Miljø- og Fødevareudvalget 2018-19 (1. samling)
MOF Alm.del
Offentligt
2041069_0001.png
U N I V ER SI TY O F C O P EN H AGEN
FACULTY OF HEALTH AND MEDICAL SCIENCES
Master’s thesis
2018
Laura Pedersen (mgs780)
Maria Gravgaard Laursen (kcv698)
DNA Test as a Basis of Identifying Illegal Dogs in
Denmark
Supervisor:
Co-supervisor:
P rofessor Merete Fredholm
P rofessor P eter Sandøe
Submitted:
February 11
t h
2018
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Name of department:
Department of Veterinary and Animal Sciences
University of Copenhagen
Laura Pedersen (mgs780)
Maria Gravgaard Laursen (kcv698)
DNA Test as a Basis of Identifying Illegal Dogs in Denmark
An investigation of the use of a DNA test, in this study Wisdom Panel, for
identification of American Staffordshire Terrier (Amstaff) and mixed -
breed dogs containing Amstaff in Denmark in relation to the breed-specific
legislation.
Professor Merete Fredholm,
Section of Animal Genetics, Bioinformatics and Breeding
Department of Veterinary and Animal Sciences
University of Copenhagen
Professor Peter Sandøe
Section of Animal Welfare and Disease Control
Department of Veterinary and Animal Sciences
University of Copenhagen
Authors:
Title:
Topic description:
Supervisors:
Submitted on:
Grade:
Number of pages:
Front page photo:
February 11
th
2018
30 ECTS
74
Daisy, a Swedish American Staffordshire Terrier
Photo by Tina Olsen
2
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Abstract
In 2010, possession and breeding of American Staffordshire Terrier (Amstaff) and 12 other dog
breeds became illegal in Denmark when the Danish breed specific legislation was introduced. If the
police suspect a dog to be included by this law because of its phenotypical appearance, the owner is
required to prove that the dog is legal. Presently, the owner can meet the burden of proof by
documenting the dog to be an offspring of legal breeds. Today, this is not possible by the use of a
DNA test
to identify a dog’s breed. The current study investigates the possibility to use such DNA
test in Denmark to detect purebred Amstaff and mixed-breeds containing Amstaff. An American
company has developed a DNA test, Wisdom Panel, based on breed specific SNP markers and used
to identify the composition of dog breeds to a limit of 12.5% in a dog. The test is mainly based on
American DNA samples and therefore, the usability in Denmark is uncertain.
To investigate if Wisdom Panel is usable in Denmark, DNA material from 20 Swedish Amstaffs
(representing the Danish population) and six American Amstaffs were analyzed with Wisdom Panel
4.0. In addition, DNA material from 192 Danish dogs was analyzed. In total, 55 different dog breeds
were represented in the study.
The results revealed that Wisdom Panel was able to correctly detect all samples from 46 out of the
55 analyzed dog breeds including Amstaff. The 46 detected dog breeds are all included in the Wisdom
Panel database whereas the remaining nine are not included. It is concluded that a DNA test is usable
in Denmark as Wisdom Panel is able to detect Amstaff and other breeds included in the database to
a limit of 12.5%. Regarding the breed-specific legislation the implementation of a DNA test could
improve the legal rights, as the test improve the ability to prove a dog’s breed composition and is
more accurate compared to visual breed identification.
3
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Resume
I 2010 blev besiddelse og avl af Amerikansk Staffordshire Terrier (Amstaff) og 12 andre hunderacer
ulovliggjort i Danmark, da hundelovens forbudsordning trådte i kraft. Formoder politiet på baggrund
af en hunds udseende, at der kan være tale om en hund der er omfattet af forbuddet, stilles der krav
om, at ejeren kan bevise, at hunden er lovlig. I dag kan denne omvendte bevisbyrde kun løftes såfremt
ejeren kan bevise, at hunden stammer fra lovlige racer, og det er ikke muligt at identificere hundens
racemæssige sammensætning ved hjælp af en DNA- test. Dette studie undersøger muligheden for
brug af en sådan DNA-test i Danmark til at identificere renracede Amstaff og blandingshunde, hvor
Amstaff indgår. Et amerikansk firma har udviklet en DNA-test, Wisdom Panel, der er baseret på
racespecifikke SNP markører som kan bruges til at identificere tilstedeværelsen af hunderacer i en
hund ned til 12,5%. Testen er hovedsageligt baseret på DNA-prøver fra amerikanske hunde, og det
er derfor usikkert, om testen kan bruges i Danmark.
For at undersøge om Wisdom Panel kan bruges i Danmark, blev DNA-materiale fra 20 svenske
Amstaffere (repræsentative for den danske population) og 6 amerikanske Amstaffere testet med
Wisdom Panel 4.0. Yderligere blev DNA-materiale fra 192 danske hunde testet. I alt er 55 forskellige
racer repræsenterede i dette studie.
Resultaterne viste, at Wisdom Panel kunne detektere alle prøver fra 46 ud af de 55 indsendte
hunderacer, heriblandt Amstaff, korrekt. De 46 hunderacer optræder alle i Wisdom Panels database,
hvorimod de resterende ni ikke gør. Det konkluderes, at en DNA-test kan bruges i Danmark, da
Wisdom Panel kan detektere racen Amstaff og andre hunderacer, som er registrerede i databasen, ned
til 12,5%. I relation til hundeloven vil implementering af en DNA-test øge retssikkerheden, da denne
test forbedrer mulighederne for at bevise en hunds racesammensætning og er mere præcis end visuel
bedømmelse.
4
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Foreword and Acknowledgement
This veterinary master's thesis was written as a part of the Veterinary Medicine master program at the
Faculty of Health and Medical Sciences at the University of Copenhagen. The project was carried out
as the genetic part of a project supported by the Ministry of Environment and Food of Denmark. This
thesis targets the politicians of Denmark, veterinarians, dog owners, shelters and people with special
interest in the breed-specific legislation.
We appreciate the financial support from the Ministry of Environment and Food of Denmark and the
opportunity to work with this subject.
We would like to thank our main academic supervisor Professor Merete Fredholm, Section of Anima l
Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences at the
University of Copenhagen, and our co-supervisor Professor Peter Sandøe, Section of Animal Welfare
and Disease Control, Department of Veterinary and Animal Sciences at the University of
Copenhagen, for expert knowledge, great discussions, support and guidance as well as for their
patience and time during the writing process.
We would also like to thank the laboratory technicians at the Section of Animal Genetics,
Bioinformatics and Breeding at Department of Veterinary and Animal Sciences at the University of
Copenhagen for their help with the DNA samples and supervision in the laboratory. A great thanks
to our fellow students Frederikke Krøll and Ida Marie Tommerup for superb teamwork regarding the
organization of the project and the sample collection in Sweden.
We would also like to thank the Danish Kennel Club for establishing contact to the Swedish Kennel
Club, and lastly, a special thanks to the 20 Swedish American Staffordshire Terriers and their owners.
5
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
List of Abbreviations
Amstaff:
bp:
F1:
FCI:
LD:
PCA:
PCR:
SNP:
U.S.:
USDA:
American Staffordshire Terrier
Base pair
First filial (offspring as a result of breeding of two purebred dogs)
Fédération
Cynologique Internationale
Linkage Disequilibrium
Principal Component Analysis
Polymerase Chain Reaction
Single Nucleotide Polymorphism
United States
United States Department of Agriculture
6
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Table of Contents
Abstract ............................................................................................................................................. 3
Resume ............................................................................................................................................... 4
Foreword and Acknowledgement ................................................................................................ 5
List of Abbreviations ...................................................................................................................... 6
Table of Contents ............................................................................................................................. 7
1. Background .................................................................................................................................. 9
1.1 The Danish Breed-Specific Legislation................................................................................ 9
1.2 Visual Breed Detection.........................................................................................................10
1.3 History of Dog Breed Formation.........................................................................................11
1.4 History of American Staffordshire Terrier.........................................................................12
1.5 Dog Breed Genetics ..............................................................................................................13
1.5.1 Microsatellites ....................................................................................................................14
1.5.2 Single Nucleotide Polymorphism (SNP) ........................................................................15
1.6 Wisdom Panel ........................................................................................................................16
1.7 Genetic Differences Between American and European Dog Populations .....................18
1.8 Study Purpose ........................................................................................................................18
2. Materials and Methods ............................................................................................................19
2.1 Study Design ..........................................................................................................................19
2.1.1 Animal Material .................................................................................................................19
2.1.2 Sample Collection ..............................................................................................................19
2.1.3 DNA Extraction..................................................................................................................20
2.2 DNA Analysis…………………………………………………………………….…. 20
2.2.1 Microsatellite Genotyping ................................................................................................20
2.2.2 DNA Test ............................................................................................................................20
3. Results ..........................................................................................................................................21
3.1 Wisdom Panel Reports .........................................................................................................21
3.2 Wisdom Panel Results ..........................................................................................................22
3.2.1 DNA Sample Results .........................................................................................................22
3.2.2 Purebred Amstaff Results .................................................................................................25
3.2.3 Amstaff Mixed-Breeds Results ........................................................................................26
3.3 Microsatellite Genotyping....................................................................................................26
4. Discussion....................................................................................................................................28
4.1 Results from the DNA Test ..................................................................................................28
4.2 Use of Wisdom Panel in Denmark ......................................................................................31
7
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
5. Conclusion...................................................................................................................................33
6. Limitations and Future Research ..........................................................................................33
7. References ...................................................................................................................................34
8. Appendixes..................................................................................................................................38
Appendix 1....................................................................................................................................38
Appendix 2....................................................................................................................................46
Appendix 3....................................................................................................................................47
Appendix 4....................................................................................................................................55
Appendix 5....................................................................................................................................65
8
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
1. Background
1.1 The Danish Breed-Specific Legislation
After several reports of episodes with Pit Bull Terriers attacking humans in the late 1980's, the Danish
Ministry of Justice passed in 1991 a breed-specific legislation prohibiting the two dog breeds Pit Bull
Terrier and Tosa Inu, along the same lines as seen in United Kingdom at that time (Parliament of the
United Kingdom, 1991; Betænkning om farlige hunde, 2010). However, the implementation of the
breed-specific legislation did not stop the discussion about dangerous dogs in Denmark as an increase
in acquiring dogs from legal breeds with some of the same characteristics as the Pit Bull Terriers was
seen in the following years (Betænkning om farlige hunde, 2010). In 2009, the Danish Kennel Club
estimated that there were around 20,000 dogs in Denmark, which could be referred to as muscle or
fighting dogs. A committee was set to investigate the need for additions to the law from 1991
regarding dangerous dogs (Betænkning om farlige hunde, 2010). In June 2010, the Danish
Government introduced a new breed-specific legislation (§1a and §1b in the Danish Dogs Act
“Bekendtgørelse af lov om hunde”)
prohibiting an additional 11 dog breeds giving a total of 13
prohibited dog breeds and mixed-breed dogs where one or more of these breeds were included. These
dogs were all classified as "dangerous dogs" (Bekendtgørelse af lov om hunde, 2017). The American
Staffordshire Terrier (Amstaff) was one of the prohibited breeds and was in 2009, with 6,769
registrations in the Danish Dog Register, by far the most popular breed of the 13 prohibited breeds
(Betænkning om farlige hunde, 2010).
