Sundhedsudvalget 2021-22
SUU Alm.del Bilag 251
Offentligt
Fluence (UV Dose) Required to Achieve
Incremental Log Inactivation of
Bacteria, Protozoa, Viruses and Algae
Revised, updated and expanded by
Adel Haji Malayeri
1
, Madjid Mohseni
1
, Bill Cairns
2*
and James R. Bolton
3*
With earlier contributions by
Gabriel Chevrefils (2006)
4
and Eric Caron (2006)
4
With peer review by
Benoit Barbeau
4
, Harold Wright (1999)
5
and Karl G. Linden
6
1. Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
2. Trojan Technologies, London, ON, Canada
3. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
4. Chaire Industrielle-CRSNG en Eau Potable, Polytechnique Montreal, Montreal, QC, Canada
5. Carollo Engineers, Boise, ID
6. Department of Civil, Environmental and Architectural Engineering, University of Colorado-Boulder
*Corresponding authors: Bill Cairns ([email protected]) and James Bolton ([email protected])
Introduction
Revision history
This paper represents the second revision of a compilation
that goes back to 1999. The original compilation (Wright and
Sakamoto 1999) was an internal document of Trojan Technol-
ogies. The first revision was published in 2006 (Chevrefils et
al. 2006). Data from the previous reviews have been included
here. In addition, data from the past 10 years have been added
and a new table for algae has been added. Two other reviews
of the UV sensitivity of microorganisms have been published
(Hijnen et al. 2006; Coohill and Sagripanti 2008).
Brief description and selection criteria
for content of the tables
Tables 1-5 (only available in the downloaded magazine
version) present a summary of published data on the ultra-
violet (UV) fluence-response data for various microorgan-
isms that are pathogens, indicators or organisms encountered
in the application, testing of performance, and validation of
UV disinfection technologies. The tables reflect the state of
knowledge but include the variation in technique and biolog-
ical response that currently exists in the absence of standard-
ized protocols. Users of the data for their own purposes are
advised to exercise critical judgment in how they use the data.
In most cases, the data are generated from low-pressure (LP)
monochromatic mercury arc lamp sources for which the
lamp fluence rate (irradiance) can be measured empirically
and multiplied by exposure time (in seconds) to obtain an
incident fluence onto the sample being irradiated; however,
earlier data do not always contain the correction factors that
are now considered standard practice (Bolton and Linden
2003; Bolton et al. 2015a) in order to determine the average
fluence delivered to the microorganisms within the irradi-
ated sample. Such uncorrected data are marked and should
be considered as upper limits, since the necessary correc-
tions have not been made. Some data are from polychro-
matic medium pressure (MP) mercury arc lamps, and in
some cases both lamp types are used. In a few cases, filtered
polychromatic UV light is used to achieve a narrow band of
irradiation around 254 nm. These studies are also designated
as LP.
None of the data incorporate any impact of photorepair
processes. Only the response to the inactivating fluence
is documented. The references from which the data are
abstracted must be carefully read to understand how the
reported fluences are calculated and what the assumptions
and procedures are in the calculations.
It is the intention of the authors and sponsors to keep this
table dynamic, with periodic updates. Recommendations
for inclusion in the tables, along with the reference source,
should be sent to:
Dr. Bill Cairns, chief scientist
Trojan Technologies Inc.
3020 Gore Road
London, ON, Canada N5V 4T7
Email:
[email protected]
Prof. James R. Bolton
Department of Civil and
Environmental Engineering
Edmonton, AB, Canada T6G 2W2
Email:
[email protected]
The selection criteria for inclusion are recommended as
follows:
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
1.
Data must already be published in a peer-reviewed
journal or other peer-reviewed publication media;
some exceptions have been allowed where data are
only available in non-peer-reviewed papers;
2.
For the publications where an LP or MP UV lamp was
used as the UV source, the calculated fluence should
usually be determined by using a collimated beam
apparatus; however, for other UV sources, this criterion
was not strictly followed and such cases are noted;
3. Ideally, the fluence rate (irradiance) should be
measured with a recently calibrated radiometer, and
when this has not been done, a well-characterized
organism should be run as a reference to provide a
comparison with the literature values to substantiate
that the radiometer is within calibration;
4.
The publication from which the data are abstracted
should describe the experimental procedures including
collimated beam procedures, fluence calculation
procedures along with any assumptions made,
organism culturing procedures, enumeration and
preparation for experiments;
5.
Ideally, as noted above, the protocol published by Bolton
and Linden (2003) or the recently published IUVA
Protocol (Bolton et al. 2015a) should be followed. In
cases where this protocol has not been followed, notes
to that effect have been provided. Such data should be
considered as an upper limit for the fluence since the
normal correction factors have not been applied. In some
cases only the water factor has been applied; these are
deemed to have met the protocol criterion, since the
water factor is the most important correction.
6. Responses should be determined over a range of
fluences; that is, a complete fluence-response curve is
preferred to a single fluence-response measurement.
These criteria will be applied strictly for future editions of
these tables.
For the users of these tables, the following points can be
helpful in understanding the information provided:
• In some papers, the authors used different methods for
enumeration of their selected microorganism and based
on that, they reported different fluence-responses in
their work compared with the work of others. Where
this has happened for a specific paper, a brief descrip-
tion of the implemented method is provided within the
box containing the name of the tested microorganism.
• For the studies with UV sources other than an LP
lamp (e.g., filtered MP lamps, UV-LEDs, excimer
lamps, etc.) the full width at half maximum (FWHM)
of wavelength distribution around the peak wave-
length is usually about 10-12 nm, except for the
tunable laser where the bandwidth is < 1 nm.
Where the authors have reported kinetic models based
on their experimental data, these models were used
in fluence calculations for these tables. Where model
fits were not provided, the fluence reported for each
specific log reduction number was extracted by graphic
linearization (Web Plot Digitizer software) between two
adjacent experimental data points in the fluence range.
In some cases, fluence-response curves have been
determined at several wavelengths, so that an action
spectrum can be determined. These cases are noted as
“action spectrum;” however, only data for wavelengths
near 254 nm are included in the tables. Data for other
wavelengths can be obtained from the cited reference.
The reader should be aware that for a given micro-
organism there is a data spread even after the selec-
tion criteria have been applied. Some studies have
applied a Bayesian statistical analysis (e.g., see
Qian et al. 2004, 2005) to obtain an average fluence-
response curve and 95 percentile limits. Some of
the factors that could affect the reported data are:
the medium (e.g., drinking water or wastewater),
differences in the nutritional state of the cells
being assayed, the presence of particles because
of a failure to fully disperse cells following pre-
concentration for the collimated beam assay, etc.
For a given microorganism, the fluence-response curve
can depend markedly on the strain examined. This is why
studies of a given strain have been grouped together.
Note that the data in the tables below originate from
highly controlled protocols usually using defined media
and culture methods, irradiation methods, etc. These
data are useful when validating UV technologies and
envisioning regulations; however, as water quality,
nutritional state, particle content and a number of other
factors can impact on microbe responses to disinfection
in real environmental samples or processed water, such
real waters should be used for site specific assessments
of UV, and design specification should benefit from
the results of assays using these site-specific waters.
In some cases, the quality of the data was questionable
and did not meet some of the selection criteria listed
above. In these cases, the data entries are in italics.
These tables can be used as a helpful document for understanding
the fluence-responses for different organisms at different wave-
lengths, with different UV sources; however, if more details are
important for the users of these data, they must read the refer-
ence provided for each study.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Units and nomenclature
Throughout this review, fluence rate and irradiance (units mW/
cm
2
) are used interchangeably since they are virtually identical
in a collimated beam apparatus. The term fluence (units mJ/cm
2
)
is used, which is the proper term [see Bolton et al. (2015b) for a
recommended set of terms and definitions] rather than UV dose,
which was used in earlier revisions of this document; however,
it should be noted that the term UV dose is still widely used.
Finally, it is noted that in Europe and other parts of the world,
the units W/m
2
for irradiance or fluence rate and J/m
2
for fluence
(UV dose) are more commonly used. One mW/cm
2
= 10 W/m
2
and 1 mJ/cm
2
= 10 J/m
2
.
The tables
Five tables have been prepared covering spores, bacteria,
viruses, algae and other microorganisms. These tables – as well
as a reference list – are too large for print, but the full review can
be downloaded from the Member Zone on the IUVA website at
www.iuva.org.
n
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0004.png
Table 1.
Fluences for multiple log reductions for various spores
Fluence (UV dose)
(mJ/cm
2
) for a given log
reduction without
photoreactivation
Spore
Aspergillus brasiliensis
(previously known as
Aspergillus niger)
ATCC
16404
(dark culture)
Aspergillus niger
ATCC 32625
ATCC 32625
Bacillus anthracis
Sterne
Sterne
Ames
34F2 (Sterne)
method: soil extract-
peptone-beef extract agar
34F2 (Sterne)
method: Schaeffer’s
sporulation medium
Bacillus atrophaeus
ATCC 9372
Lamp
Type
LP
1
122
2
226
3
293
4
5
Proto-
col?
yes
Notes
Reference
Taylor-Edmonds et al. 2015
LP
Excimer
222 nm
LP
LP
LP
LP
116
90
28
23
25
23
245
220
37
30
~40
~40
370
325
52
560
430
yes
yes
yes
yes
yes
yes
Clauß 2006
Clauß 2006
Nicholson & Galeano 2003
Blatchley III et al. 2005
Rose & O’Connell 2009
Rose & O’Connell 2009
>120 with tailing
>120 with tailing
LP
23
36
80
yes
Rose & O’Connell 2009
LP
LP
UV-LED
260 nm
Excimer
222 nm
LP
LP
265 nm
22
10
6
38
16
10
55
26
14
71
39
19
31
yes
yes
yes
Zhang et al. 2014
Sholtes et al. 2016
Sholtes et al. 2016
Bacillus cereus
ATCC 11778
ATCC 11778
T
Bacillus megaterium
(spores)
QMB 1551
Bacillus pumilus
ASFUVRC
ASFUVRC
ATCC 27142
Bacillus subtilis
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6633
Filtered
MP
258 nm
LP
LP
LP
LP
LP
LP
87
173
68
12
36
28
19
130
348
138
18
48
40
40
184
yes
yes
yes
36
yes
yes
yes
yes
Beck et al. 2015
Boczek et al. 2016
Boczek et al. 2016
Quails & Johnson 1983
Chang et al. 1985
Sommer et al. 1998
Sommer et al. 1999
25
52
23
28
43
93
30
42
69
140
35
55
yes
yes
yes
no
Clauß 2006
Clauß 2006
Blatchley III et al. 2005
Donnellan & Stafford 1968
40
204
24
59
50
60
272
30
77
81
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0005.png
Fluence (UV dose)
(mJ/cm
2
) for a given log
reduction without
photoreactivation
Spore
Bacillus subtilis
(cont.)
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6633 (surface
cultured)
ATCC 6633 (liquid
cultured)
ATCC 6633 (surface
cultured)
ATCC 6633 (surface
cultured)
ATCC 6633 (surface
cultured)
ATCC 6633 (surface
cultured)
ATCC 6633
ATCC 6633
ATCC 6633 (surface
cultured)
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6633
ATCC 6051
TKJ 6312
WN624
Cylindrospermum
spores
Clostridium pasteurianum
ATCC 6013
ATCC 6013
Encephalitozoon intestinalis
(microsporidia)
LP
LP
LP
31
25
24
47
39
35
64
50
47
80
60
79
yes
yes
yes
Action
spectrum
Lamp
Type
1
2
3
4
5
Proto-
col?
Notes
Reference
LP
LP
LP
Excimer
222 nm
LP
282 nm
LP
LP
LP
LP
LP
Excimer
222 nm
Excimer
172 nm
UV-LED
269 nm
UV-LED
282 nm
LP
LP
LP
LP
LP
Excimer
222 nm
LP
LP &
MP
11
13
9
18
23
15
24
33
31
yes
yes
yes
Action
spectrum
Cabaj et al. 2002
Nicholson & Galeano 2003
Mamane-Gravetz & Linden
2004
Mamane-Gravetz et al. 2005
Bohrerova et al. 2006
Bohrerova et al. 2006
7
19
19
9
21
18
24
26
13
435
2
3
8
0.7
25
14
3.4
4.3
2.8
<3
12
24
29
17
32
39
37
40
21
869
10
11
13
1.5
36
26
5.3
6.1
5.6
3
18
30
39
26
43
61
51
55
30
23
35
49
34
55
82
80 +
tailing
69
38
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
Action
spectrum
Pennell et al. 2008
Pennell et al. 2008
Pennell et al. 2008
Bichae et al. 2009
Chen et al. 2009
Sun & Liu 2009
Mamane et al. 2009
Wang et al. 2010
Wang et al. 2010
Wang et al. 2010
Würtele et al. 2010
Würtele et al. 2010
Jin et al. 2006
Sommer et al. 1999
Nicholson & Galeano 2003
Singh 1975
Clauß 2006
Clauß 2006
John et al. 2003
Huffman et al. 2002
17
18
17
2.3
49
43
6.7
7.9
8.4
<6
25
26
20 +
tailing
3.7
60
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
8.4
9.6
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0006.png
Fluence (UV dose)
(mJ/cm
2
) for a given log
reduction without
photoreactivation
Spore
Fischeralla muscicola
spores
Penicillium expansum
ATCC 36200
ATCC 36200
Streptomyces griseus
ATCC 10137
ATCC 10137
Lamp
Type
LP
1
189
2
3
4
5
Proto-
col?
no
Notes
Reference
Singh 1975
LP
Excimer
222 nm
LP
Excimer
222 nm
11
22
8.5
13
55
25
38
33
13
17
90
38
49
42
15
20
115
46
65
yes
yes
Clauß 2006
Clauß 2006
Clauß 2006
Clauß 2006
Clauß 2006
Clauß 2006
18
26
140
55
yes
yes
yes
yes
Thermoactinomyces vulgaris
ATCC 43649
LP
Excimer
ATCC 43649
222 nm
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0007.png
Table 2.
