2
Danmark. Anlægget er medtaget i denne klyngeangivelse, eftersom det også indgår i C4-samarbejdet i Hovedstadsområdet
14
.
Nordjylland
Landets største CO
2
-udleder er placeret i Aalborg nær ved Nordjyllandsværket og
affaldsforbrændingen Reno Nord. Hertil kommer en række mindre punktkilder i
oplandet til Aalborg. Dette giver grundlag for en klynge, som vist i tabellen
nedenfor. Udlederne er illustreret i Figur 18 og potentialet er vist i Tabel 5.
Nordjyllandsværket er ikke medtaget i opgørelsen, da det ikke vurderes rentabelt at
etablere CO
2
-fangst på anlægget. Årsagen er, at ejerne, Aalborg Forsyning har
meldt ud, at Nordjyllandsværkets drift udfases gradvist og ophører endeligt med
udgangen af 2028.
14
C4 er et samarbejde mellem store punktudledere og øvrige CCS-interessenter i Hovedstadsområdet:
https://a-r-c.dk/c4/.
Side 33/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0292.png
Figur 19 Overblik over punktkilder i Nordjylland. Kilde: Energistyrelsen.
Tabel 5 Fangstpotentialer for store og små punktkilder i Nordjylland. Der er anvendt samme
skæringspunkter vedr. størrelser og antal fuldlasttimer som for sektoropgørelserne i øvrigt.
Udledningerne fra de enkelte virksomheder er aggregeret af hensyn til potentielt kommerciel
følsomhed af oplysningerne.
Store udledere
- Aalborg Portland
- Reno Nord
Øvrige mindre udledere
- Affaldsforbrænding
- El og fjernvarme
- Industri
- Biogasopgradering
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
1,9
1,9
1,9
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,4
0,5
0,6
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
1,5
1,3
1,3
0,1
0,0
0,0
0,1
2,1
0,0
0,1
0,1
0,1
2,2
0,1
0,1
0,1
0,1
2,3
0,0
0,0
0,0
0,1
0,6
0,0
0,1
0,1
0,1
0,8
0,0
0,1
0,0
0,1
0,9
0,0
0,0
0,0
0,0
1,6
0,0
0,0
0,0
0,0
1,3
0,0
0,0
0,0
0,0
1,4
Side 34/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0293.png
Århus og omegn
I Århus forventes Studstrupværket, Lisbjerg Kraftvarmeanlæg og Affaldscenter
Aarhus at være i drift frem mod 2040. Studstrupværket er medtaget, selvom værket
i denne opgørelse vurderes at have for få årlige fuldlasttimer i 2040 til, at CO
2
-
opsamling vil være rentabel og anlægget ikke forventes at være i drift efter 2040, jf.
Energistyrelsens analyseforudsætninger til Energinet. Denne vurdering er dog
særdeles usikker, og værket er derfor medtaget her. Det er derfor væsentligt at
være opmærksom på, at eventuelle CCUS-anlæg knyttet til Studstrupværket kan
medføre, at der udledes og fanges CO
2
fra anlægget som alternativt ville have
væsentligt færre driftstimer eller være helt lukket. Det samme gør sig principielt
gældende for andre anlæg.
Hertil kommer en række mindre anlæg i oplandet samt i Randers. Udlederne er
illustreret i Figur 19 og potentialet er vist i Tabel 6.
Figur 20 Overblik over punktkilder i Aarhus og omegn. Kilde: Energistyrelsen.
Side 35/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0294.png
Tabel 6 Fangstpotentialer for store og små punktkilder omkring Aarhus og Randers. Der er
anvendt samme skæringspunkter vedr. størrelser og antal fuldlasttimer som for
sektoropgørelserne i øvrigt. Udledningerne fra de enkelte virksomheder er aggregeret af
hensyn til potentielt kommerciel følsomhed af oplysningerne.