The breed-specific legislation relies on reversed burden of proof (Bekendtgørelse af lov om hunde,
2017). This means that when the police suspect a dog to be of one of the illegal dog breeds or a mixed -
breed including at least one of these breeds, based on its phenotypical appearance, it is the dog owner's
responsibility to present evidence that their dog is of a legal breed. Currently, the ways to prove a
dog's origin are through trustworthy pedigrees, statements from breeders or a paternity test that proves
a dog to be offspring from parents of legal breeds. According to the breed-specific legislation it is not
possible to prove a dog's breed from the phenotypic appearance or behavior of the dog. At present, it
is not even possible in Denmark to identify a dog's breed from a DNA sample, which makes it diffic ult
for dog owners of dogs without a studbook to provide sufficient documentation proving that the dog
consists of legal breeds (Vejledning om hundelovens forbudsordning, 2016). According to the Danish
Dog Registry Denmark has approximately 580,000 registered dogs (personal communication, Dansk
9
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Hunderegister 2017). Of these, 18% are registered as mixed-breeds and 82% are registered as
purebreds. The purebreds can be further divided into two groups: 33% registered as purebred dogs
with a pedigree in Danish Kennel Club and 49% registered as purebreds with only verification of
breed by owner and vet and no pedigree (Proschowsky, 2017). In the Danish breed-specific legislatio n
the definition of a cross- or a mixed-breed dog is not specified and there is no percentage limit of how
much of an illegal dog breed is allowed to be present before a dog is included by this law
(Bekendtgørelse af lov om hunde, 2017).
If the dog owner fails to prove the dog's legality, euthanasia of the dog can be demanded by the police
(Bekendtgørelse af lov om hunde, 2017). Dog owners can appeal the decision and one of the most
recent cases concerning illegal dogs in Denmark were brought to the Supreme Court in October 2017
as a matter of principle. The case concerned two dogs who in 2014 were suspected to be of the breed
Amstaff or a mixed-breed including this breed and were placed in a shelter for three years while the
case was being processed. Based on visual assessment by the police and a veterinarian and the fact
that the owners could not prove the dogs' descent, the Supreme Court upheld the decision from the
High Court to euthanize the dogs (Højesteret 2017; DR, Emil Søndergård Ingvorsen, 2017).
A recently published record from the Danish Ministry of Environment and Food shows that in the
period from June 2010, when the law was passed, to August 2017, 552 dogs have been euthanized
due to the Danish breed-specific legislation. This number only includes the cases that have been
reported to the Danish National Police (Miljø-og Fødevareministeriet, 2017). A report from a
committee formed by the former Danish Ministry of Food, Agriculture and Fisheries shows that the
majority of these dogs were suspected of being an Amstaff or a mixed-breed including this breed
(Udvalget for Fødevarer Landbrug og Fiskeri, 2013).
1.2 Visual Breed Detection
According to the legislation a dog may be suspected of being illegal based on its phenotypic
appearance and the police is not obligated to obtain a secondary opinion (Vejledning om hundelo ve ns
forbudsordning, 2016). This practice is problematic because studies show that visual identification of
a dog's breeds in mixed-breed dogs is difficult: when people working with dogs, e.g. in shelters, were
asked to decide which breeds a mixed-breed dog consisted of, there was great discrepancy between
the visual identification and results from DNA testing, which was used as control (Voith
et al.,
2009,
10
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2013). In a study by Voith et. al (2013), for 14 of the 20 mixed-breed dogs investigated, fewer than
50% of the respondents identified the breeds of the dogs that were found by DNA identification. The
study also revealed the level of inter-observer reliability as very poor, as for only seven of the 20 dogs
more than 50% of the respondents agreed on the most predominant breed of a mixed-breed dog. A
study by Olson et al. (2015) concerning Pit Bull-type dogs is consistent with the poor level of inter-
observer reliability and illustrates that reliable inclusion or exclusion of dogs as Pit Bull-type dogs
are not possible. It is also demonstrated in their study how one in five mixed-breed dogs containing
Pit Bull-type breeds (American Staffordshire Terrier and Staffordshire Bull Terrier) were not labeled
as such; and one in three mixed-breed dogs lacking any of these breeds were labeled as a Pit Bull-
type by the participants. The overall mean sensitivity and mean specificity of visual identification of
Pit Bull-type dogs were 50% and 83% respectively (Olson
et al.,
2015).
1.3 History of Dog Breed Formation
The breed-specific legislation prohibits 13 individual dog breeds which is possible because of the fact
that today’s population of dogs is divided into well-defined
subpopulations called breeds, which are
possible to distinguish from each other.
The present population of domesticated dogs stems from a common ancestor, the grey wolf, and no
other canid species have contributed to the genetic makeup. The domestication and co-living with
humans began over 15,000 years ago, however, many details in the dog's geographical origin,
evolution, history and domestication remain unclear (Ostrander
et al.,
2017). It was not until nearly
two centuries ago that the majority of dog breeds, as we know them today, were established. In the
middle of the nineteenths century a new tendency was seen. People started to control dog breeding
with the purpose to improve their animals. This new interest was combined with a sporting element
in dog shows and field trials, where dog owners were rewarded for their work. In the beginning, dogs
competed in both dog shows and field trials but later these activities became more specialized and
most dogs were bred for the purpose of joining only one of the competitions. These specialized dogs
became the first purebreds and they all had a documented pedigree stating their ancestors. Pedigrees
or studbooks were established by including particularly good representative dogs of each breed, and
after choosing these original animals, the studbooks were closed. After closure of the studbooks, only
offspring from these chosen dogs were regarded as purebreds. To avoid conflicts regarding which
dogs were accepted as purebreds and which were not, kennel clubs like American Kennel Club, The
11
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0012.png
Kennel Club and Danish Kennel Club were in the late 1800's established to manage this (Sandøe,
Corr and Palmer, 2016; The Kennel Club, 2017b; American Kennel Club, 2018b; Dansk Kennel
Klub, 2018). The controlled selection by man has led to the development of closed intraspec ies
groups, where each dog breed represents an isolated breeding population with relatively unifor m
physical characteristics defining each breed (Irion
et al.,
2003; Parker, Shearin and Ostrander, 2010).
The first kennel club, The Kennel Club, recognized 40 breeds (Sandøe, Corr and Palmer, 2016). At
present, 344 different dog breeds are recognized by the Fédération
Cynologique Internationale (FCI),
who organizes kennel clubs worldwide (Fédération Cynologique Internationale, 2018b).
However,
the overall number of breeds is in reality higher, as different breeds are accepted by different kennel
clubs. Most modern dog breeds are a closed population and breed membership requires that both
parents are registered members of the same breed before mating (Dansk Kennel Klub, 2017).
FCI classifies dog breeds in ten different groups
1
(Fédération Cynologique Internationale, 2018a).
The Danish Kennel Club is a member of FCI and organizes dogs after FCI's internatio na l
classification system. The American Kennel Club and The Kennel Club are not members of FCI, and
upholds their own systems when it comes to classification
2
(The Kennel Club, 2017a; America n
Kennel Club, 2018a).
1.4 History of American Staffordshire Terrier
As earlier described, the Amstaff was the most popular of the 13 prohibited dog breeds in Denmark
(Betænkning om farlige hunde, 2010). The history of the American Staffordshire Terrier, often called
Amstaff, exists in slightly different versions, but there is great agreement on the fact that the Amstaff
has a British ancestor in a dog type bred by crossing the Bulldog, which until the mid-19
th
century
was primarily used for the purpose of acting in staged fights with bull or bear, with the White Englis h
Terrier or the Black-and-Tan Terrier, or any other game terrier. This new dog type was bred to
1
1: sheepdogs and cattledogs 2: pinscher and schnauzer
molossoids, swiss mountain and cattledog 3: terriers 4:
dachshunds 5: spitz and primitive types 6: scent hounds and related breeds 7: pointing dogs 8: retrievers, flushing dogs
and water dogs 9: companion and toy dogs 10: sighthounds.
2
American Kennel Club: Sporting group, hound group, working group, terrier group, toy group, non -sporting group,
herding group, miscellanous class, and foundation stock service.
The Kennel Club: Gundog, hound, pastoral, terrier, toy, utility and working.
12
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
combine the spirit and agility from the terrier and courage and tenacity from the bulldog for the
purpose of dog fighting. These types of dogs were in the beginning called Half and Half, Bull-a nd-
Terrier, Pit Dog or Pit Bullterrier. When brought to the United States of America around 1870 by
immigrants from United Kingdom, they were known as Pit Dogs, Pit Bull Terriers, American Bull
Terriers or Yankee Terriers. After being imported to the United States (U.S.) the breed developed
into a heavier type of dog and was adjusted to general farm work, to hunt wild animals, to guard the
farm and for general companionship. In 1936, the dog type was registered in American
Kennel Club’s
studbook as its own breed, called Staffordshire Terrier. In 1972, the name was changed to American
Staffordshire Terrier to distinguish these dogs from the British version of the Staffordshire Terrier
now called Staffordshire Bull Terrier which had recently been recognized by the American Kennel
Club (American Kennel Club, 2018c). Currently, the Amstaff is recognized by American Kennel
Club but not by The Kennel Club in United Kingdom.
In the late 1980’s the Amstaff came to
Scandinavia and in 1990 the first Swedish Amstaff litter was born (Svenska Amstaffklubben, 2018).
The Amstaff became a popular dog in Denmark where the media drew special attention to the uptake
of Amstaffs among a special segment of unexperienced owners, who used the dog as a part of their
image; as a tool of power and as a "weapon" to frighten the public (Nyhedsavisen, Rene Fredensborg,
2007; Politikken, Morten Sørensen, 2009; Information, Lærke Cramon, 2017). It should be
underlined that it is not known how many of the former Amstaff owners in Denmark fitted this
stereotype view and how many were caring owners of Amstaffs as a family dog.