Fluences for multiple log reductions for various bacteria
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP
LP
Proto-
col?
yes
yes
yes
yes
yes
yes
no
Bacterium
Aeromonas hydrophila
ATCC7966
Aeromonas salmonicida
AL 2017
1
1.1
1.5
8
10
6
9
4.6
2
2.5
2.7
10
15
7
11
3
4.0
3.1
12
18
9
14
4
5.5
5.9
14
20
12
18
5
6.9
6
8.4
Notes
Reference
Wilson et al. 1992
Liltved & Landfald 1996
Clauß 2006
Clauß 2006
Clauß 2006
Clauß 2006
Donnellan & Stafford
1968
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Rose & O’Connell 2009
Wilson et al. 1992
Butler et al. 1987
Giese & Darby 2000
Giese & Darby 2000
Sharp 1939
Clauß 2006
Clauß 2006
Sharp 1939
McKinney & Pruden
2012
Arthrobacter nicotinovorans
ATCC 49919
LP
Excimer
ATCC 49919
222 nm
Bacillus cereus
(veg. bacteria)
ATCC 11778
LP
Excimer
ATCC 11778
222 nm
Bacillus megaterium
(veg. cells) QMB 1551
265 nm
Burkholderia mallei
M9
M13
Brucella melitensis
ATCC 23456
IL195
Burkholderia pseudomallei
ATCC 11688
CA650
Brucella suis
KS528
MO 562
Campylobacter jejuni
ATCC 43429
biotype 1 strain 709/84
Citrobacter diversus
Citrobacter freundii
Corynebacterium
diphtheriae
Deinococcus radiodurans
ATCC 13939
ATCC 13939
Eberthella typhosa
Enterococcus faecium
Vancomycin-resistant
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
Excimer
222 nm
LP
LP
1.0
1.2
2.8
3.7
1.7
1.4
2.7
1.7
1.0
0.8
5
5
3.4
113
44
2.1
7
2.4
2.7
5.3
5.8
3.5
2.8
5.3
3.6
2.1
1.3
7
9
3.8
4.1
7.8
7.8
5.5
4.3
7.9
5.6
3.4
1.7
9
13
5.2
5.5
10.3
9.9
7.4
5.7
10.5
7.5
4.6
2.1
11.5
5.8
13
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
142
57
170
91
205
yes
yes
no
9
11
13
15
yes
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0008.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP
LP
MP
LP
LP
LP
LP
LP
LP
LP
LP
Excimer
222 nm
LP or
MP
LP
MP
LP
UV-LED
255 nm
UV-LED
275 nm
LP
LP
MP
LP
MP
LP
LP
UV-LED
265 nm
LP
MP
LP
MP
LP
UV-LED
260 nm
LP
Proto-
col?
yes
yes
yes
10.
5
10
12
10
7.5
5.0
9.7
yes
15
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
7.7
9
3.0
2.4
11
8.3
7.0
20
yes
yes
yes
yes
yes
12
10
yes
yes
yes
Bacterium
Enterococcus faecalis
ATCC27285
DSM 20478
DSM 20478
Escherichia coli
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11229
ATCC 11303
ATCC 11775
ATCC 11775
ATCC 15597
ATCC 15597
ATCC 25922
ATCC 29425
1
3.7
7.1
5.5
3.0
2.5
7
3.4
3.5
2.5
3.9
3.3
4.9
1.6
4.7
2.5
4.1
5.9
4.3
4
1.1
0.9
6.4
5.0
6.0
5.4
2
8.0
8.7
7.6
4.8
3.0
8
5.0
4.7
3.0
5.4
4.9
7.7
3.0
6.2
4.0
5.1
7.9
6.2
6
2.0
1.6
8.9
6.8
6.5
8.5
3
4
5
6
Notes
Reference
Moreno-Andrés et al.
2016
Chen et al. 2015
Chen et al. 2015
Chang et al. 1985
Harris et al. 1987
Hoyer 1998
Sommer et al. 1998
Sommer et al. 2000
Sommer et al. 2001
Zimmer & Slawson 2002
Clauß et al. 2005
Clauß et al. 2005
Bohrerova et al. 2008
Quek & Hu 2008
Quek & Hu 2008
Bowker et al. 2011
Bowker et al. 2011
Bowker et al. 2011
Wu et al. 2005
Quek & Hu 2008
Quek & Hu 2008
Quek & Hu 2008
Quek & Hu 2008
Sommer et al. 1998
Chatterley & Linden
2010
Chatterley & Linden
2010
Quek & Hu 2008
Quek & Hu 2008
Shin et al. 2008
Shin et al. 2008
Sholtes et al. 2016
Sholtes et al. 2016
Otaki et al. 2003
14 + tailing
13 + tailing
12 + tailing
6.7
3.5
9
6.7
5.5
3.5
6.8
5.7
9.1
5.0
7.2
4.7
6.2
8.4
5
11
8.3
6.5
4.5
8.2
6.6
10.3
6.5
8.3
5.3
9.6
6.0
9.3
6.0
7.3
10
3.4
3.0
12
9.4
8.0
13
4.0
3.4
13
11
9
15
ATCC 29425
ATCC 700891
ATCC 700891
B
B
B ATCC 13033
B ATCC 13033
C
3.6
7.3
4.8
1.0
0.9
1.2
1.2
2
5.9
10
6.8
2.4
2.1
3.0
3.0
3
17
12
8.2
4.4
4.2
4.7
4.7
4
20
13
9.0
6
6
6.5
6.5
5.6
15
9.8
8.2
8.2
6.5
10
10
8
yes
yes
yes
yes
yes
yes
yes
yes
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0009.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP or
MP
LP
MP
XeBr
Exci-
lamp
282 nm
LP
LP &
MP
LP
LP &
MP
UV-LED
265 nm
UV-LED
280nm
LP
UV-LED
285 nm
LP
LP
MP
LP
MP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
Proto-
col?
Bacterium
Escherichia coli
(cont.)
C3000
CGMCC 1.3373
CGMCC 1.3373
CN13
1
2
3
4
5
6
Notes
Reference
3.0
3.1
3.1
5.5
4.3
5.9
5.9
7.5
5.5
8.0
9.6
9.6
7.0
13
13
12
yes
yes
yes
Eischeid & Linden 2007
Guo et al. 2009
Guo et al. 2009
Matafonova et al. 2012
K12
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
K12 IFO 3301
NBIMB 9481
NBIMB 9481
NBIMB 10083
NBIMB 10083
OP50
O157: H7
O157: H7
O157: H7 ATCC 43894
O157: H7 CCUG 29193
O157: H7 CCUG 29197
O157: H7 CCUG 29199
O25: K98: NM
O26
O50: H7
O78: H11
145 Ampicillin resistant
018 Trimethoprim
resistant
SMS-3-5
wild type
wild type
1.1
2
1.5
2.2
2.6
3.4
1.9
7.8
2
5.9
4.3
2.8
2.5
2.0
1.5
<2
1.4
3.5
2.5
0.4
5.0
5.4
2.5
4
0.8
1.5
3
2.7
4.4
2.0
1.9
4
2.0
4.4
4.7
6.9
4
13
4
8.0
6.2
4.4
4.3
4.4
3.0
<2
2.8
4.7
3.0
0.7
7.5
8.0
3.0
5
1.9
3.0
5.1
4.0
6.2
3.6
2.6
6
3.5
6.7
6.6
10
6
16
6
9.3
7.3
5.6
5.1
6.7
4.5
2.5
4.2
5.5
4.6
1.0
9
10.5
3.5
5.5
3.0
4.0
6.5
5.3
7.3
5.2
3.4
7
4.2
8.9
9.0
14
8
23
10.5
8.6
6.6
6.0
9.1
6.0
4
5.5
7
5.0
1.1
10
12.8
4.5
6
4.7
4.9
7.6
6.6
8.1
6.8
34
12
7.6
6.8
9
5.5
11
12
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
??
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
Qiu et al. 2004
Oguma et al. 2002
Otaki et al. 2003
Oguma et al. 2004
Oguma et al. 2013
Oguma et al. 2013
Rattanakul et al. 2014
Oguma et al. 2015
Oguma et al. 2001
Quek & Hu 2008
Quek & Hu 2008
Quek & Hu 2008
Quek & Hu 2008
Bichai et al. 2009
Tosa & Hirata 1999
Yaun et al. 2003
Wilson et al. 1992
Sommer et al. 2000
Sommer et al. 2000
Sommer et al. 2000
Sommer et al. 2000
Tosa & Hirata 1999
Sommer et al. 2000
Sommer et al. 2000
Templeton et al. 2009
Templeton et al. 2009
McKinney & Pruden
2012
Butler et al. 1987
Sommer et al. 2000
Hu et al. 2012
6.2
7.6
8
6.9
5.5
1.3
12
5
7
17
1.4
6
9.2
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0010.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP
LP
LP
LP
LP
LP
Proto-
col?
yes
yes
yes
yes
no
20
no
Bacterium
Faecal coliforms
Francisella tularensis
LVS
NY98
Faecal streptococci
Halobacterium elongata
ATCC 33173
Halobacterium
salibarum
ATCC 43214
Helicobacter pylori
Texas isolate
ATCC 43504
ATCC 49503
Klebsiella pneumoniae
Klebsiella terrigena
ATCC 33257
Legionella longbeachae
ATCC 33462
Legionella pneumophila
Philadelphia 2
ATCC 33152
ATCC 33152
ATCC 33152
ATCC 33823
ATCC 43660
Sero group 1
Sero group 8
Leptospira
biflexa
serovar patoc
Patoc I
illini
3055
interrogans
serovar
Pomona Pomona
Listeria monocytogenes
Mycobacterium avium
33B
W41
1
6
1.3
1.4
9
0.4
12
2
9
3.1
3.8
14
0.7
15
3
13
4.8
6.3
22
1.0
18
4
22
6.6
8.7
30
5
6
Notes
Reference
Maya et al. 2003
Rose & O’Connell 2009
Rose & O’Connell 2009
Maya et al. 2003
Martin et al. 2000
Martin et al. 2000
LP
LP
LP
LP
LP
LP
2.2
4.5
1.7
5
3.6
1.4
3.0
5.7
3.1
7
6.4
3.0
3.8
6.7
4.0
10
9.3
4.7
4.6
7.5
5.3
12
12
6.3
5.7
8.0
7
6.6
yes
yes
yes
yes
yes
yes
Hayes et al. 2006
Hayes et al. 2006
Hayes et al. 2006
Giese & Darby 2000
Wilson et al. 1992
Cervero-Arago et al.
2014
Antopol & Ellner 1979
Oguma et al. 2004
Oguma et al. 2004
Cervero-Arago et al.
2014
Cervero-Aragó et al.
2014
Wilson et al. 1992
Cervero-Aragó et al.
2014
Cervero-Aragó et al.
2014
15
LP
LP
MP
LP
LP
LP
LP
LP
0.9
1.6
1.9
1.7
1.7
3.0
1.7
1.8
1.8
3.2
3.8
3.0
3.1
5.0
2.9
3.3
2.8
4.8
5.8
4.3
4.5
7.2
4.2
4.7
3.7
6.4
7.7
5.7
5.8
9.3
5.4
6.1
8.0
9.6
no
yes
yes
yes
yes
yes
yes
yes
LP
LP
2.3
2.8
3.8
3.8
5.1
4.8
6.7
no
no
LP
LP
LP
LP
0.8
2.2
5.8
5.7
1.2
3.0
8.1
7.9
1.7
3.2
10
10
4.1
13
12
4.6
no
no
yes
yes
Stamm and Charon
1988
Stamm and Charon
1988
Stamm and Charon
1988
Collins 1971
Hayes et al. 2008
Hayes et al. 2008
15
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0011.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
Proto-
col?
yes
Bacterium
1
6.4
2
9.4
3
12
4
15
5
6
Notes
Reference
Hayes et al. 2008
Mycobacterium avium
(cont.)
D55A01
LP
Mycobacterium avium hominissuis
HMC02 (white
transparent) (WT)
LP
HMC02 (white
transparent) (WT)
HMC02 (white opaque)
(WO)
HMC02 (white opaque)
(WO)
Mycobacterium bovis
BCG
7.7
12
17
22
yes
Shin et al. 2008
MP
LP
MP
LP
8.1
7.1
6.6
2.2
12
11
11
4.4
16
17
15
19
yes
yes
yes
no
Shin et al. 2008
Shin et al. 2008
Shin et al. 2008
Collins 1971
Mycobacterium intracellulare
B12CC2
LP
ATCC 13950
LP
Mycobacterium phlei
LP
Mycobacterium terrae
ATCC 15755
LP
ATCC 15755
ATCC 15755
Mycobacterium
tuberculosis
Pseudomonas aeruginosa
ATCC 9027
ATCC 10145
ATCC 14207
ATCC 15442
ATCC 27853
ATCC 27853
ATCC 27853
01
B2
G2
BS4
WB1
SH-2918
NCTC 10662
Salmonella spp.