Store udledere
- Studstrupværket
- Lisbjerg
Kraftvarmeværk
- Affaldscenter Aarhus
Øvrige mindre udledere
- Affaldsforbrænding
- El og fjernvarme
- Industri
- Biogasopgradering
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
1,5
0,5
0,3
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
1,4
0,5
0,3
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,0
0,0
0,0
0,0
0,0
0,0
0,1
1,6
0,0
0,0
0,0
0,1
0,6
0,0
0,0
0,0
0,1
0,4
0,0
0,0
0,0
0,1
1,5
0,0
0,0
0,0
0,1
0,6
0,0
0,0
0,0
0,1
0,4
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Noter:
1
: Studstrupværket forventes at have for få driftstimer fremover til at være inkluderet i det samlede potentiale for CO -fangst i
2
Danmark. Anlægget er dog medtaget i denne klyngeangivelse, da der ikke er konkrete udmeldinger om lukning.
2
: Der eksisterer en produktionsvirksomhed i området, der – som følge af de generelle fremskrivninger i KF21 - antages at elektrificere
sit brændselsforbrug. Der er dog ikke foretaget en virksomhedsspecifik vurdering, og dermed kan potentialet være undervurderet med
ca. 50.000 ton CO2 per år.
Esbjerg
Esbjerg havn kan potentielt udgøre udskibningssted for CO
2
til lagring i Nordsøen.
Samtidig ligger affaldsforbrændingen Energnist i Esbjerg, og Esbjergværket
forventes erstattet bl.a. af en større biomassefyret kedel. Hertil kommer en række
store biogasopgraderingsanlæg i Sydjylland mv. Udlederne er illustreret i Figur 20
og potentialet er vist i Tabel 7.
Side 36/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0295.png
Figur 21 Overblik over punktkilder i Esbjerg og omegn. Kilde: Energistyrelsen.
Side 37/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0296.png
Tabel 7 Fangstpotentialer for store og små punktkilder omkring Esbjerg. Der er anvendt
samme skæringspunkter vedr. størrelser og antal fuldlasttimer som for sektoropgørelserne i
øvrigt. Bemærk betydeligt overlap med opgørelsen for området omkring Fredericia.
Udledningerne fra de enkelte virksomheder er aggregeret af hensyn til potentielt kommerciel
følsomhed af oplysningerne.
Store udledere
- Energnist, Esbjerg
- Ny fliskedel, Esbjerg
Øvrige mindre udledere
- Affaldsforbrænding
- El og fjernvarme
- Industri
- Biogasopgradering
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,3
0,2
0,2
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,2
0,2
0,2
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,1
0,0
0,0
0,0
0,1
0,0
0,2
0,5
0,0
0,1
0,0
0,2
0,5
0,0
0,1
0,0
0,2
0,5
0,0
0,1
0,0
0,2
0,5
0,0
0,1
0,0
0,2
0,5
0,0
0,1
0,0
0,2
0,5
0,0
0,0
0,0
0,0
0,1
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Fredericia og Trekantsområdet
I Trekantsområdet findes Shells raffinaderi i Fredericia, Skærbækværket og
Energnists affaldsforbrænding i Kolding. Hertil kommer en række store
biogasopgraderingsanlæg i Sydjylland. Bemærk, at der er overlap mellem oplandet
til Esbjerg og Fredericia. Udlederne er illustreret i Figur 21 og potentialet er vist i
Tabel 8. Skærbækværket er medtaget, selvom værket i denne opgørelse vurderes
at have for få årlige fuldlasttimer i 2040 til, at CO
2
-opsamling vil være rentabel og
anlægget derfor ikke regnes med i det samlede nationale potentiale i denne
analyse. Det er derfor væsentligt at være opmærksom på, at eventuelle CCUS-
anlæg knyttet til Skærbækværket kan medføre, at der udledes og fanges CO
2
fra
anlægget som alternativt ville have væsentligt færre driftstimer. Det samme gør sig
principielt gældende for andre anlæg.
Side 38/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0297.png
Figur 22 Overblik over punktkilder i Fredericia og omegn. Kilde: Energistyrelsen.
Tabel 8 Fangstpotentialer for store og små punktkilder omkring Fredericia og
trekantsområdet. Der er anvendt samme skæringspunkter vedr. størrelser og antal
fuldlasttimer som for sektoropgørelserne i øvrigt. Bemærk overlap med opgørelsen for
området omkring Esbjerg. Udledningerne fra de enkelte virksomheder er aggregeret af
hensyn til potentielt kommerciel følsomhed af oplysningerne.