Today, the Amstaff is illegal in Denmark and Norway but not in Sweden where they are found in
relatively great numbers, as 8,650 dogs were registered as Amstaff in 2017 (Forskrift om hunder,
2004; Bekendtgørelse af lov om hunde, 2017; Jordbruksverket, 2017).
1.5 Dog Breed Genetics
If dog breeds are to be distinguished on another basis than their phenotypical appearance, the
underlying genetic structure must be studied. The present population of dogs express long range
linkage disequilibrium (LD), long haplotype-blocks and great homozygosity within breeds in contrast
to the great phenotypic diversity seen between breeds (Parker
et al.,
2004; Sutter
et al.,
2004;
Lindblad-Toh
et al.,
2005; Dreger
et al.,
2016). This is the result of intense breeding, closing of
subpopulations and several bottlenecks throughout the dog's history. The first bottleneck came with
the divergence from the wolf. Another at the breed formation, which introduced breed-specific
13
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
bottlenecks due to closing the populations, popular sires and restricted breeding, which caused a
decreased geneflow between breeds and an increase in the level of inbreeding. More recent events,
such as the two World Wars, have left few founding animals in several breeds e.g. the Leonberger
and the Cavalier King Charles and have contributed to new bottlenecks. This further limited the
genetic pool (Ostrander and Kruglyak, 2000; Lindblad-Toh
et al.,
2005; Dreger
et al.,
2016). It has
been suggested that only a 5% reduction in the genetic diversity was seen due to domestication, while
a 35% loss of diversity occurred due to breed formation (Gray
et al.,
2009).
1.5.1 Microsatellites
Because of the unique population structure and close interaction with humans, the dog has been used
widely in genetic studies over the years (Ostrander and Kruglyak, 2000; Parker, 2012). Some of the
previous analyses of the dog's genome were based on microsatellite markers that were used to
differentiate breeds and to look at the canine genetic make-up. Microsatellites are repeated sequences
of 1-6 base pairs (bp) and are also known as short tandem repeats or simple sequence repeats.
Several studies have examined the variation of microsatellites within and between dog breeds
(Fredholm and Winterø, 1995; Koskinen and Bredbacka, 2000; Irion
et al.,
2003). Microsatellite loci
vary in a population because of different length of the repeated sequence in a given allele. The length
depends on the number of repeats (Zajc
et al.,
1994). Microsatellites are highly polymorphic, and this
is demonstrated by the fact that different loci in different breeds have been analyzed finding wide
variations in allele size. Breed specific alleles exist, but most of all, the difference in breeds is caused
by different allele frequencies and allele distribution, and not in the allele length at a specific locus
(Fredholm and Winterø, 1995; Koskinen and Bredbacka, 2000). There is a relative high level of allele
heterozygosity between breeds, but the degree differs within the individual microsatellite. A lower
degree of heterozygosity within breeds can be ascribed to a limited gene pool and non-random
mating. Heterozygosity decreases concurrently with decrease in population size within a breed
(Fredholm and Winterø, 1995; Irion
et al.,
2003). In 2004, Parker et al. demonstrated that a genetic
difference exists between dog breeds and that dogs can correctly be assigned to their individual breed
based on their genotype using microsatellites. In this study, 414 dogs representing 85 different breeds
were genotyped with 96 microsatellite loci revealing a genetic difference between breeds. More than
one quarter (27%) of the genetic variation in a dog is the result of variation between breeds rather
14
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
than variation between individual dogs in contrast to a 5-10% of variation observed between human
populations (Parker
et al.,
2004).
In Denmark, one way to prove whether a dog is legal is through parentage testing. This is only
possible if DNA from both parents is available (Vejledning om hundelovens forbudsordning, 2016).
Paternity testing is based on microsatellite sequences, which are used because of their highly
polymorphic nature and the fact that they show Mendelian codominant heritage. Microsatellites can
be easily read with multiplexing Polymerase Chain Reaction (PCR) and the amplified PCR products
pooled for electrophoresis. This makes microsatellites an efficient parentage testing assay (Zajc
et
al.,
1994; Koskinen and Bredbacka, 1999).
With the canine genome characterized partly in 2003 and fully in 2005, more genetic information has
become available. Kirkness et al. (2003) established a partial reference genome by sequencing
the canine genome to a sequence depth of 1.5X sequence coverage (Kirkness
et al.,
2003). In 2005,
Lindblad-Toh et al. (2005) succeeded with a full characterization of the canine genome by
compiling data from the partially sequenced
genome from 2003 with
their
own sequence
information of a 7.5X sequence coverage of a female boxer's genome. As an increasing number of
sequence information became available
new genotyping tools based on single
nucleotide
polymorphism (SNP) have been established. Since a large number of SNPs can be genotyped together
using SNP-chip this methodology has now to a large extend replaced microsatellites as a research and
practical tool (Vaysse
et al.,
2011).
1.5.2 Single Nucleotide Polymorphism (SNP)
A SNP-marker is a change in a single bp in a DNA sequence at a unique locus in the genome. SNP's
are thereby responsible for some of the genetic variation existing among individuals. SNPs represent
a unique genomic pattern for each dog breed and the SNP allele frequency differs between breeds
(Mars Veterinary, 2007).
Several studies have worked with identification of canine SNPs and the establishment of a canine
marker library to be used in canine mapping projects. When Lindblad-Toh et al. in 2005 sequenced
the entire genome of a female boxer the study also reported an initial compilation of SNP markers
covering the population of dogs. A comprehensive set of SNP markers (2.5 million in total) were
15
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
identified by comparing
the boxer’s genome to the previously sequenced poodle genome,
to nine
diverse dog breeds, to four grey wolves and to one coyote (Lindblad-Toh
et al.,
2005). Since this
original SNP map contained gaps, further development of the SNP markers has been done by targeted
resequencing in order to ensure that the entire dog genome is covered. The combined efforts to
identify SNP markers have let to the establishment of the CanineHD SNP array panel comprising a
total of 170,000 SNPs (Vaysse
et al.,
2011). The use of SNP chip in canine genetics is now widely
known. In 2016 Dreger et al., used the CanineHD SNP array to evaluate genomic breed-specific
homozygosity in 800 purebred dogs representing 80 different breeds. By comparing shared (between
individuals of a breed) and individual homozygous regions in ten dogs from each breed, it was
demonstrated that each dog breed has a unique profile of genome diversity caused by varying numbers
and sizes of homozygous regions (Dreger
et al.,
2016).
SNPs can be used in genetic studies because of their high density across the genome, their high
polymorphism and the fact that they are evenly distributed across the genome. By comparing the
genotypes of ten different breeds, a SNP-rate at one SNP pr. 900 bp were found to be reflecting
of the polymorphism and variation among breeds. Reduced polymorphism was seen within breeds
and was reflected by a SNP-rate at one SNP pr. 1600 bp. SNP genotyping has confirmed that dog
genomes within breeds consist of large LD blocks and that homozygous regions extend over large
regions (Lindblad-Toh
et al.,
2005). This reflects the limited haplotype diversity seen in dog breeds.
Long-range haplotypes are typical for most dog breeds, but the exact haplotypes vary between breeds
and the location of homozygosity differs between individual dogs (Lindblad-Toh
et al.,
2005; Dreger
et al.,
2016). Haplotype frequencies differ between breeds and only 2-4 haplotypes accounts for a
frequency of 80% of the chromosomes within each breed, thereby causing homozygosity (Sutter
et
al.,
2004; Lindblad-Toh
et al.,
2005).
1.6 Wisdom Panel
By using the presence of breed specific genetic profiles and SNP markers, several breed-detector
DNA tests have been developed. One of these products is Wisdom Panel developed by Wisdom
Health, a business unit of Mars Petcare which is a part of Mars Incorporated (Wisdom Panel, 2017c).
Wisdom Panel is a commercial, patented product and the first edition, Wisdom Panel MX, was
presented in 2007. By analyzing DNA extracted from a blood sample, Wisdom Panel MX was able
16
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
to identify the different breeds combined in a specific dog's recent ancestry - mixed or purebred - to
the great-grandparent levels. The first Wisdom Panel consisted of more than 300 SNP markers
selected after analyzing 4,608 SNPs out of the total 2.5+ million existing SNP markers. The test made
use of breed specific SNP allele frequencies to discriminate between different breeds. By analyzing
the genome and comparing hundreds of SNPs across the chromosomes, the test was able to find
various breed signatures and define the breed background in the dog being tested (Mars Veterinar y,
2007).
Wisdom Panel has been improved over the last ten years and the latest version of the product is called
Wisdom Panel 4.0. This is a cheek swab-based DNA test and the genotyping is now conducted on a
canine Illumina® Infinium® chip consisting of 1,800 SNP markers created specifically for the test.
Wisdom Panel 4.0. consists of a computer algorithm and a database containing more than 12,000
DNA samples covering over 250 different breeds, types and varieties (including all American Kennel
Club recognized breeds). Based on the results received from examining DNA samples with the 1,800
SNP-markers, the algorithm finds over 18,000,000 different combinations of ancestry trees and gives
each of them a score based on how well they match the specific dog's data. The pedigree tree with the
best score is considered the best possible match and illustrates the dog's ancestry up to three
generations (Wisdom Panel, 2017f, 2018a). The SNPs used in the genotyping are not chosen to cover
the genes responsible for the breed specific traits, as many of the markers are found in the part of the
genome that does not link to a phenotypic trait. Therefore, the pedigree tree result of a mixed-breed
dog could show ancestors where only a very few evident traits are inherited (Wisdom Panel, 2018c).
The database is based on DNA samples mostly from American dogs but dogs from United Kingdom,
Canada, Australia and Germany have also been included during the recent years and therefore, the
test is useable in these countries. According to Wisdom Health, differences in the genetic breed
signature across geographical areas have been found during the development of Wisdom Panel, and
the use of the test on Scandinavian dogs can therefore be questionable (Wisdom Panel, 2017a).
In 2007, when the first panel (Wisdom Panel MX) was developed, the company promised an accuracy
of 84% (Mars Veterinary, 2007). At the present moment, it is not possible to find exact data indicating
how accurate the DNA test is, as this depends on the quality of the DNA samples. However, to
maintain a high quality, Wisdom Health ensures that tests are run in an USDA-accredited laboratory
17
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
(quality controlled), that repeated tests of a dog's data are run and that independent third parties review
the test (Wisdom Panel, 2017d).