LP
MP
LP
7.8
7.4
3.6
3.9
3.7
3.2
2.2
11
11
13
15
16
19
yes
yes
no
yes
yes
yes
no
(1)
Hayes et al. 2008
Hayes et al. 2008
Collins 1971
Bohrerova & Linden
2006a
Bohrerova & Linden
2006b
Bohrerova & Linden
2006b
Collins 1971
9.3
9.3
11
4.3
16 + tailing
16
39
LP
LP
LP
LP
LP
LP
Excimer
222 nm
LP
LP
LP
LP
LP
LP
LP
LP
3.8
4.6
3.7
3.8
4.9
0.8
3.1
1.3
5.6
3.0
3.5
5.8
3.5
1.5
<2
6.5
10
17
1.6
4.8
2.7
2.3
5.9
4.3
3.1
7.5
6.3
10
10
no
no
no
no
no
yes
yes
yes
no
no
no
no
no
yes
??
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Clauß 2006
Clauß 2006
McKinney & Pruden
2012
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Abshire & Dunton 1981
Blatchley et al. 2016
Yaun et al. 2003
2.6
2
3.8
3.5
5.0
7
6.2
14
29
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0012.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
Proto-
col?
yes
yes
yes
yes
7.7
3.2
1.1
2.8
0.9
1.4
13
yes
no
no
no
no
no
no
Action
spect-
rum
Bacterium
Salmonella typhimurium
ATCC 6539
ATCC 19430
(in act. sluge)
LT2 SL3770
1
2.6
2.0
3
4
3.9
2.2
0.9
0.3
0.7
0.2
0.5
2
4.5
4.1
12
5.7
5.3
1.7
0.5
1.4
0.4
0.8
3
5.8
6.2
22
7.8
6.7
2.4
0.8
2.1
0.6
1.1
4
7
8.3
50
5
8
6
Notes
Reference
Chang et al. 1985
Wilson et al. 1992
Maya et al. 2003
Chen et al. 2009
Hu et al. 2012
Sharp 1939
Qiu et al. 2004
Qiu et al. 2004
Qiu et al. 2004
Qiu et al. 2004
Qiu et al. 2004
Serratia marcescens
Shewanella algae
Shewanella oneidensis
DLM7
MR4
MR1
Shewanella putrefaciens
200
Shigella dysenteriae
ATCC 29027
Shigella
paradysenteriae
Shigella sonnei
ATCC 9290
Staphylococcus albus
LP
LP
LP
0.1
0.5
1.7
1.0
1.1
1.9
1.9
2.8
2.5
3.8
3.1
4.7
yes
yes
no
Wilson et al. 1992
Hu et al. 2012
Sharp 1939
LP
LP
LP
3.2
1.8
1.1
4.9
6.5
8.2
yes
no
no
Action
spect-
rum
Chang et al. 1985
Sharp 1939
Collins 1971
3.2
4.0
4.8
Staphylococcus aureus
LP
(hem)
ATCC 25923
ATCC 25923
ATCC 25923
ATCC BAA-1556
(Methicillin resistant)
Streptococcus faecalis
ATCC 29212
Streptococcus
hemolyticus
Vibrio anguillarum
Vibrio cholerae
Classical OGAWA 154
LP
LP
LP
Excimer
222 nm
LP
LP
LP
LP
LP
2.1
2.6
3.9
4.4
9.3
4.5
6.6
2.2
0.5
0.8
1.2
1.4
1.5
2.3
2.0
3.9
6.8
3.2
no
no
yes
yes
yes
yes
yes
no
yes
no
Gates 1929
Sharp 1939
Chang et al. 1985
Clauß 2006
Clauß 2006
McKinney & Pruden
2012
Chang et al. 1985
Sharp 1939
Liltved & Landfald 1996
Banerjee & Chatterjee 1977
5.4
5.8
12
7.2
8.6
6.5
6.4
14
8.8
9.8
10
7.3
18
10
11.1
9
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0013.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Lamp
Type
LP
LP
LP
LP
Proto-
col?
no
no
2.1
2.8
3.6
yes
no
Bacterium
Vibrio cholerae
(cont.)
el tor MAK 154
NAG 1976
ATCC 25872
Vibrio parahaemolyticus
2977
Yersinia enterocolitica
Sero-group 0:3 strain
304/84
ATCC 4780
ATCC 4780
ATCC 27729
Yersinia pestis
A1122
Harbin
Yersinia ruckeri
1
1.7
2.5
0.7
4.4
2
4.1
8.9
1.4
3
7.1
4
5
6
Notes
Reference
Banerjee & Chatterjee
1977
Banerjee & Chatterjee
1977
Wilson et al. 1992
Banerjee & Chatterjee
1977
LP
LP
Excimer
222 nm
LP
LP
LP
LP
1.2
2.1
3.1
1.6
1.4
1.3
1
2.2
4.1
6.1
2.7
2.6
2.2
2
3.0
5.0
7.6
4.0
3.7
3.2
3
3.6
5.8
8.8
5.1
4.9
4.1
4
10
12
yes
yes
yes
yes
yes
yes
yes
Butler et al. 1987
Clauß et al. 2005
Clauß et al. 2005
Wilson et al. 1992
Rose & O’Connell 2009
Rose & O’Connell 2009
Liltved & Landfald 1996
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0014.png
Table 3.
Fluences for multiple log reductions for various protozoa
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Protozoan
Acanthamoeba castellanii
ATCC 30234
(life stage: trophozoites;
plaque assay)
CCAP 15342
(life stage: trophozoites;
method: MPN)
CCAP 15342
(life stage: cysts;
method: MPN)
Acanthamoeba
culbertsoni
ATCC 30171
(mouse infectivity assay;
Mus musculus
species,
strain CD-1)
Acanthamoeba spp.
isolated strain
(life stage: trophozoites;
mouse infectivity assay;
Mus musculus
species,
strain CD-1)
155
(life stage: trophozoites;
method: MPN)
155
(life stage: cysts;
method: MPN)
Cryptosporidium
Hominis
[cell culture infectivity
assay using HCT-8 cells
(CCL-244) & MDBK
cells]
Cryptosporidium parvum
[mouse infectivity assay
(neonatal CD-1 mice)]
[mouse infectivity assay
(neonatal CD-1 mice)]
[mouse infectivity assay
(neonatal CD-1 mice)]
[mouse infectivity assay
(neonatal CD-1 mice)]
Lamp
Type
LP
1
40
2
3
4
5
Proto-
col?
yes
Notes
Reference
Chang et al. 1985
LP
32
52
72
yes
Cervero-Arago et al. 2014
LP
45
75
91
125
yes
Cervero-Arago et al. 2014
LP
38
58
125
148
yes
Maya et al. 2003
LP
39
75
132
160
yes
Maya et al. 2003
LP
LP
28
34
31
67
66
99
71
yes
yes
Cervero-Arago et al. 2014
Cervero-Arago et al. 2014
LP &
MP
3.0
5.8
yes
Johnson et al. 2005
MP
LP
MP
LP &
MP
<3
<3
<3
<3
<3
<3
<3
3-6
3-9
19
>16
>11
yes
yes
yes
Bolton et al. 1998;
Bukhari et al. 1999
Clancy et al. 2000
Clancy et al. 2000
2.4
<5
5.2
9.5
yes
Craik et al. 2001
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0015.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Protozoan
Lamp
Type
1
1
2
2
3
>5
4
5
Proto-
col?
yes
Notes
Reference
Shin et al. 2001
Cryptosporidium parvum
(cont.)
[mouse infectivity assay
LP
& cell culture infectivity
assay using MDCK cells
(CCL-34)]
[mouse infectivity assay
MP
(neonatal CD-1 mice)]
[mouse infectivity assay
LP
(SCID mice)]
[cell culture infectivity
LP
assay using HCT-8 cells
(CCL-244)]
[cell culture infectivity
MP
assay using HCT-8 cells
(CCL-244)]
[culture-
MP
immunofluorescence
(CC–IFA) based
infectivity assay]
[mouse infectivity assay
LP
(neonatal CD-1 mice)]
[mouse infectivity assay
MP
(neonatal CD-1 mice)]
[cell culture infectivity
LP
assay using HCT-8 cells
(CCL-244)]
HNJ-1
LP
[mouse infectivity assay
(SCID mice)]
[cell culture infectivity
Laser
assay using HCT-8 cells
254
(CCL-244)]
nm
Cryptosporidium spp.
LP &
MP
Giardia lamblia
(excystation assay)
(gerbil infectivity assay)
(gerbil infectivity assay)
(gerbil infectivity assay)
Giardia muris
(mouse infectivity assay)
(mouse infectivity assay)
(mouse infectivity assay)
(mouse infectivity assay)
(mouse infectivity assay)
LP?
LP
LP
LP
MP
MP
LP
LP
LP
<10
0.5
2
<10
1.0
<3
>10
1.4
<3
2.2
yes
no
yes
Belosevic et al. 2001
Morita et al. 2002
Zimmer et al. 2003
<1
<1
<1
yes
Zimmer et al. 2003
1
2
2.9
4
yes
Bukhari et al. 2004
<2
<5
1.8
<2
<5
5.6
<2
<5
25
<4
~6
<10
yes
yes
yes
Clancy et al. 2004
Amoah et al. 2005
Ryu et al. 2008
<0.7
<1.4
2.2
yes
Oguma et al. 2001
1.3
1.9
2.3
2.8
yes
Action
spect-
rum
(2)
Beck et al. 2015
0.8
40
<10
<0.5
<2
1
<10
<2
<2
<5
1.5
180
~10
<0.5
<2
4.5
<10
<2
<2
<5
3.0
6.0
yes
no?
yes
yes
yes
yes
yes
yes
no
yes
Qian et al. 2004
Karanis et al. 1992
Campbell & Wallace 2002
Linden et al. 2002
Mofidi et al. 2002
Craik et al. 2000
Belosevic et al. 2001
Mofidi et al. 2002
Hayes et al. 2003
Amoah et al. 2005
20
<0.5
<4
<1
28 + tailing
<25
~60
<4
~2
~2.3
5
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0016.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Protozoan
Giardia spp.
Naegleria fowleri
Cysts
(method: MPN)
Trophozoites
(method: MPN)
Toxoplasma gondii
oocysts
[immunofluorescence
assay (IFA)]
[mouse infectivity assay
(SCID mice)]
Vermamoeba vermiformis
CCAP 15434 /7A
(life stage: trophozoites;
method: MPN)
CCAP 15434/7A
(life stage: cysts;
method: MPN)
195
(life stage: trophozoites;
method: MPN)
195
(life stage: cysts;
method: MPN)
Lamp
Type
LP &
MP
LP
LP
1
0.6
32
8
2
1.1
63
13
3
1.9
104
18
4
3.4
121
24
5
Proto-
col?
yes
yes
yes
Notes
(2)
Reference
Qian et al. 2004
Sarkar and Gerba 2012
Sarkar and Gerba 2012
LP
7.2
13
17
19
yes
Dumètre et al. 2008
LP
3.4
6.8
10
yes
Ware et al. 2010
LP
11
19
26
34
yes
Cervero-Arago et al. 2014
LP
17
38
54
78
yes
Cervero-Arago et al. 2014
LP
LP
10
32
17
60
24
76
32
110
yes
yes
Cervero-Arago et al. 2014
Cervero-Arago et al. 2014
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0017.png
Table 4.
Fluences for multiple log reductions for various viruses
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Adenovirus
Type 1
method:
MPN
Type 2
Type 2
Host
PLC/ PRF/5
and
HeLa cell line
PLC/ PRF/5
Human lung
cell line
A549 cell line
A549 cell line
A549 cell line
A549 cell line
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
LP
LP
LP
LP
LP
MP
MP
<240
nm
blocked
35
40
35
20
~30
~10
69
78
55
45
~60
~20
103
119
75
80
~30
138
160
100
110
~40
~50
195
235
yes
yes
yes
yes
yes
yes
Nwachuku et al. 2005
Gerba et al. 2002
Ballester & Malley
2004
Shin et al. 2005
Linden et al. 2007
Linden et al. 2007
Type 2
Type 2
Type 2
Type 2
~15
8
35
~30
31
78
~45
50
126
~60
80
168
117
yes
yes
yes
Linden et al. 2007
Eischeid et al. 2009
Linden et al. 2009
Type 2
Type 2
method:
TCID50
Type 2
method:
TCID50
Type 2
method:
cell culture
Type 2
adenoid 6
(VR-846)
Type 2
Type 2
method:
TCID50
Type 2
method:
TCID50
Type 2 ATCC
VR-846;
method:
TCID50
Type 2
method:
plaque assay
A549 cell line
A549 cell line
LP
LP
A549 cell line
HEK293 cells
human
embryonic
kidney
A-549
cell line
(CCL-185)
A549 cell line
A549 cell line
(CCL-185)
A549 cell line
(CCL-185)
A549 cell line
(CCL-185)
MP
14
29
44
80
120
yes
(3)
Linden et al. 2009
LP
37
88
120
yes
Baxter et al. 2007
LP
MP
42
4
83
7
124
14
166
22
40 +
tailing
yes
yes
Sirikanchana et al.
2008
Eischeid et al. 2009
LP
36
82
yes
Shin et al. 2009
MP
15
29
45
59
80
yes
Shin et al. 2009
LP
56
108
159
206
yes
Bounty et al. 2012
A549 cell line
(CCL-185)
LP
39
71
98
125
yes
Rodriguez et al. 2013
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0018.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
Adenovirus (cont.)