Store udledere
- Shell Raffinaderiet
- Skærbækværket
- Energnist, Kolding
Øvrige mindre udledere
- Affaldsforbrænding
- El og fjernvarme
- Industri
- Biogasopgradering
Sum
Samlede udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,5
0,5
0,4
Biogene udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,4
0,2
0,2
Fossile udledninger,
mio. ton CO
2
/år
2025
2030
2040
0,4
0,4
0,4
0,0
0,0
0,0
0,0
0,5
0,0
0,0
0,0
0,0
0,5
0,0
0,0
0,0
0,0
0,4
0,0
0,0
0,0
0,0
0,4
0,0
0,0
0,0
0,0
0,3
0,0
0,0
0,0
0,0
0,2
0,0
0,0
0,0
0,0
0,4
0,0
0,0
0,0
0,0
0,4
0,0
0,0
0,0
0,0
0,4
Noter:
1
: Skærbækværket forventes at have for få driftstimer fremover til at være inkluderet i det samlede potentiale for CO -fangst i Danmark.
2
Anlægget er dog medtaget i denne klyngeangivelse, da der ikke er konkrete udmeldinger om lukning.
Side 39/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0298.png
Bilag 1 – Metode
Opgørelserne i dette notat tager udgangspunkt i Energistyrelsens Klimastatus og –
Fremskrivning 2021 (herefter KF21). Dette produkt indeholder en såkaldt
frozen
policy
fremskrivning af hele energisystemet – det som tidligere var kendt som
Energistyrelsens basisfremskrivning. Fremskrivningen kortlægger, hvordan
energisystemet forventes at udvikle sig frem til 2030 i fravær af ny politik, og
anvendes således som baseline-forløb for effektvurderinger af politiske tiltag mv. Af
samme årsag rækker KF21 derfor også kun frem til 2030.
Opgørelserne i denne analyse rækker frem til 2040, hvilket er nødvendigt, da de
investeringer, der foretages i anlæg til CO
2
-opsamling må forventes at eksistere
minimum 20 år frem. Tilgangen til fremskrivningen varierer mellem de behandlede
sektorer, og er beskrevet herunder.
Udledninger fra affaldsforbrænding samt fra el- og fjernvarmeproduktion i dette
notat er aggregeret efter sektorer på en anden måde end i KF21. Derfor kan de
opgjorte udledninger fra disse sektorer ikke genfindes direkte i KF21. Hertil kommer
at rene kondensværker (elproduktion uden samtidig varmeproduktion) ikke er
medtaget i denne opgørelse, da disse anlæg kun har få årlige driftstimer og derfor
ikke er relevante for CO
2
-fangst.
Affaldsforbrænding
Kapaciteten og produktionen i affaldsforbrændingssektoren er fremskrevet i KF21
frem til 2030, på baggrund af dels et fald i den årlige miljøgodkendte kapacitet til
affaldsforbrænding på de 23 nuværende dedikerede og multifyrede
affaldsforbrændingsanlæg, og dels en forventet stigning i udsortering af særligt
plastaffald til genanvendelse. Udviklingen baseres derudover på forventede
løbende nedlukninger af en række ældre udslidte ovnliner, samt yderligere
nedlukning af kapacitet og implementering af virkemidler som følge af Klimaplan for
en grøn affaldssektor og cirkulær økonomi. Fra 2030 til 2040 er udviklingen
forlænget med tilsvarende frozen policy-antagelser.
El- og Fjernvarmeproduktion
Kapaciteten og produktionen i el- og fjernvarmesektoren er fremskrevet i KF21 frem
til 2030 ved hjælp af modellen DH-Invest på baggrund af brændselspriser,
teknologikataloger, samt gældende afgifter og regulering. Fra 2030 til 2040 er
udviklingen forlænget med tilsvarende frozen policy-antagelser samt en yderligere
vurdering af lukninger og erstatning af forældet kapacitet i perioden 2030 til 2040.
Industri
Industrivirksomheder repræsenteres med en enkelt undtagelse ikke separat i KF21.