1.7 Genetic Differences Between American and European Dog Populations
The differences in the genetic breed signature between American and European dog breed populatio ns
found by Wisdom Health have also been demonstrated in a study by Quignon et al. (2007) who
showed how the Golden Retriever shared 70.1% of its haplotypes between the breed populations in
U.S. and Europe. This displays a higher diversity in the Golden Retriever compared to the other
breeds included in the study, such as the Bernese Mountain Dog who shared 76.2 % of its haplotypes
between the populations in U.S. and Europe. At the same time, the Golden Retriever shows a higher
number of total haplotype blocks compared to the Bernese Mountain Dog, Rottweiler and Flat-coated
Retriever. This correlates well with the popularity and size of the Golden Retriever populatio n
(Quignon
et al.,
2007).
A recent study has shown that when importing a dog breed to a new country, genetic differences
between the breed in its original country and in the new country, can occur (Parker
et al.,
2017). This
was seen in the Cane Corso, a breed of Italian origin. When analyzing haplotypes in the Cane Corso
the U.S. population significantly shared haplotypes with the Rottweiler and the Mastiff. This was not
seen in the Italian population. The study also implies that when a breed is introduced to a new country
the genetic pool is decreased compared to the origin population. This contributes to a possible genetic
difference between breeds in different geographical regions (Parker
et al.,
2017).
1.8 Study Purpose
This project was established in light of the ban of the so called dangerous dog breeds which is a
legislation that presently relies on the reversed burden of proof using visual judgment of phenotypes.
The aim of the present study was to establish if a DNA test can be used in Denmark for identificatio n
of American Staffordshire Terrier (Amstaff) and mixed-breed dogs containing Amstaff.
18
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2. Materials and Methods
2.1 Study Design
The study was designed to establish if a DNA test, in this study Wisdom Panel 4.0, could be used to
identify the genetic profile of Amstaffs sampled in Sweden. To validate the use of the test in Denmark,
samples from other dog breeds were analyzed as well.
2.1.1 Animal Material
The DNA material used for this study consists of purified DNA from 192 Danish dogs distributed on
174 dogs representing 58 different specific breeds and 18 samples from Danish mixed-breed dogs.
Furthermore, purified DNA material from six American Staffordshire Terriers born and raised in the
United States of America and DNA samples from 20 American Staffordshire Terriers born and raised
in Sweden, were included. See appendix 1 for a complete list of samples.
2.1.2 Sample Collection
DNA samples from the 192 Danish dogs were selected from a Biobank established at Section of
Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences at
the University of Copenhagen. Selection of the specific DNA samples was a result of dog breeds
available in the Biobank and an estimation of dog breeds that would be informative for the sake of
establishing info on Amstaffs and mixed-breeds. The final list included samples from dog breeds with
phenotypic similarities to the Amstaff (e.g. Mastiff, Rottweiler, Staffordshire Bullterrier), worldwide
popular dog breeds (e.g. Labrador Retriever, Golden Retriever, German Shepherd), dog breeds with
origin in Denmark (e.g. Broholmer, Danish-Swedish Farmdog, Old Danish Pointing Dog), randomly
selected breeds from the Biobank (e.g. Saluki, Xoloitzc uintli, Wippet) and some samples registered
as mixed-breeds. Two of the Biobank samples represents DNA from Danish Amstaffs. Eight of the
mixed-breed samples derived from the same litter of puppies, which had been confiscated by the
Danish police under the suspicion of being illegal regarding the breed-specific legislation.
DNA material from the six American Amstaffs was kindly provided by Professor Kerstin Lindblad -
Toh, Broad Institute, Harvard, United States of America.
DNA material from the 20 Swedish purebred Amstaffs was collected in November 2017. Since
Sweden does not have a breed-specific legislation and the Amstaff is a common breed in Swedish
households, it was ideal to collect samples in our neighboring country. Because of the small
19
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
geographic distance between Denmark and Sweden, the population of Swedish Amstaffs is a good
representative for the Danish population of Amstaffs. The animals were recruited via the Swedish
Kennel Club. DNA from the Swedish dogs was obtained by buccal swabs. Two swabs per dog were
collected with Wisdom Panel 4.0 Canine DNA Test Kit and one swab per dog was collected with a
gyno brush to use in the laboratory at Section of Animal Genetics, Bioinformatics and Breeding,
Department of Veterinary and Animal Sciences at the University of Copenhagen. The dogs did not
eat food or shared toys or water bowls with any other dog an hour before sample collection as this
could disturb the test results.
2.1.3 DNA Extraction
DNA from the 20 Swedish Amstaffs was extracted and purified from gyno brushes using the Promega
Kit with a protocol for DNA extraction from the Section of Animal Genetics, Bioinformatics and
Breeding, Department of Veterinary and Animal Sciences at the University of Copenhagen.
See appendix 2.
2.2 DNA Analysis
2.2.1 Microsatellite Genotyping
The raw data from the Wisdom Panel analyses were inaccessible for this study. Therefore, a
microsatellite genotyping of the DNA samples from the Swedish and American Amstaffs were
conducted to compare the genetic profile of the two populations. PCR-analysis was run with the
extracted DNA from the 20 Swedish and six American Amstaffs and a microsatellite assay (Canine
Genotypes
T M
Panel 1.1). The microsatellite assay is used at present for parentage testing at the
Department of Veterinary and Animal Sciences at the University of Copenhagen and is approved and
standardized by International Society for Animal Genetics (ISAG). The assay encompasses 19
different loci. The PCR product was visualized with electrophoresis using ABI PRISM 3130 XL
Genetic Analyzer and the results were read with Genemapper version 3.7.
2.2.2 DNA Test
DNA material from the 192 Danish dogs, the six American dogs and the 20 Swedish dogs were sent
to Wisdom Health. Here the DNA genotyping was conducted on a canine Illumina® Infinium® chip
and analyzed by the patented method, Wisdom Panel 4.0. For further description of the test, see
section "Wisdom Panel" in the background section.
20
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0021.png
3. Results
3.1 Wisdom Panel Reports
The results from Wisdom Panel were received as individual sample reports on email. For each dog
the report contains sections named: ancestry, ancestry tree, breed tests (for purebreds), breed
description and adult weight. For an example of a purebred and a mixed-breed report see appendix 3
and 4 respectively.
In the ancestry section, a calculated percentage of the most likely breeds in the specific dog is shown.
Figure 1 shows three illustrative examples of different ancestries.
A
B
C
Figure 1: Examples from the Wisdom Panel reports, showing the calculated percentage of breeds
involved in a dogs ancestry. A) illustrates the reults from a purebred Amstaff. B) illustrates the results
from a mixed-breed containing Amstaff. C) illstrates a mixed-breed dog containing DNA from breeds
not reprensented above 12.5% of the total DNA. These breeds are gatherd in a ”mixed
-breed
group”.
Note: reprinted from Wisdom Panel reports.
The lowest possible breed percentage to detect for a single specific breed is 12.5%. If the dog's DNA
consists of breeds not represented above 12.5% in the total DNA the test cannot detect those specific
breeds. Instead these percentages are gathered in a "mixed-breed group" with information on which
groups (Asian, companion, guard, herding, hound, Middle East and African, mountain dogs,
sighthound, sporting, terrier or wild canids) the DNA is most similar to. An example of this is seen
in figure 1, C.
21
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Besides the calculated percentages of breeds in the specific dog, Wisdom Panel illustrates the dog's
most likely ancestry tree. For an example see appendix 3 or 4, page 49 and 57. Currently, the test
does not identify who the maternal and paternal ancestors are.
If the result of a dog turns out to be a purebred dog or an F1 mix of two breeds, the panel performs
several breed tests to see how consistent the sample is to the suggested breed. In the Single Breed
PCA Test and the All Breed PCA Test, Wisdom Panel uses Principal Component Analysis (PCA) to
illustrate how well the dog's DNA sample is consistent with other samples from the same breed and
to a single representative sample from every other breed in the Wisdom Panel database. A PCA is a
statistical method that reduces the numbers of variables in a dataset. It is an analysis that emphasizes
variations and illustrates strong patterns of relatedness in a dataset. Samples from the same breed or
the same subpopulation of a breed are expected to be closer together compared to other breeds and
this tends to create a cluster. If a sample falls within such a cluster, the dog is most likely a purebred
of the specific breed. PCA can be used to visualize genetic variation and relatedness in a populatio n
analysis.
Another way to compare the sample to the breed profile in the database is with a homozygos ity
profile. This profile shows to what percent a sample’s genetic markers are identical and compares
this to the breed specific range of homozygosity score found in the Wisdom Panel database.
All of these breed tests are carried out to secure the highest accuracy when deciding a dog's breed and
each analysis is performed individually.
3.2 Wisdom Panel Results
3.2.1 DNA Sample Results
The breed results from Wisdom Panel for each DNA sample appeared in the individual reports and a
complete list of the results are registered in appendix 1.
Out of a total number of 218 samples sent to Wisdom Panel only the three samples KP70, KP151,
KP153 were unable to be successfully processed (for abbreviations see appendix 1). Regarding KP70,
failure was due to not enough high-quality DNA to meet the minimum standards for analysis. The
reason for failure for KP151 and KP153 is unknown. Two samples, KP47 and KP74, were lost during
transportation and sample reports were never received.
22
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
The results of the ancestry reports from eleven dogs (KP99, KP106, KP107, KP115, KP118, KP121,
KP130, KP132, KP134, KP166, KP167) did not match the breed the samples were registered as in
the Biobank. Most of these dogs were reported to be mixed breeds and going back to the informatio n
that was registered on these dogs in the Biobank, it turned out that none of them are pedigreed dogs,
and that insufficient information had been provided on the ancestry. Thus, they should in fact have
been registered as unknown. Because KP106, KP107, KP121, KP166 and KP167 are unknown
breeds, Cavapoo, Large Münsterlander and Xoloitzcuintli are no longer represented in the samples
and the total number of breeds sent to Wisdom Panel are 55.
The results from three of the six American Amstaffs (KP87, KP88, KP89) were reported as mixed-
breeds after being analyzed by Wisdom Panel. Discussing this with Professor Kerstin Lindberg- To h,
who provided the DNA, it could not be ruled out that they were actually mixed-breeds.
In some breeds, different standards of the breed exist e.g. the Poodle, which is represented in a
miniature, a toy and a standard version. In the samples sent to Wisdom Panel it is not distinguis hed
which standard of the breed the sample represented, and the results were therefore reported as the
overall right breed but sometimes with more specific information on the standard. This is seen in the
samples representing the Poodle (KP113, KP114), the Bull Terrier (KP103, KP104) and the
Dachshund (KP116, KP117). Also, the Belgian Sheepdog covers a breed variation of four different
standards. Three samples are listed as Belgian Tervuren and one of these samples was reported back
as purebred Belgian Sheepdog (KP159) and the two other samples were reported back as a mix of
Belgian Tervuren and Belgian Sheepdog (KP160, KP161). The sample representing the Jack Russel
Terrier (KP133) was reported as a mix of Jack Russel Terrier and Parson Russel Terrier.