Type 2
A549 cell line
method:
(CCL-185)
plaque assay
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 6
kb fragment
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 6
kb fragment
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 1
kb fragment
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 1
kb fragment
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 10
kb fragment
Type 2
A549 cell line
method:
(CCL-185)
LR-qPCR 10
kb fragment
Type 2 ATCC A549 cell line
VR-846
(CCL-185)
method: MPN
Type 2 ATCC
VR-846;
method: LR-
PCR 1.1 kbp
fragment
Type 2 ATCC
VR-846;
method: LR-
PCR 1.1 kbp
fragment
Type 2 ATCC
VR-846
method: MPN
A549 cell line
(CCL-185)
MP
7
18
20-
50
28
47
yes
Rodriguez et al. 2013
LP
5
100
yes
Rodriguez et al. 2013
MP
4
15-
50
100
yes
Rodriguez et al. 2013
LP
18
50
100
yes
Rodriguez et al. 2013
MP
5 + tailing
yes
Rodriguez et al. 2013
LP
15
yes
Rodriguez et al. 2013
MP
39
94
yes
Rodriguez et al. 2013
LP
43
86
130
174
yes
Action
spect-
rum
Beck et al. 2014
LP
45
68
yes
Beck et al. 2014
A549 cell line
(CCL-185)
Laser
254
nm
32
80-90 + tailing
yes
Beck et al. 2014
A549 cell line
(CCL-185)
LP
40
76
120
yes
Beck et al. 2014
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0019.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
Adenovirus (cont.)
Type 2 ATCC A549 cell line
VR-846
(CCL-185)
method: MPN
Type 2 ATCC
VR-846
method: MPN
Type 2;
method:
cell culture
Type 2;
method:
infectivity
Type 2;
method:
qPCR
Type 2;
method:
MPN
Type 2;
ATCC
VR-846;
method:
ICC-qPCR
Type 2;
method:
total
culturable
virus assay
Type 4;
ATCC
VR-1572;
method:
ICC qPCR
Type 5;
method:
cell culture
Type 5
Type 5
Type 5
Type 5
Type 5
Type 5
Type 5
A549 cell line
(CCL-185)
A549 cell line
(CCL-185)
MP
8
18
34
yes
(3)
Beck et al. 2014
MP
Laser
254
nm
LP
32
71
135
yes
(4)
Beck et al. 2014
40
70
101
yes
Beck et al. 2014
A549 cell line
33
118
no
Calgua et al. 2014
A549 cell line
A549 cell line
(CCL-185)
A549 cell line
(CCL-185)
LP
140
no
Calgua et al. 2014
LP
47
86
129
172
yes
Ryu et al. 2015
LP
40
81
121
161
yes
Ryu et al. 2015
A549 cell line
(CCL-185)
LP
26
100
135
168
203
234
yes
Boczek et al. 2016
PLC/ PRF/5
ATCC CRL-
8024
LP
10
34
69
116
yes
Gerrity et al. 2008
HEK 293
cells human
embryonic
kidney
HEK293
HEK293
PLC/PRF/5
PLC/PRF/5
XP17BE
XP17BE
A549 cell line
(CCL-185)
LP
45
76
120
yes
Baxter et al. 2007
LP
MP
LP
MP
LP
MP
LP
38
23
31
22
13
9
51
76
45
62
43
26
18
101
114
68
93
65
39
27
151
152
90
123
87
52
36
yes
yes
yes
yes
yes
yes
yes
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Rattanakul et al. 2014
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0020.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
Adenovirus (cont.)
Type 5
A549 cell line
(CCL-185)
Type 5
A549 cell line
ATCC VR5
(CCL-185)
LP
UV-
LED
285
nm
LP
63
50
100
82
151
126
yes
yes
Rattanakul et al. 2015
Oguma et al. 2015
Type 6;
method:
MPN
Type 40;
strain: Dugan
Type 40;
method:
MPN
Type 40;
method:
MPN
Type 40
Type 40
Type 40
Type 40
Type 41;
ATCC
VR-930;
method:
ICC-RT-PCR
Type 41;
method:
cell culture
PLC/ PRF/5
and HeLa
cell line
PLC/PRF5
cell line
PLC/PRF5
cell line
PLC/PRF5
cell line
HEK293
HEK293
PLC/PRF/5
PLC/PRF/5
HEK 293
cells ATCC
CRL-1573
39
77
115
154
yes
Nwachuku et al. 2005
Thurston-Enriquez et
al. 2003
Linden et al. 2007
LP
MP
50
16
109
23
167
~30
~40
yes
yes
LP
LP
MP
LP
MP
LP
63
35
17
34
16
56
88
70
33
67
33
111
109
105
50
101
49
167
>120
139
66
134
65
222
yes
yes
yes
yes
yes
yes
Blatchley et al. 2008
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Ko et al. 2005
Type 41
Type 41
Type 41
Type 41
Type 41
Type 41
Atlantic
halibut
nodavirus
(AHNV)
B40-8 (phage)
HEK 293
cells
human
embryonic
kidney &
PLC/PRF/5
(heaptoma)
cells
HEK293
HEK293
PLC/PRF/5
PLC/PRF/5
XP17BE
XP17BE
SSN-1 cell
line
LP
62
120
yes
Baxter et al. 2007
LP
MP
LP
MP
LP
MP
LP
45
20
34
18
14
11
35
91
39
68
36
29
21
70
136
59
103
53
43
32
104
182
78
137
71
57
42
140
176
211
yes
yes
yes
yes
yes
yes
yes
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Guo et al. 2010
Liltved et al. 2006
B. fragilis
HSP-40
B. fragilis
LP
LP
12
11
18
17
23
23
28
29
35
41
yes
yes
Sommer et al. 1998
Sommer et al. 2001
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0021.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Calicivirus feline
CRFK cell
line
MDCK cell
line
CRFK cell
line
Crandell
Reese feline
kidney cell
CRfk, ATCC
CCL-94
BGM cell line
BGM cell line
BGM cell line
BGM cell line
BGM cell line
BGM cell line
foetal rhesus
monkey
kidney cell
FRhK-4,
ATCC CRL-
1688
E. coli
Hfr
K12 ATCC
23631
FRhK-4 cell
FRhK-4 cell
HAV/HFS/
GBM
LP
LP
LP
5
7
7
15
15
16
23
22
25
30
30
39
36
yes
yes
yes
Thurston-Enriquez et
al. 2003
de Roda Husman et
al. 2004
de Roda Husman et
al. 2004
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
FCV ATCC
VR-782
LP
5
12
18
26
yes
Park et al. 2011
Coxsackievirus
B3
B4
B5
B5
Echovirus
I
II
12
LP
LP
LP
LP
LP
LP
8
7
9.5
7
8
7
16
13
18
14
17
14
25
18
27
21
25
21
33
24
36
29
yes
yes
yes
yes
yes
yes
Gerba et al. 2002
Shin et al. 2005
Gerba et al. 2002
Battigelli et al. 1993
Gerba et al. 2002
Gerba et al. 2002
33
28
LP
8
13
18
28
40
yes
Park et al. 2011
GA phage
LP
18
38
58
87
121
yes
Simonet & Gantzer
2006
Wilson et al. 1992
Battigelli et al. 1993
Wiedenmann et al.
1993
Liltved et al. 2006
Hepatitis
A HM175
A HM175
A
LP
LP
LP
5.4
4
6
15
8
10
25
12
15
35
16
21
yes
yes
no
Infectious
pancreatic
necrosis
virus
(IPNV)
Infectious
salmon
anaemia
virus
(ISAV)
BF-2 cell line
LP
82
165
246
325
yes
SHK-1 cell
line
LP
2.5
5.0
7.5
yes
Liltved et al. 2006
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0022.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
JC polyomavirus
Mad-4
method:
SVG-A cells
cell culture
Mad-4
method:
SVG-A cells
qPCR
MS2 coliphage
N/A
LP
60
124
171
no
Calgua et al. 2014
LP
>180
no
Calgua et al. 2014
E. coli
Famp
E. coli
Famp
E. coli
Cr63
E. coli
C3000
E. coli
ATCC15597
Salmonella
typhimurium
WG49
E. coli
ATCC15597
E. coli
C3000
E. coli
K-12 Hfr
E. coli
K-12
E. coli
C3000
E. coli
ATCC 15977
E. coli
ATCC 15977
E. coli
C3000
E. coli
ATCC 15977
E. coli
ATCC 15977
E. coli
K12 A/λ(F+)
UV-
LED
255
nm
LP
MP
LP
LP
LP?
14
26
38
yes
Aoyagi et al. 2011
13
9
17
35
19
25
17
34
44
31
64
46
56
yes
yes
yes
yes
no
Rodriguez et al. 2014
Rodriguez et al. 2014
Rauth 1965
Battigelli et al. 1993
Oppenheimer et al.
1993
Nieuwstad &
Havelaar 1994
40
61
LP
16
35
57
83
114
152
no
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
LP
13
13
21
19
20
20
20
20
29
14
22
29
28
36
36
42
50
42
42
58
33
48
45
62
80
yes
yes
yes
yes
yes
yes
Meng & Gerba 1996
Shin et al. 2001
Sommer et al. 1998
Sommer et al. 2001
Linden et al. 2002
Thurston-Enriquez et
al. 2003
Lazarova & Savoye
2004
Batch et al. 2004
Nwachuku et al. 2005
Hu et al. 2012
Rattanakul et al. 2014
55
68
85
70
69
87
50
90
120
98
92
116
66
133
no
yes
yes
yes
yes
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0023.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
MS2 coliphage (cont.)
E. coli
Famp
ATCC
700891
E. coli
Famp
ATCC
700891
method:
cell culture
Salmonella
typhimurium
WG49
Salmonella
typhimurium
WG49
E. coli
ATCC
15977
E. coli
HS(pFamp)R
E. coli
ATCC
15977
E. coli
ATCC
15977
E. coli
ATCC
15977
E. coli
ATCC
15977
E. coli
ATCC 15977
E. coli
NCTC12486
E. coli
Hfr
K12 ATCC
23631
E. coli
ATCC
15597
E. coli
ATCC
15597
C3000
E. coli
Famp
E. coli
ATCC 15597
E. coli
ATCC 15597
E. coli
ATCC 15597
LP
UV-
LED
260
nm
LP
14
30
45
60
yes
Sholtes et al. 2016
13
36
40
53
yes
Sholtes et al. 2016
20
40
61
91
119
146
no
Calgua et al. 2014
method:
qPCR
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
LP
<180
no
Calgua et al. 2014
LP
LP
LP
LP
LP
LP
LP
LP
17
16
15
25
20
20
18
20
38
45
32
42
40
40
38
40
59
72
51
66
62
62
59
60
81
100
72
97
92
92
80
103
128
98
123
154
yes
yes
yes
yes
Wilson et al. 1992
Thompson et al. 2003
Lazarova & Savoye
2004
Butkus et al. 2004
Ko et al. 2005
Ko et al. 2005
Sun & Liu 2009
Mamane-Gravetz et
al. 2005
141
141
173
173
yes
yes
yes
yes
Action
spect-
rum
LP
20
40
68
95
125
yes
Simonet & Gantzer
2006
Templeton et al. 2006
LP
LP
LP
18
14
16
40
29
>30
45
yes
yes
yes
Bohrerova et al. 2006
Lee et al. 2008
Blatchley III et al.
2008
Bowker et al. 2011
Bowker et al. 2011
LP
LP
UV-
LED
255 nm
20
18
25
39
41
50
61
83
yes
yes
yes
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0024.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
UV-
LED
275
nm
LP
LP
1
2
3
4
5
6
Proto-
col?
Notes
Reference
MS2 coliphage (cont.)
E. coli
ATCC
ATCC15977-
B1
15597
25
55
yes
Bowker et al. 2011
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
E. coli
Famp
ATCC
700891
N/A
E. coli
ATCC 15597
Migula
E. coli
ATCC 15597
E. coli
ATCC
15597
C3000
E. coli
ATCC
15597
C3000
E. coli
ER2738
E. coli
Hfr
K12
ATCC23631
E. coli
HS(pFamp)R
ATCC
700891
E. coli
HS(pFamp)R
ATCC
700891
E. coli
HS(pFamp)R
ATCC
700891
E. coli
K12 A/λ(F+)
E. coli
Famp ATCC
700891
14
13
32
30
51
53
70
yes
yes
Park et al. 2011
Timchak & Gitis 2012
LP
18
52
75
92
106
116
yes
Guo & Hu 2012
Sherchan et al. 2014
LP
LP
UV-
LED
260
nm
UV-
LED
255
nm
LP
20
20
40
45
70
95
120
138
no
yes
Jenny et al. 2014
ATCC15977-
B1
15
32
48
yes
Jenny et al. 2014
ATCC15977-
B1
ATCC15977-
B1
ATCC15977-
B1
19
42
72
no
Simons et al. 2014
6
13
21
29
37
46
yes
Action
spect-
rum
Action
spect-
rum
Song et al. 2015
LP
18
33
63
yes
Beck et al. 2015
ATCC15977-
B1
(Action spect-
rum weighted
fluence)
ATCC15977-
B1
MP
15
32
52
yes
Beck et al. 2015
LP
20
40
60
yes
Action
spect-
rum
Beck et al. 2016
ATCC15977-
B1
UV-
LED
285
nm
LP
32
70
106
yes
Oguma et al. 2015
ATCC15977-
B1
17
35
60
88
116
yes
Boczek et al. 2016
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0025.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
LP
MP
LP
1
8
9
14
2
17
19
29
3
25
28
49
4
33
38
5
6
Proto-
col?
yes
yes
yes
Notes
Reference
Havelaar et al. 1990
Havelaar et al. 1990
Shin et al. 2005
MS2 coliphage (cont.)