Opgørelsen bygger derfor på oplysninger fra kvoteregisteret for CO
2
-udledninger
fra de 30 største kvoteomfattede industrielle punktudledere i Danmark. Disse er
fremskrevet med udviklingen i sammensætning af brændselsforbrug i delbrancher
Side 40/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0299.png
ifølge KF21, hvilket bl.a. omfatter udviklingen i aktivitetsniveau (vækstforløb) og
energieffektivisering/elektrificering. Dertil indgår virksomhedsspecifikke vurderinger,
som f.eks. Nordic Sugars og Rockwools omlægning til naturgas. Aalborg Portlands
omlægning til naurgas er ikke en del af KF21 grundforløbet. Fremskrivningen fra
2030 til 2040 er baseret på en forlængelse af udviklingen i KF21 frem til 2040.
Forlængelsen frem mod 2040 er ikke en del af den konsoliderede fremskrivning, og
er derfor forbundet med væsentlig usikkerhed.
Biogasopgradering
KF21 indeholder en fremskrivning af biogasproduktionen på eksisterende anlæg
med biogasopgradering frem til 2030. Disse anlæg vurderes at have en samlet
produktion på omkring 28,9 PJ i 2030. Hertil kommer en yderligere produktion på
ca. 11,7 PJ i 2030 fra overståede og kommende udbud, herunder udbuddene til
biogas og andre grønne gasser fra 2022/2023. CO
2
-udledningerne fra både
eksisterende og kommende produktion er beregnet på baggrund af
fangsteffektiviteter fra Energistyrelsens teknologikatalog. Frem mod 2040
fastholdes produktionen og udledningerne, dog med et mindre dyk i produktionen
som følge af ophør af støtte for de ældste anlæg tidligt i perioden.
Off-shore
Olie- og gasudvinding på Nordsøen beskrives i KF21 frem til 2030. Den videre
fremskrivning til 2040 udgør en forlængelse af tendensen frem mod 2030. Der er
ikke foretaget en opdeling på de enkelte punktkilder i sektoren.
Afgrænsning af potentialet
Fra fremskrivningen beskrevet ovenfor opnås de samlede udledninger for de
forskellige sektorer i 2025, 2030 og 2040. Ikke alle disse udledninger vil kunne
opsamles i praksis. Derfor afgrænses potentialet på følgende måde:
Først og fremmest kan typiske anlæg til CO
2
-fangst i dag kun opsamle omkring 90
pct. af CO
2
-indholdet i røggas. Derfor nedskrives potentialerne for alle sektorer på
nær biogasopgradering med 10 pct. Herefter baseres det øvre skøn for
fangstpotentialet ift. punktkildernes størrelse for hver sektor, og det nedre skøn
beror på en følsomhedsvurdering for de enkelte sektorer.
Omkostninger til CO
2
-fangst
Omkostningerne til opsamling er beregnet for de enkelte anlæg i analysen på
baggrund af den årlige CO
2
-udledning og et fremskrevet eller antaget antal
fuldlasttimer (for biogas antages 8.500 fuldlasttimer, for industrivirksomheder
antages 7.000 fuldlasttimer, jf. dog nedenfor. For el- og fjernvarmeproduktion samt
affaldsforbrænding er den årlige driftstid fremskrevet som i KF21.
Der tages udgangspunkt i Energistyrelsens teknologikatalog mht. fangstteknologier
samt en række antagelser, bl.a. mht. rente, el- og varmepriser mv. På den
baggrund beregnes omkostninger til etablering, drift og vedligehold (fast og
variabel) samt energitab på anlægget og anvendelse af inputenergi.
Side 41/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0300.png
Energiinput og -tab
Fangst af CO
2
fra punktkilder anvender inputenergi i form af mellemtemperatur
varme. På kraftvarmeanlæg som biomasseanlæg og affaldsforbrænding forventes
dette input at komme fra lavtryksdampturbinen. Dette sænker elproduktionen på
anlægget markant, og der vurderes at være tale om tab af el- og varmeproduktion
på hhv. 15-50 pct. og 15-30 pct. afhængig af typen af anlæg mv. Der er indregnet
skøn for omkostningerne til dette. Ændringen i output fra anlægget vurderes dog
også at kunne få betydning for anlæggenes driftsmønster, hvilket potentielt kan
medføre yderligere tab. Disse er ikke medregnet i denne opgørelse, hvilket betyder,
at estimaterne skal læses konservativt – særligt mht. kraftvarmeanlæg og
affaldsforbrænding.