In a total, Wisdom Panel was able to detect 46 of the 55 represented breeds sent to analysis. These
breeds are listed in table 1.
23
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0024.png
Table 1: Breeds detected correctly by Wisdom Panel in DNA samples sent from the Biobank
Airedale Terrier
American Staffordshire Terrier
Beagle
Belgian Sheepdog
Belgian Tervuren
Bernese Mountain Dog
Boxer
Bulldog (English)
Bullmastiff
Bull Terrier
Cavalier King Charles Spaniel
Coton de Tulear
Dandie Dinmont Terrier
Dachshund
Dobermann Pinscher
Dogue de Bordeaux
English Cocker Spaniel
French Bulldog
German Shepherd Dog
German Shorthaired Pointer
Golden Retriever
Great Dane
Great Pyrenees
Greater Swiss Mountain Dog
Greyhound
Havanese
Hovawart
Irish Glen of Imaal
Irish Wolfhound
Jack Russel Terrier
Labrador Retriever
Lagotto Romagnolo
Leonberger
Maltese
Mastiff
Neapolitan Mastiff
Newfoundland
Poodle
Pug
Rottweiler
Saluki
Samoyed
Siberian Husky
Staffordshire Bull Terrier
West Highland White Terrie
Whippet
In nine out of the 55 represented breeds, Wisdom Panel was not able to detect the correct breed. These
nine breeds are listed in table 2.
Tabel 2: Breeds Wisdom Panel was unable to detect in DNA samples sent from the Biobank
Broholmer
Danish/Swedish Farmdog
Eurasier
Greenland Dog
Gross Spitz
Landseer
Old Danish Pointing Dog
Polski Owczarek Podhalanski
Scharpendos
24
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0025.png
The eight mixed-breed samples (KP58, KP59, KP60, KP101, KP102, KP171, KP185, KP186) were
reported as mixed-breeds. In all samples, multiple breeds were detected. Se appendix 1 for a complete
list of the dogs' breed composition.
3.2.2 Purebred Amstaff Results
All 20 Swedish Amstaff samples were correctly assigned to the American Staffordshire Terrier breed
by Wisdom Panel. The same was the case for the three American Amstaffs (KP85, KP86, KP90) and
the two Danish Amstaffs samples (KP91, KP92). See appendix 1.
The Single Breed PCA Test and the All Breeds PCA Test placed the samples from the Amstaffs into
three subpopulation clusters. An example from a Single Breed PCA Test is seen in figure 2. The 20
Swedish Amstaffs can be found in the light blue cluster. In this cluster the two Danish Amstaffs
(KP91, KP92) are also found. Two out of three American Amstaffs (KP85, KP86) are found in the
light purple cluster and the last one (KP90) is found in the dark purple cluster.
Figure 2: Wisdom Panel results from the Single Breed PCA test for the Swedish
Amstaff Maya, showing three different clusters in the Amstaff populatio n.
Maya is placed in the light blue cluster.
.
Note: reprinted from
Maya’s Wisdom Panel report.
25
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0026.png
3.2.3 Amstaff Mixed-Breeds Results
In the mixed-breed litter, confiscated by the Danish police, the ancestry results differed between the
puppies - both in ancestry percentage and in presence of breeds in the ancestry. However, all eight
samples included Amstaff. The results are listed in table 3.
Table 3: Wisdom Panel results from the mixed-breed litter confiscated by the Danish police.
Sample name of the
puppy
KP172
Breeds detected by Wisdom Panel in the samples
25% American Staffordshire Terrier, 25% American Bulldog, 12,5%
Boxer, 12,5% Cane Corso, 12,5% Golden Retriever, 12,5% Labrador
Retriever
25% American Staffordshire Terrier, 25% Cane Corso, 12,5% Boxer,
12,5% American Bulldog, 12,5% Bullmastiff, 12,5% Labrador Retriever
37,5% American Staffordshire Terrier, 25% Cane Corso, 12,5% Boxer,
12,5% American Bulldog, 12,5% Labrador Retriever
37,5% American Staffordshire Terrier, 25% Cane Corso, 12,5% American
Bulldog, 12,5% Bullmastiff, 12,5% Labrador Retriever
25% American Staffordshire Terrier, 25% American Bulldog, 25% Cane
Corso, 12,5% Labrador Retriever, 12,5% Mixed-breed Groups (sporting,
guard, terrier)
37,5% American Staffordshire Terrier, 25% American Bulldog,12,5 %
Labrador Retriever, 25% Mixed-breed Groups (guard, herding)
25% American Staffordshire Terrier, 12,5% Boxer, 12,5% American
Bulldog, 12,5% Golden Retriever, 12,5% Labrador Retriever, 25% Mixed-
breed Groups (guard, herding, sporting)
25% American Staffordshire Terrier, 25% American Bulldog, 25% Cane
Corso, 12,5% Golden Retriever, 12,5% Labrador Retriever
KP173
KP174
KP175
KP176
KP177
KP178
KP179
3.3 Microsatellite Genotyping
To compare the genetic profile of the American and Swedish populations of Amstaffs, a microsatellite
genotyping assay was conducted. The results consist of alleles found in each dog in the 19 loci. For
a complete list of the alleles see appendix 5.
When looking at the results from the microsatellite panel, some differences in the alleles present in
the American Amstaff population and the Swedish Amstaff populations are seen, as some alleles are
found in only one of the populations. We analyzed how the American samples differentiate from the
Swedish samples and not the reverse because three American dogs are not sufficient to represent the
American population of Amstaffs. The results of the genotyping show that of a total of 54 different
26
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0027.png
alleles found in the American dogs in the 19 loci of the panel, 19 alleles were not represented in the
Swedish population. The size and locus of the alleles are listed in table 4.
Two of the Swedish dogs, Santos and Bruno, did not run properly in test and therefore, the results are
not included. Also, the three American Amstaffs (KP187, KP188, KP189) which were determined as
mixed-breeds by Wisdom Panel were excluded.
The results from the loci on the sex chromosomes, Amelogenin, are not included in our analysis as it
is not relevant for this study.
Table 4: alleles found with the microsatellite analysis only in the American Amstaff population compared to the Swedish
population.
*The results from the loci on the sex chromosomes, Amelogenin, are not included in our analysis .
Locus name
AHT121
AHT137
AHTh171
AHTh260
AHTk211
AHTk253
Amelogenin*
CXX279
FH254
FH2848
INRA21
INU005
INU030
INU055
REN162C04
REN169D01
REN169O18
REN247M23
REN54P11
Allele size of alleles found only in the American dogs
102
143, 149, 151
239
250, 252
91, 95
116, 120
176
242, 244
101
130
164
222, 234
27
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
4. Discussion
4.1 Results from the DNA Test
This study reveals that a DNA test, in this study Wisdom Panel 4.0, can be used to detect purebred
and mixed-bred Amstaff in the Danish dog population.
Because Wisdom Panel is mainly based on DNA material from U.S. and dog breed populatio ns
from different geographical areas might have different genetic profiles, it was expected that the test
could have difficulties detecting all the breeds in the Danish and Swedish samples correctly. Also,
during development of the test, Wisdom Health observed that certain breeds sometimes have different
genetic breed signatures in different countries (Wisdom Panel, 2017a). Nevertheless, all samples from
Amstaffs in this study were correctly assigned to their breed, however the samples from different
geographical origins were found in different clusters in the PCA tests (see figure 2). The PCA results
and the results from the microsatellite panel assay, where some alleles in the American populatio n
are not found in the Swedish population (see table 4), might indicate a minor difference in the genetic
profile across geographical origin.
There seem to be a ‘continent’ specific DNA
profile, however this
can be overcome by Wisdom Panel 4.0.
Also, when looking at the results from the samples registered as Golden Retriever in the Biobank,
Wisdom Panel seems to overcome the genetic difference in the European and U.S. populatio n
previously described by Quignon et al. (2007). The fact that Wisdom Panel is able to determine the
Golden Retriever correctly could indicate that including DNA material from United Kingdom and
Germany in the database has increased the reliability of the breed test in the European samples, and
therefore also in the Danish samples.
To evaluate the use of Wisdom Panel to identify Amstaff in the Danish dog population, this study
also demonstrated Wisdom Panel’s accuracy in Danish samples from other dog breeds. In
the current
study Wisdom Panel was able to detect 46 out of 55 different breeds in the samples from the Biobank.
These 46 breeds are all listed on www.wisdompanel.com as detectable breeds included in the test
(Wisdom Panel, 2018b). The nine undetectable breeds are not mentioned on this list and were
therefore not expected to be detected correctly. Based on the results of this study, it is suggested that
the genetic difference between geographical distinct breed populations does not determine whether
Wisdom Panel is able to detect the correct breeds in Denmark or not. More likely, this is determined
by the fact that some breeds are not yet included in the Wisdom Panel database.
28
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Included in the nine undetectable breeds are four dog breeds with origin in Denmark
Broholmer,
Danish/Swedish Farm Dog, Old Danish Pointing Dog and Greenland Dog. If these breeds and other
breeds of relevance in Denmark, such as the 13 banned dog breeds (except American Staffordshire
Terrier, Boerboel and American Bulldog, which are already recognized by Wisdom Panel), should
be included in the Wisdom Panel database, Wisdom Panel needs to be provided with DNA from a
large number of dogs of these breeds.
The results for the eight puppies from the Amstaff mixed-breed litter, revealed a difference in ancestry
between the puppies. This difference is to be expected as a result of crossover events where maternal
and paternal homologues chromosomes exchange random pieces of DNA during meiosis and every
puppy inherits a unique combination of DNA with a new assortment of genes (Hartwell
et al.,
2011).
The final genetic make-up depends on which part of the chromosomes the puppy inherits. If some of
the great-grandparents were mixed-breeds, it is possible that some of the puppies inherited DNA from
one breed involved in the ancestors and not from another breed. Since an offspring inherits different
breed-specific alleles from its ancestors the ancestor tree can be different for each puppy even though
the same ancestors are shared in real life, as seen for the Amstaff mixed-breed puppies in the current
study (Wisdom Panel, 2018c). Another reason that may result in different ancestry in a litter is the
fact that a litter of puppies can have more than one father (Wisdom Panel, 2017e). Both reasons to
different ancestry in litter mates demonstrate the importance of testing an entire litter, as one puppy's
genetic profile does not necessarily represent the rest.