E. coli
WG21
F-specific
E. coli
WG21
F-specific
E. coli
ATCC15977-
B1
C3000
F-specific
E. coli
ATCC
ATCC15977-
B1
15597
F-specific
C3000
E. coli
ATCC
ATCC15977-
B1
15597
F-specific
C3000
E. coli
DSM5694
NCIB 9481
Myoviridae
E. coli
C
Murine norovirus
NCIMB10108
RAW 264.7
cells
CW3
RAW 264.7
macropags
ATCC TIB-71
Phage B124-
B. fragilis
54
strain GB-
124
PHI X 174
(phage)
(phage)
E. coli
C3000
E. coli
ATCC
15597
E. coli
WG5
E. coli
ATCC
13706
E. coli
WG5
N/A
LP
19
42
69
yes
Shin et al. 2009
MP
16
33
53
90
yes
Shin et al. 2009
Wiedenmann et al.
1993
Shin et al. 2005
LP?
LP
4
1.8
16
3.6
38
5.1
68
6.7
110
8.5
no
yes
LP
LP
10
10
15
15
22
22
27
27
30
30
yes
yes
Lee et al. 2008
Park et al. 2011
LP
14
21
28
yes
Diston et al. 2012
LP?
LP?
LP
LP
LP
UV-
LED
255
nm
UV-
LED
280
nm
LP
LP
MP
2.1
4
2.2
2.0
3
1.6
4.2
8
5.3
3.5
5
3.3
6.4
12
7.3
5
7.5
5.1
8.5
11
13
yes
no
Battigelli et al. 1993
Oppenheimer et al.
1993
Sommer et al. 1998
Giese & Darby 2000
Sommer et al. 2001
Aoyagi et al. 2011
(phage)
(phage)
(phage)
10.5
7
10
yes
yes
yes
yes
13
15
N/A
ATCC 13706
N/A
E. coli
CN13
E. coli
CN13
2.3
5.1
8.6
yes
Aoyagi et al. 2011
7.1
N/A
N/A
14
N/A
N/A
21
N/A
N/A
28
8.9
6.7
37
47
yes
yes
yes
Timchak & Gitis 2012
Rodriguez et al. 2014
Rodriguez et al. 2014
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0026.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
Nuanualsuwan et al.
2008
Picornaviridae aphthovirus
(foot and mouth disease virus)
baby
O189
hamster
LP
25
50
75
kidney (BHK-
21) cell line
baby
A132
hamster
LP
20
39
59
kidney (BHK-
21) cell line
baby
A Sakol
hamster
LP
22
44
67
kidney (BHK-
21) cell line
baby
AS 1
hamster
LP
31
63
94
kidney (BHK-
21) cell line
Poliovirus
Type 1
LSc2ab
Type 1 ATCC
Mahoney
Type 1
LSc2ab
Type 1
Type 1
LSc2ab
Vaccine
strain
method:
plaque assay
Vaccine
strain
method:
TCID50
Type 1
Type 1
LP
N/A
5.6
11
100
no
(5)
78
no
(5)
Nuanualsuwan et al.
2008
89
no
(5)
Nuanualsuwan et al.
2008
125
no
(5)
Nuanualsuwan et al.
2008
MA104 cells
N/A
BGM cell line
BGM cell line
BGM cell line
N/A
17
22
yes
Chang et al. 1985
LP
LP
LP
LP
LP
6
2.8
8.0
7
6.4
14
11
16
17
14
23
20
23
28
22
30
28
31
37
33
37
46
yes
yes
yes
yes
no
Harris et al. 1987
Wilson et al. 1992
Gerba et al. 2002
Thompson et al. 2003
Lazarova & Savoye
2004
N/A
LP
6.4
14
21
31
no
Lazarova & Savoye
2004
Shin et al. 2005
Simonet & Gantzer
2006
BGM cell line
BGM cell line
LP
LP
8.7
7
17
14
25
21
29
39
50
+
tail-
ing
yes
yes
PRD-1 (Tectiviridae)
Salmonella
phage
typhimurium
Lt2
Salmonella
ATCC BAA-
typhimurium
769-B1
Lt2
LP
10
17
24
30
yes
Meng & Gerba 1996
LP
18
50
81
108
138
yes
Shin et al. 2005
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0027.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
PRD-1 (Tectiviridae) (cont.)
Salmonella
typhimurium
Lt2
Salmonella
typhimurium
Lt2
Q
β
N/A
LP
N/A
N/A
N/A
36
yes
Rodriguez et al. 2014
MP
N/A
N/A
N/A
32
yes
Rodriguez et al. 2014
N/A
E. coli
ATCC
15597
C3000
E. coli
ATCC
15597
C3000
ATCC 23631-
B1
ATCC 23631-
B1
ATCC 23631-
B1
phage
E. coli
ATCC
23631
E. coli
ATCC
23631
E. coli
ATCC
23631
E. coli
Hfr
K12 ATCC
23631
E. coli
K12
A/
λ
(F+)
E. coli
K12
A/
λ
(F+)
E. coli
K12
A/
λ
(F+)
Mouse L-60
N/A
UV-
LED
255
nm
UV-
LED
280
nm
LP
UV-
LED
260
nm
LP
LP
laser
254
nm
LP
11
23
yes
Aoyagi et al. 2011
27
yes
Aoyagi et al. 2011
12
25
40
yes
Jenny et al. 2014
9
19
29
41
yes
Jenny et al. 2014
8
N/A
18
20
28
40
yes
yes
Action
spect-
rum
Action
spect-
rum
Blatchley III et al.
2008
Beck et al. 2015
11
22
34
46
yes
Beck et al. 2015
12
23
36
50
66
83
yes
Simonet & Gantzer
2006
Rattanakul et al. 2014
Oguma et al. 2015
phage
ATCC 23631
B1
LP
UV-
LED
285
nm
LP
LP?
LP
10
27
23
54
35
81
yes
yes
phage
Reovirus
3
Type 1 Lang
strain
11
11
16
26
22
36
40
55
yes
yes
yes
Oguma et al. 2013
Rauth 1965
Harris et al. 1987
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0028.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
Rotavirus
SA-11
Host
Monkey
kidney Cell
line MA 104
MA 104 cell
line
MA 104 cell
line
MA 104 cell
line
MA 104 cell
line
MA 104 cells
ATCC CRL-
2378.1
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
LP
8
15
27
38
yes
Sommer et al. 1989
LP
LP
LP
LP
LP
20
7
9
7
7
80
15
19
15
15
140
25
26
23
200
no
yes
Caballero et al. 2004
Chang et al. 1985
Wilson et al. 1992
Battigelli et al. 1993
Li et al. 2009
SA-11
SA-11
SA-11
SA-11 ATCC
VR-1565
method: cell
culture;
assay based
on CPE
SA-11 ATCC
VR-1565
method:
RT-qPCR
assay
Human
(HRV-Wa)
SA-11
Siphoviridae
T1
36
48
yes
yes
yes
31 + tailing
MA 104 cells
ATCC CRL-
2378.1
LP
29
58
88
117 + tailing
yes
Li et al. 2009
N/A
MA-104 cell
line
E. coli
C
E. coli
CN13
E. coli
CN13
LP
16
24
32
40
yes
Hu et al. 2012
LP
LP
LP
MP
10
1.8
N/A
N/A
21
3.6
N/A
N/A
32
5.7
N/A
N/A
43
7.5
13
19
53
9.3
yes
yes
yes
yes
Action
spect-
rum
Action
spect-
rum
Wilson et al. 1992
Shin et al. 2005
Rodriguez et al. 2014
Rodriguez et al. 2014
T1UV
HER 468
HER 468
E. coli
CN13
ATCC
700609
E. coli
CN13
ATCC
700609
E. coli
E. coli
E. coli
N/A
LP
Laser
254
nm
LP
MP
LP
LP
N/A
8.3
yes
Beck et al. 2015
4.3
8.5
13
17
yes
Beck et al. 2015
T4
1.1
1.1
3.6
3.7
2.0
1.7
8.0
7.4
3.0
2.6
13
11
4.0
4.0
17
6.7
7
23
29
yes
yes
yes
yes
Bohrerova et al. 2008
Bohrerova et al. 2008
Hu et al. 2012
Timchak & Gitis 2012
ATCC 11303
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0029.png
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Virus
T7
E. coli
E. coli
E. coli
ATCC
11303
E. coli
ATCC
11303
E. coli
ATCC
11303
LP
MP
LP
LP
UV-
LED
255
nm
UV-
LED
275
nm
LP
Laser
254 m
1.7
1.3
2.7
2.7
2.9
5.8
3.7
6.0
6.0
6.9
11
8
11
11
14
16
13
20
18
yes
yes
yes
yes
yes
Bohrerova et al. 2008
Bohrerova et al. 2008
Bowker et al. 2011
Bowker et al. 2011
Bowker et al. 2011
Host
Lamp
Type
1
2
3
4
5
6
Proto-
col?
Notes
Reference
coliphage
coliphage
coliphage
coliphage
E. coli
ATCC
11303
2.7
6.0
12
17
yes
Bowker et al. 2011
ATCC BAA-
1025-B2
ATCC BAA-
1025-B2
T7m
ATCC 11303-
B38
ATCC 11303-
B38
V
1
(Podoviridae)
E. coli
CN13
ATCC
700609
E. coli
CN13
ATCC
700609
E. coli
B
ATCC 11303
E. coli
B
ATCC 11303
N/A
3.8
yes
1.6
3.6
6.6
yes
Action
spect-
rum
Action
spect-
rum
Action
spect-
rum
Action
spect-
rum
Beck et al. 2015
Beck et al. 2015
LP
Laser
254 m
N/A
3.4
yes
Beck et al. 2015
1.7
3.8
6.3
11
yes
Beck et al. 2015
E. coli
WG5
LP
3.1
5.9
8.8
yes
Shin et al. 2005
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0030.png
Table 5.
Fluences for multiple log reductions for various algae and other microorganisms
Fluence (UV dose) (mJ/cm
2
) for a
given log reduction without
photoreactivation
Microorganism
Ascaris suum
(intact eggs) from worms
(decorticated eggs) from
worms
Lamp
Type
LP
1
100
2
3
4
5
Proto-
col?
yes
Notes
Reference
Brownell & Nelson
2006
Brownell & Nelson
2006
Pereira et al. 2013
Pereira et al. 2013
328 + tailing
LP
30
yes
Cryptococcus carnescens
yeast PYCC 5988
LP
18
32
Candida sp.
New species
similar to
C. pomicola
yeast
LP
<10 25
PYCC 5991
Metschnikowia viticola/Candida kofuensis
yeast
PYCC 5993
LP
10
20
PYCC 5994
LP
8
17
Metschnikowia viticola/
Candida kofuensis
yeast
LP
10
23
PYCC 5992
Microcystis aeruginosa
PCC7806
LP
PCC7806
MP
Rhodosporidium babjevae
yeast PYCC 5996
Rhodotorula minuta
(Saito)
yeast PYCC 5990
LP
LP
15
40
43
44
57
42
370
130
90
90
81
113
70
540
100
720
>200
10
28
>60
yes
yes
yes
yes
yes
Pereira et al. 2013
Pereira et al. 2013
Pereira et al. 2013
no
no
yes
yes
yes
yes
no
no
Sakai et al. 2011
Sakai et al. 2011
Pereira et al. 2013
Pereira et al. 2013
Pereira et al. 2013
Pereira et al. 2013
Kim et al. 2004
Olsen et al. 2015
Rhodotorula mucilaginosa
yeast
PYCC 5989
LP
PYCC 5995
LP
Saccharomyces cerevisiae
XS800
LP
Tetraselmis suecica
algae
K0297
LP
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Table Notes
1. Spiked into wastewater.
2. These data are medians derived from a Bayesian analysis of many studies.
3. DNA weighted fluence.
4. Action spectrum weighted fluence.
5. The water depth was only 2 mm, so the water factor would have been very close to 1.0. Thus
although the Protocol corrections were not made, the corrections would have been small.
References
Abshire, R.L.; and Dunton, H. 1981. Resistance of selected strains of
Pseudomonas aeruginosa
to low-intensity
ultraviolet radiation, Appl. Environ. Microbiol., 41(6): 1419–1423.
Amoah, K.; Craik, S.; Smith, D.W.; and Belosevic, M. 2005. Inactivation of
Cryptosporidium
oocysts and
Giardia
cysts by ultraviolet light in the presence of natural particulate matter, J. Water Supply: Res.
Technol. – Aqua, 54(3): 165-178.
Antopol, S.C.; and Ellner, P.D. 1979. Susceptibility of
Legionella pneumophila
to ultraviolet radiation,
Appl. Environ. Microbiol., 38(2): 347–348.
Aoyagi, Y.; Takeuchi, M.; Yoshida, K.; Kurouchi, M.; Yasui, N.; Kamiko, N.; Araki, T.; and Nanishi, Y.
2011. Inactivation of bacterial viruses in water using deep ultraviolet semiconductor light-emitting
diode. J. Environ. Eng., 137(12): 1215–1218.
Ballester, N.A.; and Malley, J.P., Jr. 2004. Sequential disinfection of adenovirus type 2 with UV-chlorine-
chloramine, J. AWWA, 96(10): 97–103.