Det antages i øvrigt, at overskudsvarmen fra fangstanlægget ikke udnyttes til
fjernvarme, hvilket vurderes at ville være tilfældet nogle steder. Dette rykker dog
ikke markant ved resultatet.
Industrianlæg
Der er begrænset visen om driften af industrianlæg og meget stor usikkerhed om
fremskrivningen af denne type anlæg. Opgørelsen omfatter 10 virksomheder, som
alle udgøres af enten fødevarevirksomheder eller energiintensive virksomheder
(stål, cement, raffinaderi, tegl). Alle disse virksomheder vurderes at drifte i
skiftehold og dermed have høje antal af fuldlasttimer (7.000). Undtagelsen er en
indeholdt sukkerfabrik, som driftes i årlige kampagner. Her antages 2.500 årlige
fuldlasttimer. Hertil kommer, at industrivirksomheder vurderes, at have betydeligt
højere forrentningskrav end de fleste aktører i forsyningssektoren. Der er således
regnet med interne forrentningskrav (WACC) på 10 pct. for industrivirksomheder i
modsætning til de 3,5 pct. der antages for affaldsforbrænding, el- og
fjernvarmeproduktion og biogasopgradering.
Side 42/42
KEF, Alm.del - 2022-23 (2. samling) - Bilag 130: Materialepakke om CCS-lagringstilladelser
2665695_0301.png
Oversigt over fuldskala CCS-anlæg
Center
Center for Klimaneutralt Dan-
mark
Team
Viden, forskning og omstilling
Dato
27. oktober 2021
J nr.
XXX
Baggrund
Der findes i dag ca. 27 fuldskala CCS projekter i kommerciel drift hvoraf ét er mid-
lertidigt lukket. Nedenfor fremgår 4 fuldskala-CCS-projekter uden Enhanced Oil Re-
covery (EOR). Derudover er der en lang række yderligere projekter i udviklings- og
demonstrationsfasen.
/ JASHA
Tabel 1 Oversigt over fuldskala-CCS projekter (ekskl. EOR projekter)
Navn
Land
Produktion/år
Beskrivelse
Separation af CO₂ fra naturgas. Fangstanlægget
er placeret på platform offshore. CO₂-fangst sker
vha. aminbaseret metode (MDEA) med en
kapacitet på 0,85 Mtpa. CO₂ injiceres i et off-
shore geologisk sandstenslager ved Sleipner, ud
for Norge I alt 17 Mt er injiceret til lageret siden
1996.
Lager: salin sandstens reservoir på 1.000m
dybde.
Separation af CO₂ fra naturgas. Fangstanlægget
er placeret på øen Melkøya, hvor der sker en
opgradering af gas fra offshore installation. CO₂-
fangst sker vha. aminbaseret metode med en
kapacitet på 0,7 Mtpa. CO₂ injiceres i et off-shore
geologisk lager ved Snøhvit feltet. Trans-port
sker i rør.
I alt 4 Mt er injiceret til lageret siden 2008.
Lager: salin sandstens reservoir, dybde 2.550m
Separation af CO₂ fra HMU (hydrogen manufac-
turing unit) til produktion af hydrogen. CO₂-
fangst sker via ADIP-X processen (amin absorp-
tion) med en kapacitet på 1 Mtpa. CO₂ trans-
porteres via rørledning til geologisk lagring on-
shore. I sommeren 2020 er 5 mill. ton injiceret.
Separation af CO₂ fra naturgas. CO₂-fangst med
en kapacitet på 3,4-4 Mtpa. CO₂ er lagret i et
onshore lager på Barrow Island. Transport til
lager sker i rør.
Lager: salin sandstens reservoir, dybde 2.300m
Lagring
Sleipner
Norge
Naturgas opgradering
1996
Geologisk lagring
Snøvit
Norge
Naturgas opgradering
2008
Geologisk lagring
Questt, Shell
Canada
Hydrogen produktion
2015
Geologisk lagring
Gorgon
Australien
Naturgas opgradering
2019
Geologisk lagring
Kilde: COWI, 2021. CCS – Internationale erfaringer – sikkerhed, natur og miljø: 2021. Danmark.
Kilde: Global CCS Institute, 2021. The Global Status of CCS: 2021. Australia
Side 1/1