Since doubts about ancestry often arise regarding mixed-breed dogs, like the litter with the eight
puppies, it would be optimal to establish Wisdom Panel's accuracy in breed determination in such
mixed-breed samples. In order to estimate this accuracy, it would have been ideal to include samples
from several mixed-breeds with known descent. We tried to recruit such dogs, but this turned out to
be very difficult within the time frame of this study since owners of mixed-breeds rarely know the
entire ancestry of their dogs. We are therefore not able to document the accuracy of Wisdom Panel
in mixed-breeds, but it seems reasonable to think that the received results regarding mixed-breeds are
reliable. This is due to the high accuracy reported in purebred dogs, demonstrated with the fact that
Wisdom Panel was able to detect 46 out of the 55 represented breeds in Danish dogs.
In dog breeds where different standards (size, color, coat etc.) are detected by Wisdom Panel, the
results might be considered incorrect when reported back as mixes of these standards. This applies
29
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
for the samples representing the Poodle (KP113, KP114), the Dachshund (KP116, KP117), the Bull
Terrier (KP103, KP104), the Belgian Tervuren (KP160, KP161) and the Jack Russel Terrier (KP133),
see appendix 1. It is not registered in the Biobank what specific standards are involved in these
samples and since some mating between the different standards is allowed it is possible that a dog's
genetic profile contains DNA from more than one standard and therefore is reported as a mix of
standards. For example the Belgian Sheepdog consists of four different types and in Denmark mating
between specific types are allowed (Belgiske Hyrdehunde, 2015). The breed registered as Belgia n
Sheepdog in Wisdom Panel is known as the Groenendael in Denmark and since mating between
Tervuren and Groenendael is allowed the results reported for KP160 and KP161 might illustrate such
mating. Regarding the Jack Russel Terrier, sample KP133 was reported as 50% Jack Russel Terrier
and 50% Parson Russel Terrier. These two breeds rise from the same ancestor and according to
Wisdom Panel, the Parson Russel Terrier is a show variant of the Jack Russel Terrier. Therefore, it is
possible that Wisdom Panel will detect some ancestral contribution from both dog types in a single
dog depending on the dog's ancestry and report it as a mix of the two breeds, even though it is
registered as only one of the breeds (Wisdom Panel, 2018d). Despite this, the sample is still correctly
assigned to the "Russel Terrier" type breed and no other breeds are involved.
It is not possible to evaluate the accuracy of the Wisdom Panel test regarding the standard
determinations, since the standards and types of the dogs in the samples are not registered in the
Biobank and the pedigrees are not available. However, the main focus of this study is Wisdom Panel' s
ability to assign a dog to the correct breed and in this case more specific information regarding the
breed is not necessary. In all the samples reported as mixed standard breeds, the correct overall breed
has been determined.
Since Wisdom Panel is a commercial product, the raw data from the analyses was not accessible to
us, and it was therefore not possible to perform a more thorough analysis of the method used by
Wisdom Panel. Therefore, the only way to estimate the accuracy and value of Wisdom Panel in
Danish dogs was to send anonymized DNA samples from purebred dogs to Wisdom Panel, where the
specific breeds were known by us, and then compare the results from Wisdom Panel to the samples'
registered breed. It would have been interesting to review which breed specific SNPs that were used,
how these were selected and how they are used to calculate the pedigrees. Wisdom Health has been
contacted several times regarding this, but it is not possible to receive the data from the analysis. This
30
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
makes it difficult to evaluate the method and the results on a scientific basis. Nonetheless, our results
based on microsatellite genotyping support the PCA results on Amstaff reported by Wisdom Panel.
4.2 Use of Wisdom Panel in Denmark
Based on our results, Wisdom Panel can be expected to detect the breed of a dog as long as the breed
is included on the list of detectable breeds at www.wisdompanel.com. The Amstaff is included on
this list and as it is seen in this study Wisdom Panel had no problems assigning the Swedish populatio n
of Amstaffs as purebred Amstaffs. Only two other dog breeds (American Bulldog and Boerboel) of
the 13 prohibited dogs in Denmark, are found on the list. Based on our results, it is reasonable to
believe that American Bulldog and Boerboel (both purebred and mixed-breeds) will be detected in
Danish dogs. The remaining ten prohibited dogs are not represented in Wisdom Panel's DNA database
and these breeds will not be detected by Wisdom Panel. This is a point of critique of the use of
Wisdom Panel as a tool regarding the breed-specific legislation. However, none of these ten breeds
were represented in great numbers in Denmark before 2010 and most of them do not share phenotypic
characteristics with the Amstaff (Betænkning om farlige hunde, 2010). As a result of this, a mixed-
breed containing these breeds will probably not be suspected as being illegal very frequently. If
considered necessary that the entire list of banned dogs must be represented in the Wisdom Panel
database, they can be included, as earlier mentioned, by submitting a sufficient amount of DNA
samples to Wisdom Health. However, this does not apply for the Pit Bull Terrier as the term
“Pit
Bull”, according to Wisdom Health, does not refer to a single recognized breed but rather to a
genetically diverse group of breeds, and it is therefore not possible to establish a breed-specific DNA
profile of the Pit Bull Terrier (Wisdom Panel, 2017b).
Today, there is no lower limit for illegal admixture allowed in a dog specified in the Danish breed-
specific legislation, which means that the legislation is currently being practiced with a limit of zero
per cent. If DNA testing should be implemented in the legislation, it would be reasonable to accept
the lowest limit possible with the available technology. Wisdom Panel's lower limit of detection of a
breed involved in a specific dog is 12.5% and therefore this limit needs to be accepted as the lower
limit of admixture of illegal breeds in a dog if DNA testing with Wisdom Panel should be
implemented in the Danish breed-specific legislation. Acceptance of this limit would make Wisdom
Panel a useful tool to document if a dog is illegal or not. If this limit is not accepted, Wisdom Panel
31
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
could still be used as documentation to rule out the presence of any illegal breeds in a dog if the result
shows a 100% admixture of legal breeds, e.g. 50% Rottweiler and 50% Boxer. It is important to
mention that Wisdom Panel does not distinguish between the maternal or paternal contribution of
genes. The ancestry tree of a dog is only illustrating the best possible match made by the algorithm
and not necessarily the true distribution of ancestors. Therefore, the results cannot be used to proceed
against the mother or father of a tested dog, as they will need to be tested individually.
Wisdom Panel could be a helpful tool in determination of breeds in a dog that is suspected to be
illegal regarding the breed-specific legislation in Denmark. This applies particularly to mixed-breed
dogs, which are present in relatively great numbers in Denmark. Since the accusation of a dog being
illegal is based on the phenotypic appearance, and since owners of mixed-breed dogs are often unable
to present a reliable pedigree, the cases are often based on the owners' word against the words of the
police, which may result in prolonged cases. By accepting Wisdom Panel as a tool to prove the
descent of a dog, the matter of dispute would rarely exist, which would improve legal rights of dog
owners and lower both economic and emotional costs. Even though the accuracy in mixed-breed
samples could not be established based on the samples in this study, the use of Wisdom Panel still
contributes to a higher accuracy in breed identification than the visual identification, which have been
proved insufficient in several studies (Voith
et al.,
2009, 2013; Olson
et al.,
2015).
DNA testing as a tool to prove that a dog is of a legal breed or mix, must be implemented in the
Danish breed-specific legislation, if Wisdom Panel is to be used in cases regarding this legislation in
Denmark. Accepting DNA testing would improve legal rights for dog owners in Denmark and by
demonstrating in the this study how Wisdom Panel can be used for breed identification in the Danish
dog population, it is now possible to use DNA testing and therefore, it seems reasonable to suggest
an implementation.
32
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
5. Conclusion
The aim of the present study was to establish if a DNA test can be used in Denmark for identificatio n
of American Staffordshire Terrier (Amstaff) and mixed-breed dogs containing Amstaff. Our study
demonstrates that a DNA test can be used in Denmark to breed identification of purebred and mixed -
bred Amstaff in this case to a limit of 12.5%. In light of the ban of the so called dangerous dogs this
can improve legal rights for dog owners compared to visual judgement of phenotypes.
6. Limitations and Future Research
The evaluation of Wisdom Panels' accuracy in breed identification in mixed-breed dogs were limited
by the fact that it was very difficult to recruit and collect samples from mixed-breed dogs with known
ancestry. To encourage the use of Wisdom Panel in mixed-breed dogs we recommend that future
research focus on stating the accuracy of Wisdom Panel in such samples. Another focus of future
research and improvement of the use of Wisdom Panel in Denmark is to extent the database of
Wisdom Panel to include DNA from dog breeds with Danish origin. As earlier mentioned, this can
be done by providing Wisdom Panel with DNA from these breeds. A collaboration between Section
of Animal Genetics, Bioinformatics and Breeding, Department of Veterinary and Animal Sciences at
the University of Copenhagen and Wisdom Health could provide such DNA material to establish
these breeds' genetic profiles in the Wisdom Panel database. The more genetic profiles of dog breeds
existing in Wisdom Panels' database, the better the test works, both in Denmark and worldwide.
This study investigated the use of Wisdom Panel as a breed-detector DNA test in Denmark. However,
several other breed-detector tests exist on the market and it would be interesting to evaluate the
accuracy and usability of these in Denmark.
Three of the six American Amstaffs turned out to be mixed-breeds and this limited the use of the
microsatellite genotyping in this study. To further investigate the geographical significance in relation
to genetic variation between two dog breed populations and to make a more adequate comparison of
the American and Swedish population of Amstaffs, more American samples would be required.
33
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
7. References
American Kennel Club (2018a)
Dog Breeds - Types Of Dogs - American Kennel Club.
Available at:
http://www.akc.org/dog-breeds/ (Accessed: 24 January 2018).
American Kennel Club (2018b)
History of the American Kennel Club.
Available at:
http://www.akc.org/about/history/ (Accessed: 2 February 2018).
American Kennel Club (2018c)
Meet the American Staffordshire Terrier - history.
Available at:
http://www.akc.org/dog-breeds/american-staffordshire-terrier/detail/#3 (Accessed: 24 January 2018).
Bekendtgørelse af lov om hunde (2017)
Bekendtgørelse af lov om hunde LBK nr.47 af 11/01/2017.
Miljø- og
Fødevareministeriet, København.
Belgiske Hyrdehunde (2015)
Regler for parringer af racevarianter for Belgiske hyrdehunde
August 2015.
Available at: http://belgiskehyrdehunde.dk/regler-for-parringer-af-racevarianter-for-belgiske-hyrdehunde-
august-2015/ (Accessed: 26 January 2018).
Betænkning om farlige hunde (2010)
Betænkning nr. 1514 om farlige hunde.
Justitsministeriets Udvalg om
hunde, København.
Dansk Kennel Klub (2017)
Stambogsføringsregler.