Banerjee, S.K.; and Chatterjee, S.N. 1977. Sensitivity of the vibrios to ultraviolet-radiation, Int. J. Rad.
Biol., 32(2): 127–133.
Batch, L.F.; Schulz, C.R.; and Linden, K.G. 2004. Evaluating water quality effects on UV disinfection of
MS2 coliphage, J. AWWA, 96(7): 75–87.
Battigelli, D.A.; Sobsey, M.D.; and Lobe, D.C. 1993. The inactivation of hepatitis A virus and other model
viruses by UV irradiation, Water Sci. Technol., 27(3-4): 339–342.
Baxter, C.S.; Hofmann, R.; Templeton, M.R.; Brown, M; and Andrews, R.C. 2007. Inactivation of
adenovirus types 2, 5 and 41 in drinking water by UV light, free chlorine, and monochloramine, J.
Environ. Eng., 133(1): 95–103.
Beck, S.E.; Rodriguez, R.A.; Linden, K.G.; Hargy, T.M.; Larason, T.C.; and Wright, H.B. 2014.
Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture
infectivity and long range quantitative PCR, Environ. Sci. Technol., 48: 591–598.
Beck, S.E.; Wright, H.R.; Hargy, T.M.; Larason, T.C.; and Linden, K.G. 2015. Action spectra for
validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems, Water Res., 70: 27–
37.
Beck, S.E.; Rodriguez, R.A.; Hawkins, M.A.; Hargy, T.M.; Larason, T.C.; and Linden, K.G. 2016.
Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal
spectrum, Appl. Environ. Microbiol., 82(5): 1468–1474.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
2551809_0032.png
Belosevic, M.; Craik, S.A.; Stafford, J.L.; Neumann, N.F.; Kruithof, J.; and Smith, D.W. 2001. Studies on
the resistance/reactivation of
Giardia muris
cysts and
Cryptosporidium parvum
oocysts exposed to
medium-pressure ultraviolet radiation, FEMS Microbiol. Lett., 204(1): 197–203.
Bichai, F.; Barbeau, B.; and Payment, P. 2009. Protection against UV disinfection of
E. coli
bacteria and
B. subtilis
spores ingested by
C. elegans
nematodes, Water Res., 43(14): 3397–3406.
Blatchley, E.R. III; Meeusen, A.; Aronson, A.I.; and Brewster, L. 2005. Inactivation of
Bacillus
spores by
ultraviolet or gamma radiation, J. Environ. Eng., 131(9): 1245–1252.
Blatchley, E.R. III; Shen, C.; Scheible, O.K.; Robinson, J.P.; Ragheb, K.; Bergstrom, D.E.; Rokjer, D.
2008. Validation of large-scale, monochromatic UV disinfection systems for drinking water using
dyed microspheres, Water Res., 42(3): 677–688.
Blatchley E.R. III; Oguma, K.; and Sommer, R. 2016. Comment on the ‘UV disinfection induces a VBNC
state in
Escherichia coli
and
Pseudomonas aeruginosa,’ IUVA News,
18(3): 12–16.
Boczek, L.A.; Rhodes, E.R.; Cashdollar, J.L.; Ryu, J.; Popovici, J.; Hoelle, J.M.; Sivaganesan, M.;
Hayes, S.L.; Rodgers, M.R.; and Ryu, H. 2016. Applicability of UV resistant
Bacillus pumilus
endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in
low-pressure UV treatment systems, J. Microbiol. Meth., 122: 43–49.
Bohrerova, Z.; and Linden, K.G. 2006a. Ultraviolet and chlorine disinfection of
Mycobacterium
in
wastewater: effect of aggregation, Water Environ. Res., 78(6): 565–571.
Bohrerova, Z.; and Linden, K.G. 2006b. Assessment of DNA damage and repair in
Mycobacterium
terrae
after exposure to UV irradiation, J. Appl. Microbiol, 101: 995–1001.
Bohrerova, Z.; Mamane, H.; Ducoste, J.; and Linden, K.G. 2006. Comparative inactivation of
Bacillus
subtilis
spores and MS-2 coliphage in a UV reactor: implications for validation, J. Environ. Eng.,
132(12): 1554–1561.
Bohrerova, Z.; Shemer, H.; Lantis, R.; Impellitteri, C.A.; and Linden, K.G. 2008. Comparative disinfection
efficiency of pulsed and continuous-wave UV irradiation technologies, Water Res., 42(12): 2975–
2982.
Bolton, J.R.; and Linden, K.G. 2003. Standardization of methods for fluence (UV dose) determination in
bench-scale UV experiments, J. Environ. Eng., 129(3): 209–215.
Bolton, J.R.; Dussert, B.; Bukhari, Z.; Hargy, T.; and Clancy, J.L. 1998. Inactivation of
Cryptosporidium
parvum
by medium pressure ultraviolet light in finished drinking water, in Proceedings of the AWWA
Annual Conference, June, 1998, Dallas, TX, Vol. A, pp 389-403; American Water Works Association,
Denver, CO.
Bolton, J.R.; Beck, S.E.; and Linden, K.G. 2015a.
Protocol for the determination of fluence (UV dose)
using a low-pressure or low-pressure high-output UV lamp in bench-scale collimated beam ultraviolet
experiments,
IUVA News, 17(1): 11–16.
Bolton, J.R.; Mayor-Smith, I.; and Linden, K.G. 2015b. Rethinking the concepts of fluence (UV dose) and
fluence rate: The Importance of photon-based units – A systemic review, Photochem. Photobiol., 91:
1252–1262.
Bounty, S.; Rodriguez, R.A.; and Linden, K.G. 2012. Inactivation of adenovirus using low-dose UV/H
2
O
2
advanced oxidation, Water Res., 46(19): 6273–6278.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Bowker, C.; Sain, A.; Shatalov, M.; and Ducoste, J. 2011. Microbial UV fluence-response assessment
using a novel UV-LED collimated beam system, Water Res., 45(5): 2011–2019.
Brownell, S.A.; and Nelson, K.L. 2006. Inactivation of single-celled
Ascaris suum
eggs by low-pressure
UV radiation, Appl. Environ. Microbiol., 72(3): 2178–2184.
Bukhari, Z.; Hargy, T.M.; Bolton, J.R.; Dussert, B.; and Clancy, J.L. 1999. Medium-pressure UV for
oocyst inactivation, J. AWWA, 91(3): 86–94.
Bukhari, Z.; Abrams, F.; and LeChevallier, M. 2004. Using ultraviolet light for disinfection of finished
water, Water Sci. Technol., 50(1): 173–178.
Butkus, M.A.; Labare, M.P.; Starke, J.A.; Moon, K; and Talbot, M. 2004. Use of aqueous silver to
enhance inactivation of coliphage MS-2 by UV disinfection, Appl. Environ. Microbiol., 70(5): 2848–
2853.
Butler, R.C.; Lund, V.; and Carlson, D.A. 1987. Susceptibility of
Campylobacter jejuni
and
Yersinia
enterocolitica
to UV radiation, Appl. Environ. Microbiol., 53(2): 375–378.
Cabaj, A.; Sommer, R.; Pribil, W.; and Haider, T. 2002. The spectral UV sensitivity of microorganisms
used in biodosimetry, Water Sci. Technol. – Water Supply, 2(3): 175–181.
Caballero, S.; Abad, F.X.; Loisy, F.; Le Guyader, F.S.; Cohen, J.; Pintó, R.M.; and Bosch, A. 2004.
Rotavirus virus-like particles as surrogates in environmental persistence and inactivation studies,
Appl. Environ. Microbiol., 70(7): 3904–3909.
Calgua, B.; Carratalà, A.; Guerrero-Latorre, L.; de Abreu Corrêa, A.; Kohn, T.; Sommer, R.; and Girones,
R. 2014. UVC inactivation of dsDNA and ssRNA viruses in water: UV fluences and a qPCR-based
approach to evaluate decay on viral infectivity, Food Environ. Virol., 6: 260–268.
Campbell, A.T.; and Wallis, P. 2002. The effect of UV irradiation on human-derived
Giardia lamblia
cysts, Water Res., 36(4): 963–969.
Cervero-Aragó, S.; Sommer, R.; and Araujo, R.M. 2014. Effect of UV irradiation (253.7 nm) on free
Legionella
and
Legionella
associated with its amoebae hosts, Water Res., 67: 299–309.
Chang, J.C.H.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; and Johnson, J.D.
1985. UV inactivation of pathogenic and indicator microorganisms, Appl. Environ. Microbiol., 49(6):
1361–1365.
Chatterley, C.; and Linden, K. 2010. Demonstration and evaluation of germicidal UV-LEDs for point-of-
use water disinfection, J. Water Health, 8(3): 479–486.
Chen, P.-Y.; Chu, X.-N.; Liu, L.; and Hu, J.-Y. 2015. Effects of salinity and temperature on inactivation
and repair potential of
Enterococcus faecalis
following medium- and low-pressure ultraviolet
irradiation, J. Appl. Microbiol., 120: 816–825.
Chen, R.-Z.; Craik, S.A.; and Bolton, J.R. 2009. Comparison of the action spectra and relative DNA
absorbance spectra of microorganisms: information important for the determination of germicidal
fluence (UV dose) in an ultraviolet disinfection of water, Water Res., 43: 5087–5096.
Chevrefils, G.; Caron, É.; Wright, H.; Sakamoto, G.; Payment, P.; Barbeau, B.; and Cairns, B. 2006.
IUVA News, 8(1): 38–45.
Clancy, J.L.; Bukhari, Z.; Hargy, T.M.; Bolton, J.R.; Dussert, B.W.; and Marshall, M.M. 2000. Using UV
to inactive
Cryptosporidium,
J. AWWA, 92(9): 97–104.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Clancy, J.L.; Marshall, M.M.; Hargy, T.M.; and Korich, D.G. 2004. Susceptibility of five strains of
“Cryptosporidium
parvum”
oocysts to UV light, J. AWWA, 96(3): 84–93.
Clauß, M. 2006. Higher effectiveness of photoinactivation of bacterial spores, UV resistant vegetative
bacteria and mold spores with 222 nm compared to 254 nm wavelength, Acta Hydrochim. Hydrobiol,
34(6): 525–532.
Clauß, M.; Mannesmann, R.; and Kolch, A. 2005.
Photoreactivation of
Escherichia coli
and
Yersinia
enterolytica
after irradiation with a 222 nm excimer lamp compared to a 254 nm low-pressure
mercury lamp,
Acta Hydrochim. Hydrobiol., 33(6): 579–584.
Collins, F.M. 1971. Relative susceptibility of acid-fast and non-acid-fast bacteria to ultraviolet light, Appl.
Microbiol, 21(3): 411–413.
Coohill, T.P.; and Sagripanti, J.-L. 2008. Overview of the inactivation by 254 nm ultraviolet radiation of
bacteria with particular relevance to biodefense, Photochem. Photobiol., 84(5): 1084–1090.
Craik, S.A.; Finch, G.R.; Bolton, J.R.; and Belosevic, M. 2000. Inactivation of
Giardia muris
cysts using
medium-pressure ultraviolet radiation in filtered drinking water, Water Res., 34(18): 4325–4332.
Craik, S.A.; Weldon, D.; Finch, G.R.; Bolton, J.R.; and Belosevic, M. 2001. Inactivation of
Cryptosporidium parvum
oocysts using medium- and low-pressure ultraviolet radiation, Water Res.,
35(6): 1387–1398.
de Roda Husman, A.M.; Bijkerk, P.; Lodder, W.; van den Berg, H.; Pribil, W.; Cabaj, A.; Gehringer, P.;
Sommer, R.; and Duizer, E. 2004. Calicivirus inactivation by nonionizing (253.7-nanometer-
wavelength [UV]) and ionizing (gamma) radiation, Appl. Environ. Microbiol., 70(9): 5089–5093.
Diston, D.; Ebdon, J.E.; and Taylor, H.D. 2012. The effect of UV-C radiation (254 nm) on candidate
microbial source tracking phages infecting a human-specific strain of
Bacteroides fragilis
(GB-24), J.
Water Health, 10(2): 262–270.
Donnellan, Jr., J.E.; and Stafford, R.S. 1968. The ultraviolet photochemistry and photobiology of
vegetative cells and spores of
Bacillus megaterium,
Biophys. J., 8:17–28.
Dumètre, A.; Le Bras, C.; Baffet, M.; Meneceur, P.; Dubey, J.P.; Derouin, F.; Duguet, J.-P.; Joyeux, M.;
and Moulin, L. 2008. Effects of ozone and ultraviolet radiation treatments on the infectivity of
Toxoplasma gondii
oocysts, Vetin. Parasitol., 153: 209–213.
Eischeid, A.C.; and Linden, K.G. 2007. Efficiency of pyrimidine dimer formation in
Escherichia coli
across UV wavelengths, J. Appl. Microbiol., 103: 1650–1656.
Eischeid, A.C.; Meyer, J.N.; and Linden, K.G. 2009. UV disinfection of adenoviruses: molecular
indications of DNA damage efficiency, Appl. Environ. Microbiol., 75(1): 23–28.
Gates, F.L. 1929. A study of the bacterial action of ultraviolet light I. The reaction to monochromatic
radiations, J. Gen. Physiol., 13: 231–248.
Gerba, C.P.; Gramos, D.M.; and Nwachuku, N. 2002. Comparative inactivation of enteroviruses and
adenovirus 2 by UV light, Appl. Environ. Microbiol., 68(10): 5167–5169.