Available at: https://www.dkk.dk/stambog-og-
registrering/hvis-du-skal/regitrere-dit-hvalpekuld/stambogsføringsregler (Accessed: 24 January 2018).
Dansk Kennel Klub (2018)
Om foreningen.
Available at: https://www.dkk.dk/om-dkk/organisation/om-
foreningen (Accessed: 8 February 2018).
DR Emil Søndergård Ingvorsen (2017)
Højesteret: Hundene Frigg og Marley skal aflives, Indland | DR
[Online].
Available at: https://www.dr.dk/nyheder/indland/hoejesteret-hundene-frigg-og-marley-skal-aflives
(Accessed: 24 January 2018).
Dreger, D.
L., Rimbault, M., Davis, B. W., Bhatnagar, A., Parker, H. G. and Ostrander, E. A. (2016) ‘Whole-
genome sequence, SNP chips and pedigree structure: building demographic profiles in domestic dog breeds
to optimize genetic-trait
mapping.’,
Disease models & mechanisms.
The Company of Biologists Ltd, 9(12),
pp. 1445–1460.
Fédération Cynologique Internationale (2018a)
FCI Breeds Nomenclature.
Available at:
http://www.fci.be/en/Nomenclature/Default.aspx (Accessed: 24 January 2018).
Fédération Cynologique Internationale (2018b)
Presentation of our organisation.
Available at:
http://www.fci.be/en/Presentation-of-our-organisation-4.html (Accessed: 9 February 2018).
Forskrift om hunder (2004)
Forskrift om hunder - Lovdata.
Justis- og beredskapsdepartementet, Norge.
Fredholm,
M. and Winterø, A. K. (1995) ‘Variation of short tandem repeats within and between species
belonging to the Canidae family’,
Mammalian Genome.
Springer-Verlag, 6(1), pp. 11–18.
Gray, M. M., Granka, J. M., Bustamante, C. D., Sutter, N. B., Boyko, A. R., Zhu, L., Ostrander, E. A. and
Wayne, R. K. (2009) ‘Linkage Disequilibrium and Demographic History of Wild and Domestic Canids’,
Genetics.
Genetics Society of America, 181(4), pp. 1493–505.
Hartwell, L. H., Hood, L., Goldberg, M. L., Reynolds, A. E.
and Silver, L. M. (2011) ‘The Chromosome
Theory of Inheritance’, in
Genetics from Genes to Genomes.
4th edn. New York: McGraw-Hill Companys,
Inc., pp. 79–117.
34
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Højesteret (2017)
Afgørelser om aflivning af to hunde var ikke ugyldige - sag 292/2016.
Danmarks
Domstole, København, d.7. november 2017.
Information Lærke Cramon (2017) ‘Frigg og Marley lignede ikke pudler’,
Information, sektion 3, side 8,
25
November, p. 1.
Irion, D. N., Schaffer, A. L., Famula, T. R., Eggleston, M. L., Hughes, S. S. and Pedersen, N. C. (2003)
‘Analysis of Genetic Variation in 28 Dog Breed Populations With 100 Microsatellite Markers’,
Journal of
Heredity.
Oxford University Press, 94(1), pp. 81–87.
Jordbruksverket (2017)
Antal hundar per ras [Online].
Available at:
http://www.jordbruksverket.se/download/18.66274f4a160d81d0503888d3/1515576645916/Antal hundar per
ras.pdf (Accessed: 23 January 2018).
Kirkness, E. F., Bafna, V., Halpern, A. L., Levy, S., Remington, K., Rusch, D. B., Delcher, A. L., Pop, M.,
Wang, W., Fraser, C. M. and Venter,
J. C. (2003) ‘The dog genome: survey sequencing and comparative
analysis’,
Science.
American Association for the Advancement of Science, 301(5641), pp. 1898–903.
Koskinen, M. T. and Bredbacka, P. (1999) ‘A convenient and efficient microsatellite-based
assay for
resolving parentages in dogs’,
Animal Genetics.
Blackwell Science Ltd, 30(2), pp. 148–149.
Koskinen, M. T. and Bredbacka, P. (2000) ‘Assessment of the population structure of five Finnish dog
breeds with microsatellites’,
Animal Genetics.
Blackwell Science Ltd, 31(5), pp. 310–317.
Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., Clamp, M.,
Chang, J. L., Kulbokas, E. J., Zody, M. C., Mauceli, E., Xie, X., Breen, M., Wayne, R. K., Ostrander, E. A.,
Ponting, C. P., Galibert, F., Smith, D. R., DeJong, P. J.,
et al.
(2005) ‘Genome sequence, comparative
analysis and haplotype structure of the domestic dog’,
Nature.
Nature Publishing Group, 438(7069), pp.
803–819.
Mars Veterinary (2007)
Wisdom Panel MX Monograph [Online].
Available at:
https://web4.lifelearn.com/mainstanimalhospital/files/2013/07/Monograph.pdf (Accessed: 18 September
2017).
Miljø-og Fødevareministeriet (2017)
Miljø- og Fødevareministerens besvarelse af sprøgsmål nr.10 til L.56.
København.
Nyhedsavisen
Rene Fredensborg (2007) ‘En bidsk bidemaskine’,
Nyhedsavisen, sektion 2, side 29
(1:Indland),
19 December.
Olson, K. R., Levy, J. K., Norby, B., Crandall, M. M., Broadhurst, J. E., Jacks, S., Barton, R. C. and
Zimmerman, M. S. (2015) ‘Inconsistent identification
of pit bull-type
dogs by shelter staff’,
The Veterinary
Journal.
Elsevier Ltd, 206(2), pp. 197–202.
Ostrander, E. A. and Kruglyak, L. (2000) ‘Unleashing the Canine Genome’,
Genome Research.
Cold Spring
Harbor Laboratory Press, 10(9), pp. 1271–4.
Ostrander, E. A., Wayne, R. K., Freedman, A. H. and Davis, B. W. (2017) ‘Demographic history, selection
and functional diversity of the canine genome’,
Nature Reviews Genetics.
Nature Publishing Group, 18(12),
pp. 705–720.
Parker, H. G. (2012) ‘Genomic Analyses of Modern Dog Breeds’,
Mammalian Genome.
Springer-Verlag,
23(1–2), pp. 19–27.
35
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Parker, H. G., Dreger, D. L., Rimbault, M., Davis, B. W., Mullen, A. B., Carpintero-Ramirez, G. and
Ostrander, E. A. (2017) ‘Genomic Analyses Reveal the Influence of Geographic
Origin, Migration, and
Hybridization on Modern Dog Breed Development’,
Cell Reports.
Cell Press, 19(4), pp. 697–708.
Parker, H. G., Kim, L. V., Sutter, N. B., Carlson, S., Lorentzen, T. D., Malek, T. B., Johnson, G. S.,
DeFrance, H. B., Ostrander, E.
A. and Kruglyak, L. (2004) ‘Genetic Structure of the Purebred Domestic
Dog’,
Science.
American Association for the Advancement of Science, 304, pp. 1160–1164.
Parker, H. G., Shearin, A. L. and Ostrander, E. A. (2010) ‘Man’s Best Friend Becomes Biology’s
Best in
Show: Genome Analyses in the Domestic Dog’,
Annual Review of Genetics.
Annual Reviews, 44(1), pp.
309–336.
Parliament of the United Kingdom (1991)
Dangerous Dogs Act.
London.
Politiken Morten Sørensen (2009)
Aggressive hunde er potensforlængere, Politiken Online, Debat.
Available
at: https://politiken.dk/debat/art4815776/»Aggressive-hunde-er-potensforlængere« (Accessed: 24 January
2018).
Proschowsky, H. F. (2017)
Who decides on dog breeding? The increasing power of nonorganized breeders
and consumers.
42nd World Small Animal Veterinary Association Congress and FECAVA 23rd
Eurocongress, Copenhagen.
Quignon, P., Herbin, L., Cadieu, E., Kirkness, E. F., Hédan, B., Mosher, D. S., Galibert, F., André, C.,
Ostrander, E. A. and Hitte, C. (2007) ‘Canine Population
Structure: Assessment and Impact of Intra-Breed
Stratification on SNP-Based
Association Studies’,
PLoS ONE.
Public Library of Science, 2(12), p. e1324.
Sandøe, P., Corr, S. and Palmer, C. (2016) ‘History of Companion Animals and the Companion Animal
Sector’, in
Companion Animal Ethics.
1st edn. Chichester: John Wiley & Sons, Incorporated, pp. 29–31.
Sutter, N. B., Eberle, M. A., Parker, H. G., Pullar, B. J., Kirkness, E. F., Kruglyak, L. and Ostrander, E. A.
(2004) ‘Extensive and breed-specific
linkage
disequilibrium in Canis familiaris.’,
Genome Research.
Cold
Spring Harbor Laboratory Press, 14(12), pp. 2388–96.
Svenska Amstaffklubben (2018)
American Staffordshire Terrier - Historik.
Available at:
http://www.astklubben.se/historik.html (Accessed: 24 January 2018).
The Kennel Club (2017a)
Breed Standards Information: Dog Breeds and Groups.
Available at:
https://www.thekennelclub.org.uk/activities/dog-showing/breed-standards/ (Accessed: 24 January 2018).
The Kennel Club (2017b)
History of The Kennel Club.
Available at: https://www.thekennelclub.org.uk/our-
resources/about-the-kennel-club/history-of-the-kennel-club/ (Accessed: 2 February 2018).
Udvalget for Fødevarer Landbrug og Fiskeri (2013)
Oversigt over antal aflivede hunde, FLF Alm.del Bilag
359, Offentligt.
Vaysse, A., Ratnakumar, A., Derrien, T., Axelsson, E., Rosengren Pielberg, G., Sigurdsson, S., Fall, T.,
Seppälä, E. H., Hansen, M. S. T., Lawley, C. T., Karlsson, E. K., Bannasch, D., Vilà, C., Lohi, H., Galibert,
F., Fredholm, M., Häggström, J., Hedhammar, Å., André, C.,
et al.
(2011) ‘Identification of Genomic
Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping’,
PLoS
Genetics.
Public Library of Science, 7(10), p. e1002316.
Vejledning om hundelovens forbudsordning (2016)
Vejledning om hundelovens forbudsordning, regler om
skambid mv. Nr. 9956 af 23/09/2016.
Miljø- og Fødevareministeriet, København.
36
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
Voith, V. L., Ingram, E., Mitsouras, K. and Irizarry, K. (2009) ‘Comparison of Adoption Agency Breed
Identification
and DNA Breed Identification of Dogs’,
Journal of Applied Animal Welfare Science.
Taylor &
Francis Group, 12(3), pp. 253–262.