Gerrity, D.; Ryu, H.; Crittenden, J.; and Abbaszadegan, M. 2008. UV inactivation of adenovirus type 4
measured by integrated cell culture qPCR, J. Environ. Sci. Health, Part A, 43(14): 1628–1638.
Giese, N.; and Darby, J. 2000. Sensitivity of microorganisms to different wavelengths of UV light:
implications on modeling of medium pressure UV systems, Water Res., 34(16): 4007–4013.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Guo, H.; and Hu, J. 2012. Effect of hybrid coagulation–membrane filtration on downstream UV
disinfection, Desalin., 290: 115–124.
Guo, H.; Chu, X.; and Hu, J. 2010. Effect of host cells on low- and medium-pressure UV inactivation of
adenoviruses, Appl. Environ. Microbiol., 76(21): 7068–7075.
Guo, M.; Hu, H.; Bolton, J.R.; and Gamal El-Din, M. 2009. Comparison of low- and medium-pressure
ultraviolet lamps: Photoreactivation of
Escherichia coli
and total coliforms in secondary effluents of
municipal wastewater treatment plants, Water Res., 43(3): 815–821.
Harris, G.D.; Adams, V.D.; Sorensen, D.L.; and Curtis, M.S. 1987. Ultraviolet inactivation of selected
bacteria and viruses with photoreactivation of the bacteria, Water Res., 21(6): 687–692.
Havelaar, A.H.; Meulemans, C.C.E.; Pot-Hogeboom, W.M.; and Koster, J. 1990. Inactivation of
bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light,
Water Res., 24(11): 1387–1393.
Hayes, S.L.; Rice, E.W.; Ware, M.W.; and Schaefer III, F.W. 2003. Low pressure ultraviolet studies for
inactivation of
Giardia muris
cysts, J. Appl. Microbiol., 94(1): 54–59.
Hayes, S.L.; White, K.M.; and Rodgers, M.R. 2006. Assessment of the effectiveness of low-pressure UV
light for inactivation of
Helicobacter pylori,
Appl. Environ. Microbiol., 72(5): 3763–3765.
Hayes, S.L.; Sivaganesan, M.; White, K.M.; and Pfaller, S.L. 2008. Assessing the effectiveness of low-
pressure ultraviolet light for inactivating
Mycobacterium avium
complex (MAC) micro-organisms, Lett.
Appl. Microbiol., 47(5): 386–392.
Hijnen, W.A.M.; Beerendonk, E.F.; and Medema, G.J. 2006. Inactivation credit of UV radiation for
viruses, bacteria and protozoan (oo)cysts in water: A review, Water Res., 40(1): 3–22.
Hoyer, O. 1998. Testing performance and monitoring of UV systems for drinking water disinfection,
Water Supply, 16(1/2): 419–424.
Hu, X.; Geng, S.; Wang, X.; and Hu, C. 2012. Inactivation and photorepair of enteric pathogenic
microorganisms with ultraviolet irradiation, Environ. Eng. Sci., 29(6): 549–553.
Huffman, D.E.; Gennaccaro, A.; Rose, J.B.; and Dussert, B.W. 2002. Low- and medium-pressure UV
inactivation of microsporidia
Encephalitozoon intestinalis,
Water Res., 36(12): 3161–3164.
Jenny, R.M.; Simmons III, O.D.; Shatalov, M.; and Ducoste, J.J. 2014. Modeling a continuous flow
ultraviolet Light Emitting Diode reactor using computational fluid dynamics, Chem. Eng. Sci., 116:
524–535.
Jin, S.; Mofidi, A.A.; and Linden, K.G. 2006. Polychromatic UV fluence measurement using chemical
actinometry, biodosimetry, and mathematical techniques, J. Environ. Eng., 132(8): 831–841.
John, D.E.; Nwachuku, N.; Pepper, I.L.; and Gerba, C.P. 2003. Development and optimization of a
quantitative cell culture infectivity assay for the microsporidium
Encephalitozoon intestinalis
and
application to ultraviolet light inactivation, J. Microbiol. Meth., 52: 183–196.
Johnson, A.M.; Linden, K.; Ciociola, K.M.; De Leon, R.; Widmer, G.; and Rochelle, P.A. 2005. UV
inactivation of
Cryptosporidium hominis
as measured in cell culture, Appl. Environ. Microbiol., 71(5):
2800–2802.
Karanis, P.: Maier, W.A.; Seitz, H.M.; and Schoenen, D. 1992. UV sensitivity of protozoan parasites, J.
Water SRT – Aqua, 41(2): 95–100.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Kim, J.K.; Petin, V.G.; and Tkhabisimova, M.D. 2004. Survival and recovery of yeast cells after
simultaneous treatment of UV light radiation and heat, Photochem. Photobiol., 79(4): 349–355.
Ko, G.; Cromeans, T.L.; and Sobsey, M.D. 2005. UV inactivation of adenovirus type 41 measured by cell
culture mRNA RT-PCR, Water Res., 39(15): 3643–3649.
Lazarova, V.; and Savoye, Ph. 2004. Technical and sanitary aspect of wastewater disinfection by UV
irradiation for landscape irrigation, Water Sci. Technol., 50(2): 203–209.
Lee, J.; Zoh, K.; and Ko, G. 2008. Inactivation and UV disinfection of murine norovirus with TiO
2
under
various environmental conditions, Appl. Environ. Microbiol., 74(7): 2111–2117.
Li, D.; Gu, A.Z.; He, M.; Shi, H.-C.; and Yang, W. 2009. UV inactivation and resistance of rotavirus
evaluated by integrated cell culture and real-time RT-PCR assay, Water Res., 43(13): 3261–3269.
Liltved, H.; and Landfald, B. 1996. Influence of liquid holding recovery and photoreactivation on survival
of ultraviolet-irradiated fish pathogenic bacteria, Water Res., 30(5): 1109–1114.
Liltved, H.; Vogelsang, C.; Modahl, I.; and Dannevig, B.H. 2006. High resistance of fish pathogenic
viruses to UV irradiation and ozonated seawater, Aquacult. Eng., 34(2): 72–82.
Linden, K.G.; Shin, G.-A.; Faubert, G.; Cairns, W.; and Sobsey, M.D. 2002. UV disinfection of
Giardia
lamblia
cysts in water, Environ. Sci. Technol., 36(11): 2519–2522.
Linden, K.G.; Thurston, J.; Schaefer, R.; and Malley, Jr., J.P. 2007. Enhanced UV inactivation of
adenoviruses under polychromatic UV lamps, Appl. Environ. Microbiol., 73(23): 7571–7574.
Linden, K.G.; Lee, J.-K.; Scheible, K.; Shen, C.; and Posy, P. 2009. Demonstrating 4-log adenovirus
inactivation in a medium-pressure UV disinfection reactor, J. AWWA, 101(4): 90–99.
Mamane, H.; Bohrerova, Z.; and Linden, K.G. 2009. Evaluation of
Bacillus
spore survival and surface
morphology following chlorine and ultraviolet disinfection in water, J. Environ. Eng., 135(8): 692–699.
Mamane-Gravetz, H.; and Linden, K.G. 2004. UV disinfection of indigenous aerobic spores: implications
for UV reactor validation in unfiltered waters, Water Res., 38: 2898–2906.
Mamane-Gravetz, H.; Linden, K.G.; Cabaj, A.; and Sommer, R. 2005. Spectral sensitivity of
Bacillus
subtilis
spores and MS2 Coliphage for validation testing of ultraviolet reactors for water disinfection,
Environ. Sci. Technol., 39(20): 7845–7852.
Martin, E.L.; Reinhardt, R.L.; Baum, L.L.; Becker, M.R.; Shaffer, J.J.; and Kokjohn, T.A. 2000. The
effects of ultraviolet radiation on the moderate halophile
Halomonas elongata
and the extreme
halophile
Halobacterium salinarum,
Can. J. Microbiol., 46(2): 180–187.
Matafonova, G.G.; Batoev, V.B.; and Linden, K.G. 2012. Impact of scattering of UV radiation from an
exciplex lamp on the efficacy of photocatalytic inactivation of
Escherichia coli
cells in water, J. Appl.
Spect., 79(2): 296–301.
Maya, C.; Beltrán, N.; Jiménez, B.; and Bonilla, P. 2003. Evaluation of the UV disinfection process in
bacteria and amphizoic amoeba inactivation. Water Sci. Technol.: Water Supply, 3(4): 285–291.
McKinney, C.W.; and Pruden, A. 2012. Ultraviolet disinfection of antibiotic resistant bacteria and their
antibiotic resistance genes in water and wastewater, Environ. Sci. Technol., 46: 13393–13400.
Meng, Q.S.; and Gerba, C.P. 1996. Comparative inactivation of enteric adenoviruses, poliovirus and
coliphages by ultraviolet irradiation, Water Res., 30(11): 2665–2668.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Mofidi, A.A.; Meyer, E.A.; Wallis, P.M.; Chou, C.I.; Meyer, B.P.; Ramalingam, S.; and Coffey, B.M. 2002.
The effect of UV light on the inactivation of
Giardia lamblia
and
Giardia muris
cysts as determined by
animal infectivity assay (P-2951-01), Water Res., 36(8): 2098–2108.
Moreno-Andrés, J.; Romero-Martínez, L.; Acevedo-Merino, A.; and Nebot, E. 2016. Determining
disinfection efficiency on
E. faecalis
in saltwater by photolysis of H
2
O
2
: Implications for ballast water
treatment. Chem Eng. J., 283: 1339–1348.
Morita, S.; Namikoshi, A.; Hirata, T.; Oguma, K.; Katayama, H.; Ohgaki, S.; Motoyama, N.; and Fujiwara,
M. 2002. Efficacy of UV irradiation in inactivating
Cryptosporidium parvum
oocysts, Appl. Environ.
Microbiol., 68(11): 5387–5393.
Nicholson, W.L.; and Galeano, B. 2003. UV resistance of
Bacillus anthracis
spores revisited: validation
of
Bacillus subtilis
spores as UV surrogates for spores of
B. anthracis Sterne,
Appl. Environ.
Microbiol., 69(2): 1327–1330.
Nieuwstad, Th.J.; and Havelaar, A.H. 1994. The kinetics of batch ultraviolet inactivation of bacteriophage
MS2 and microbiological calibration of an ultraviolet pilot plant, J. Environ. Sci. Health Part A, 29(9):
1993–2007.
Nuanualsuwan, S.; Thongtha, P.; Kamolsiripichaiporn, S.; and Subharat, S. 2008. UV inactivation and
model of UV inactivation of foot-and-mouth disease viruses in suspension, Int. J. Food Microbiol.,
127(1–2): 84–90.
Nwachuku, N.; Gerba, C.P.; Oswald, A.; and Mashadi, F.D. 2005. Comparative inactivation of
adenovirus serotypes by UV light disinfection, Appl. Environ. Microbiol., 71(9): 5633–5636.
Oguma, K.; Katayama, H.; Mitani, H.; Morita, S.; Hirata, T.; and Ohgaki, S. 2001. Determination of
pyridine dimers in
Escherichia coli
and
Cryptosporidium
parvum during UV light inactivation,
photoreactivation, and dark repair, Appl. Environ. Microbiol., 67(10): 4630–4637.
Oguma, K.; Katayama, H.; and Ohgaki, S. 2002. Photoreactivation of
Escherichia coli
after low- or
medium-pressure UV disinfection determined by an endonuclease sensitive site assay, Appl.
Environ. Microbiol., 68(12): 6029–6035.
Oguma, K.; Katayama, H.; and Ohgaki, S. 2004. Photoreactivation of
Legionella pneumophila
after
inactivation by low- or medium-pressure ultraviolet lamp, Water Res., 38(11): 2757–2763.
Oguma, K.; Kita, R.; Sakai, H.; Murakami, M.; and Takizawa, S. 2013. Application of UV light emitting
diodes to batch and flow-through water disinfection systems, Desalin., 328: 24–30.
Oguma, K.; Rattanakul, S.; and Bolton, J.R. 2015. Application of UV Light–Emitting Diodes to
adenovirus in water, J. Environ. Eng., 142(3): 1–6.
Olsen, R.O.; Hess-Erga, O.-K.; Larsen, A.; Thuestad, G.; Tobiesen, A.; and Hoell, I.A. 2015. Flow
cytometric applicability to evaluate UV inactivation of phytoplankton in marine water samples, Marine
Pollut. Bull., 96: 279–285.
Oppenheimer, J.A.; Hoagland, J.E.; Laine, J.-M.; Jacangelo, J.G.; and Bhamrah, A. 1993. Microbial
inactivation and characterization of toxicity and by-products occurring in reclaimed wastewater
disinfected with UV radiation, in Water Environment Federation Plan, Description and Operations of
Effluent Disinfection Systems, Water Environment Federation, Alexandria, VA.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Otaki, M.; Okuda, A.; Tajima, K.; Iwasaki, T.; Kinoshita, S.; and Ohgaki, S. 2003. Inactivation differences
of microorganisms by low pressure UV and pulsed xenon lamps, Water Sci. Technol., 47(3): 185–
190.
Park, G.W.; Linden, K.G. and Sobsey, M.D. 2011. Inactivation of murine norovirus, feline calcivirus and
echovirus 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light
(254 nm) and the effect of cell association on UV inactivation, Lett. Appl. Microbiol., 52: 162–167.
Pennell, K.G.; Naunovic, Z.; and Blatchley, III, E.R. 2008. Sequential inactivation of
Bacillus subtilis
spores with ultraviolet radiation and iodine, J. Environ. Eng., 134(7): 513–520.
Pereira, V.J.; Ricardo, J.; Galinha, R.; Benoliel, M.J.; and Barreto Crespo, M.T. 2013. Occurrence and
low pressure ultraviolet inactivation of yeasts in real water sources, Photochem. Photobiol. Sci., 12:
626–630.
Qian, S.S.; Donnelly, M.; Schmelling, D.C.; Messner, M.; Linden, K.G.; and Cotton, C. 2004. Ultraviolet
light inactivation of protozoa in drinking water: a Bayesian meta-analysis, Water Res., 38(2): 317–
326.
Qian, S.S.; Linden, K.; and Donnelly, M. 2005. A Bayesian analysis of mouse infectivity data to evaluate
the effectiveness of using ultraviolet light as a drinking water disinfectant, Water Res., 39(17): 4229–
4239.
Qiu, X.; Sundin, G.W.; Chai, B.; and Tiedje, J.M. 2004. Survival of
Shewanella oneidensis
MR-1 after UV
radiation exposure, Appl. Environ. Microbiol., 70(11): 6435–6443.
Quails, R.G.; and Johnson J.D. 1983. Bioassay and dose measurement in UV disinfection, Appl.
Environ. Microbiol., 45(3): 872–877.
Quek, P.H.; and Hu, J. 2008. Indicators for photoreactivation and dark repair studies following ultraviolet
disinfection, J. Ind. Microbiol. Biotechnol., 35: 533–541.
Rattanakul, S.; Oguma, K.; Sakai, H.; and Takizawa, S. 2014. Inactivation of viruses by combination
processes of UV and chlorine, J. Water Environ. Technol., 12(6): 511–523.
Rattanakul, S.; Oguma, K.; and Takizawa, S. 2015. Sequential and simultaneous applications of UV and
chlorine for Adenovirus inactivation, Food Environ. Virol., 7: 295–304.
Rauth, A.M. 1965. The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light,
Biophys. J., 5(3): 257–273.
Rodríguez, R.A.; Bounty, S.; and Linden, K.G. 2013. Long-range quantitative PCR for determining
inactivation of adenovirus 2 by ultraviolet light, J. Appl. Microbiol., 114: 1854–1865.
Rodríguez, R.A.; Bounty, S.: Beck, S.; Chan, C.; McGuire, C.; and Linden, K.G. 2014. Photoreactivation
of bacteriophages after UV disinfection: Role of genome structure and impacts of UV source, Water
Res., 55: 143–149.
Rose, L.J.; and O’Connell, H. 2009. UV light inactivation of bacterial biothreat agents, Appl. Environ.
Microbiol., 75,(9): 2987–2990.
Ryu, H.; Gerrity, D.; Crittenden, J.C.; and Abbaszadegan, M. 2008. Photocatalytic inactivation of
Cryptosporidium parvum
with TiO
2
and low-pressure ultraviolet irradiation, Water Res., 42(6-7):
1523–1530.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Ryu, H.; Cashdollar, J.L.; Fout, G.S.; Schrantz, K.A.; and Hayes, S. 2015. Applicability of integrated cell
culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV
disinfection studies, J. Environ. Sci. Health, Part A, 50(8): 777–787.
Sakai, H.; Katayama, H.; Oguma, K.; and Ohgaki, S. 2011. Effect of photoreactivation on ultraviolet
inactivation of
Microcystis aeruginosa,
Water Sci. Technol., 63(6): 1224–1229.
Sarkar, P.; and Gerba, C.P. 2012. Inactivation of
Naegleria fowleri
by chlorine and ultraviolet light, J.
AWWA, 104(3): E173–E180.
Sharp, D.G. 1939. The lethal action of short ultraviolet rays on several common pathogenic bacteria, J.
Bacteriol., 37: 447–460.
Sherchan, S.P.; Snyder, S.A.; Gerba, C.P.; and Pepper, I.L. 2014. Inactivation of MS2 coliphage by UV
and hydrogen peroxide: Comparison by cultural and molecular methodologies, J. Environ. Sci.
Health, Part A, 49(4): 397–403.
Shin, G.-A.; Linden, K.G.; Arrowood, M.J.; and Sobsey, M.D. 2001. Low-Pressure UV inactivation and
DNA repair potential of
Cryptosporidium parvum
oocysts, Appl. Environ. Microbiol., 67(7): 3029–
3032.
Shin, G.-A.; Linden, K.G.; and Sobsey, M.D. 2005. Low pressure ultraviolet inactivation of pathogenic
enteric viruses and bacteriophages, J. Environ. Eng. Sci., 4(Suppl. 1): S7–S11.
Shin, G.-A.; Lee, J.-K.; Freeman, R.; and Cangelosi, G.A. 2008. Inactivation of
Mycobacterium avium
complex by UV irradiation, Appl. Environ. Microbiol., 74(22): 7067–7069.
Shin, G.-A.; Lee, J.-K.; and Linden, K.G. 2009. Enhanced effectiveness of medium-pressure ultraviolet
lamps on human adenovirus and its possible mechanism, Water Sci. Technol., 60(4): 851–857.
Sholtes, K.A.; Lowe, K.; Walters, G.W.; Sobsey, M.D.; Linden, K.G.; and Casanova, L.M. 2016.
Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of
water, Environ. Technol., Online: DOI: 10.1080/09593330.2016.1144798
Simonet, J.; and Gantzer, C. 2006. Inactivation of poliovirus 1 and F-specific RNA phages and
degradation of their genomes by UV irradiation at 254 nanometers, Appl. Environ. Microbiol., 72(12):
7671–7677.
Simons, R.; Gabbai, U.E.; and Moram, M.A. 2014. Optical fluence modelling for ultraviolet light emitting
diode-based water treatment systems, Water Res., 66: 338–349.
Singh, P.K. 1975. Photoreactivation of UV-irradiated blue-green algae and algal virus LPP-1, Arch.
Microbiol., 103: 297–302.
Sirikanchana, K.; Shisler, J.L.; and Mariñas, B.J. 2008. Effect of exposure to UV-C irradiation and
monochloramine on adenovirus serotype 2 early protein expression and DNA replication, Appl.
Environ. Microbiol., 74(12): 3774–3782.
Sommer, R.; Weber, G.; Cabaj, A.; Wekerle, J.; Keck, G.; and Schauberger, G. 1989. [UV-inactivation of
microorganisms in water] (article in German), Zentralblatt für Hygiene und Umweltmedizin = Int. J.
Hygiene Environ. Med., 189(3): 214–224.
Sommer, R.; Haider, T.; Cabaj, A.; Pribil, W.; and Lhotsky, M. 1998. Time dose reciprocity in UV
disinfection of water, Water Sci. Technol, 38(12): 145–150.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Sommer, R.; Cabaj, A.; Sandu, T.; and Lhotsky, M. 1999. Measurement of UV radiation using
suspensions of microorganisms. J. Photochem. Photobiol. B: Biol., 53(1-3), 1–6.
Sommer, R.; Lhotsky, M.; Haider, T.; and Cabaj, A. 2000. UV inactivation, liquid-holding recovery, and
photoreactivation of
Escherichia coli
O157 and other pathogenic
Escherichia coli
strains in water, J.
Food Protect., 63(8): 1015–1020.
Sommer, R.; Pribil, W.; Appelt, S.; Gehringer, P.; Eschweiler, H.; Leth, H.; Cabaj, A.; and Haider, T.
2001. Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing
(gamma) radiation: a comparative approach, Water Res., 35(13): 3109–3116.
Song, A.; Liu, X.; Zhang, Y.; Liu, Y. 2015. Effect of sodium alginate on UVC inactivation of coliphage
MS2, RSC Adv., 5(127): 104779-104784.
Stamm, L.V.; and Charon, N.W. 1988. Sensitivity of pathogenic and free-living
Leptospira spp.
to UV
radiation and mitomycin C, Appl. Environ. Microbiol., 54(3): 728–733.
Sun, W.; and Liu, W. 2009. A pilot-scale study on ultraviolet disinfection system for drinking water, J.
Water Supply: Res. Technol. – Aqua, 58(5): 346–353.
Taylor-Edmonds, L.; Lichi, T.; Rotstein-Mayer, A.; and Mamane, H. 2015. The impact of dose, irradiance
and growth conditions on
Aspergillus niger
(renamed
A. brasiliensis)
spores low-pressure (LP) UV
inactivation, J. Environ. Sci. Health, Part A, 50: 341–347.
Templeton, M.R.; Hofmann, R.; Andrews, R.C.; and Whitby, G.E. 2006. Biodosimetry testing of a
simplified computational model for the UV disinfection of wastewater, J. Environ. Eng. Sci., 5(1): 29–
36.
Templeton, M.; Oddy, F.; Leung, W.-K.; and Rogers, M. 2009. Chlorine and UV disinfection of ampicillin-
resistant and trimethoprim-resistant
Escherichia coli,
Can. J. Civil Eng., 36(5): 889–894.
Thompson, S.S.; Jackson, J.L.; Suva-Castillo, M.; Yanko, W.A.; El Jack, Z.; Kuo, J.; Chen, C.-L.;
Williams, F.P.; and Schnurr, D.P. 2003. Detection of infectious human adenoviruses in tertiary-
treated and ultraviolet-disinfected wastewater, Water Environ. Res., 75(2): 163–170.
Thurston-Enriquez, J.A.; Haas, C.N.; Jacangelo, J.; Riley, K.; and Gerba, C.P. 2003. Inactivation of
feline calicivirus and adenovirus Type 40 by UV radiation, Appl. Environ. Microbiol., 69(1): 577–582.
Timchak, E.; and Gitis, V. 2012. A combined degradation of dyes and inactivation of viruses by UV and
UV/H
2
O
2
, Chem. Eng. J., 192: 164–170.
Tosa, K.; and Hirata, T. 1999. Photoreactivation of enterhemorrhagic
Escherichia coli
following UV
disinfection, Water Res., 33(2): 361–366.
Tree, J.A.; Adams, M.R.; and Lees, D.N. 2005. Disinfection of feline calicivirus (a surrogate for
Norovirus) in wastewaters, J. Appl. Microbiol., 98(1): 155–162.
Wang, D.; Oppenländer, T.; Gamal El-Din, M.; and Bolton, J.R. 2010. Comparison of the disinfection
effects of vacuum-UV (VUV) and UV light on
Bacillus subtilis
spores in aqueous suspensions at 172,
222, 254 nm, Photochem. Photobiol., 86(1): 176–181.
Ware, M.W.; Augustine, S.A.J.; Erisman, D.O.; See, M.J.; Wymer, L.; Hayes, S.L.; Dubey, J.P.; and
Villegas, E.N. 2010. Determining UV inactivation of
Toxoplasma gondii
oocysts by using cell culture
and a mouse bioassay, Appl. Environ. Microbiol., 76(15): 5140–5147.
SUU, Alm.del - 2021-22 - Bilag 251: Henvendelse fra UVCbyEFSEN vedr. foretræde om UVC bestrålingens effekt på virus overlevelse
Wiedenmann, A.; Fischer, B.; Straub, U.; Wang, C.-H.; Flehmig, B.; and Schoenen, D. 1993. Disinfection
of hepatitis A virus and MS-2 coliphage in water by ultraviolet irradiation: comparison of UV-
susceptibility, Water Sci. Technol., 27(3-4): 335–338.
Wilson, B.R.; Roessler, P.F.; Van Dellen, E.; Abbaszadegan, M.; and Gerba, C.P. 1992. Coliphage MS2
as a UV water disinfection efficacy test surrogate for bacterial and viral pathogens, Proceedings of
the American Water Works Association Water Quality Technology Conference, Nov 15–19, Toronto,
Canada, 1992.
Wright. H.; and Sakamoto, G. 1999. UV dose required to achieve incremental log inactivation of
bacteria, virus, and protozoa, Trojan Technologies, London, ON, Canada.
Wu, Y.; Clevenger, T.; and Deng, B. 2005. Impacts of goethite particles on UV disinfection of drinking
water, Appl. Environ. Microbiol., 71(7): 4140–4143.
Würtele, M.A.; Kolbe, T.; Lipsz, M.; Külberg, A.; Weyers, M.; Kneissl, M.; Jekel, M. 2010. Application of
GaN-based ultraviolet-C light emitting diodes – UV LEDs – for water disinfection. Water Res., 45:
1481–1489.
Yaun, B.R.; Sumner, S.S.; Eifert, J.D.; and Marcy, J.E. 2003. Response of
Salmonella
and
Escherichia
coli
O157:H7 to UV Energy, J. Food Protect., 66(6): 1071–1073.
Zhang, Y.; Zhang, Y.; Zhou, L.; and Tan, C. 2014. Factors affecting UV/H
2
O
2
inactivation of
Bacillus
atrophaeus
spores in drinking water, J. Photochem. Photobiol. B: Biol., 134: 9–15.
Zimmer, J.L. and Slawson, R.M. 2002. Potential repair of
Escherichia coli
DNA following exposure to UV
radiation from both medium- and low pressure UV sources used in drinking water treatment, Appl.
Environ. Microbiol., 68(7): 3293–3299.
Zimmer, J.L.; Slawson, R.M.; and Huck, P.M. 2003. Inactivation and potential repair of
Cryptosporidium
parvum
following low- and medium-pressure ultraviolet irradiation, Water Res., 37(14): 3517–3523.