Voith, V. L., Trevejo, R., Dowling-Guyer, S., Chadik, C., Marder, A., Johnson, V. and Irizarry, K. (2013)
‘Comparison of Visual
and DNA Breed Identification of Dogs and Inter-Observer
Reliability’,
American
Journal of Sociological Research.
Scientific and Academic Publishing, 3(2), pp. 17–29.
Wisdom Panel (2017a)
Can Wisdom Panel identify the breeds in a dog that was born outside the U.S.?
Available at: https://help.wisdompanel.com/s/article/Can-Wisdom-Panel-identify-the-breeds-in-a-dog-that-
was-born-outside-the-U-S (Accessed: 24 January 2018).
Wisdom Panel (2017b)
Does Wisdom Panel test for ‘Pit Bull’?
Available at:
https://help.wisdompanel.com/s/article/Does-Wisdom-Panel-test-for-Pit-bull (Accessed: 24 January 2018).
Wisdom Panel (2017c)
FAQ - About Wisdom Health.
Available at:
https://help.wisdompanel.com/s/topic/0TO0Z000000oNFLWA2/about-wisdom-health?tabset-45fd2=2
(Accessed: 26 January 2018).
Wisdom Panel (2017d)
How accurate is Wisdom Panel?
Available at:
https://help.wisdompanel.com/s/article/How-accurate-is-Wisdom-Panel (Accessed: 24 January 2018).
Wisdom Panel (2017e)
I tested siblings and the results are different, how can that be?
Available at:
https://help.wisdompanel.com/s/article/I-tested-siblings-and-the-results-are-different-how-can-that-be
(Accessed: 26 January 2018).
Wisdom Panel (2017f)
Wisdom Panel Results - The Science.
Available at:
http://reports.wisdompanel.com/dnareport/82YHcRlvkZkE7hyPyRS7ehOekzy33z6viDTEpOOuVdgoYbn5a
ojN-9QIQoSi3RK-?_ga=2.42277421.949715922.1516607886-
920702687.1504529874#/thescience/2hsJFF1pAgAOSyIwsiusYc (Accessed: 26 January 2018).
Wisdom Panel (2018a)
Breed Detection.
Available at:
https://www.wisdompanel.com/our_process_and_technology/ (Accessed: 26 January 2018).
Wisdom Panel (2018b)
Explore Breeds - Breeds Detected.
Available at:
https://www.wisdompanel.com/breeds/ (Accessed: 26 January 2018).
Wisdom Panel (2018c)
Inheriting Traits.
Available at:
https://www.wisdompanel.com/why_test_your_dog/predicting_inherited_characteristics/ (Accessed: 26
January 2018).
Wisdom Panel (2018d)
Parson Russell Terrier | Wisdom Panel.
Available at:
https://www.wisdompanel.com/breed_count_matters/parson-russell-terrier/ (Accessed: 24 January 2018).
Zajc, I., Mellersh, C., Kelly, E. P. and Sampson, J. (1994) ‘A new method of paternity testing for dogs, based
on microsatellite sequences’,
The Veterinary Record.
British Veterinary Association, BMJ Publishing Group,
135(23), pp. 545–7.
37
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0038.png
8. Appendixes
Appendix 1
A complete list of the Biobank samples and the Swedish Amstaff samples sent to Wisdom Health and
analyzed by Wisdom Panel 4.0.
* represent samples from the Biobank where information of the registered breed turned out to be
insufficient.
**
represents
samples
from
American
Amstaffs
that
turned
out
be
mixed-breeds.
*** represents samples of breeds Wisdom Panel was not able to detect.
ID
KP1
KP2
KP3
KP4
KP5
KP6
KP7
KP8
KP9
KP10
KP11
KP12
KP13
KP14
KP15
KP16
KP17
KP18
KP19
KP20
KP21
KP22
KP23
KP24
KP25
Breed
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Staffordshire Bull Terrier
Bullmastiff
Bullmastiff
Bullmastiff
Bullmastiff
Pug
Mastiff
Mastiff
Pug
Mastiff
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
German Shepherd Dog
Labrador Retriever
Results from Wisdom Panel
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Staffordshire Bull Terrier
100% Bullmastiff
100% Bullmastiff
100% Bullmastiff
100% Bullmastiff
100% Pug
100% Mastiff
100% Mastiff
100% Pug
100% Mastiff
100% German Shepherd Dog
100% German Shepherd Dog
100%German Shepherd Dog
100% German Shepherd Dog
100% German Shepherd Dog
100% German Shepherd Dog
100% German Shepherd Dog
100% German Shepherd Dog
100% Labrador Retriever
38
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0039.png
KP26
KP27
KP28
KP29
KP30
KP31
KP32
KP33
KP34
KP35
KP36
KP37
KP38
KP39
KP40
KP41
KP42
KP43
KP44
KP45
KP46
KP47
KP48
KP49
KP50
KP51
KP52
KP53
KP54
KP55
KP56
KP57
KP58
KP59
Labrador Retriever
Labrador Retriever
Labrador Retriever
Labrador Retriever
Labrador Retriever
Labrador Retriever
Labrador Retriever
Golden Retriever
Golden Retriever
Golden Retriever
Golden Retriever
Golden Retriever
Golden Retriever
Golden Retriever
Golden Retriever
French Bulldog
French Bulldog
French Bulldog
French Bulldog
French Bulldog
French Bulldog
French Bulldog
French Bulldog
Great Dane
Great Dane
Great Dane
Great Dane
Great Dane
Great Dane
Great Dane
Great Dane
Belgian Sheepdog
Mixed
Mixed
KP60
Mixed
100% Labrador Retriever
100% Labrador Retriever
100% Labrador Retriever
100% Labrador Retriever
100% Labrador Retriever
100% Labrador Retriever
100% Labrador Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% Golden Retriever
100% French Bulldog
100% French Bulldog
100% French Bulldog
100% French Bulldog
100% French Bulldog
100% French Bulldog
Sample gone during transportation, no report received
100% French Bulldog
100% Great Dane
100% Great Dane
100% Great Dane
100% Great Dane
100% Great Dane
100% Great Dane
100% Great Dane
100% Great Dane
100% Belgian Sheepdog
50% Munsterlander (large), 12,5% Golden Retriever, 12,5% Chow
Chow, 12,5% Collie, 12,5% German Shepherd Dog
50% Havanese, 50% Shih Tzu
37,5% American Staffordshire Terrier, 12,5% Dobermann Pinscher,
12,5% Golden Retriever, 12,5% Bull Terrier (standard), 12,5%
German Shepherd Dog, 12,5% Mixed-breed Groups (guard,
sighthound, terrier)
39
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0040.png
KP61
KP62
Old Danish Pointing
Dog***
Old Danish Pointing
Dog***
Old Danish Pointing
Dog***
Old Danish Pointing
Dog***
Boxer
Old Danish Pointing
Dog***
Cocker Spaniel
Boxer
Boxer
Boxer
English Bulldog
Danish/Swedish
Farmdog***
Danish/Swedish
Farmdog***
Engelsk Bulldog
Dobermann
Dobermann
Dobermann
Dobermann
Dobermann
Rottweiler
Rottweiler
Rottweiler
Rottweiler
Rottweiler
American Staffordshire
Terrier (U.S)
American Staffordshire
Terrier (U.S)
American Staffordshire
Terrier (U.S)**
KP63
KP64
KP65
KP66
KP67
KP68
KP69
KP70
KP71
KP72
KP73
KP74
KP75
KP76
KP77
KP78
KP79
KP80
KP81
KP82
KP83
KP84
KP85
KP86
25% German Shorthaired Pointer, 25% Chihuahua, 12,5% Pointing
Griffon (Wire), 37,5% Mixed-breed Groups (sporting, hound,
terrier, herding)
12,5% Pointer, 25% German Shorthaired Pointer, 62,5% Mixed-
breed Groups (sporting, terrier)
12,5% Pointer, 12,5% German Shorthaired Pointer, 12,5%
Chihuahua, 12,5% Weimaraner, 50% Mixed-breed Groups
(sporting, herding)
25% German Shorthaired Pointer, 12,5% Keeshond, 12,5%
Pointer, 12,5% Poodle (miniature),
37,5% Mixed-breed Groups (terrier, sporting)
100% Boxer
25% English Setter, 25% Chihuahua, 25% German Shorthaired
Pointer, 12,5% Weimaraner,
12,5% Mixed-breed Groups (sporting, terrier)
100% English Cocker Spaniel
100% Boxer
100% Boxer
Test failed due to low DNA quality
100% Bulldog (English)
12,5% Cocker Spaniel, 12,5% Fox Terrier (smooth), 12,5 % Parson
Russel Terrier, 62,5% Mixed-breed Groups (terrier, sporting)
50% Russel Terrier, 12,5% Parson Russel Terrier, 37,5% Mixed-
breed Groups (terrier, hound, sporting)
Sample gone during transportation, no report received
100% Dobermann Pinscher
100% Dobermann Pinscher
100% Dobermann Pinscher
100% Dobermann Pinscher
100% Dobermann Pinscher
100% Rottweiler
100% Rottweiler
100% Rottweiler
100% Rottweiler
100% Rottweiler
100% American Staffordshire Terrier
100% American Staffordshire Terrier
62,5% American Staffordshire Terrier, 12,5% Bullmastiff, 12,5%
Chow Chow, 12,5% Mixed-breed Groups (guard, sporting, Asian)
40
KP87
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0041.png
KP88
American Staffordshire
Terrier (U.S)**
American Staffordshire
Terrier (U.S)**
American Staffordshire
Terrier (U.S)
American Staffordshire
Terrier
American Staffordshire
Terrier
Beagle
Beagle
Bernese Mountain Dog
Bernese Mountain Dog
Bernese Mountain Dog
KP89
KP90
KP91
KP92
KP93
KP94
KP95
KP96
KP97
25% American Staffordshire Terrier, 25% Rottweiler, 12,5% Bull
Terrier (miniature), 12,5% Bulldog (standard), 25% Mixed- breed
Groups (hound, sighthound, sporting, herding)
50% American Staffordshire Terrier, 12,5% Golden Retriever,
12,5% Rottweiler, 25% Mixed-breed Groups (guard, Asian,
companion)
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% Beagle
100% Beagle
100% Bernese Mountain Dog
100% Bernese Mountain Dog
100% Bernese Mountain Dog
37,5% Newfoundland, 12,5% American Bulldog, 12,5% German
Wirehaired Pointer, 12,5% Vizsla, 12,5% White Swiss Shepherd,
12,5% Mixed-breed Groups (terrier, sporting, guard)
87,5% Havanese, 12,5% Maltese
100% Havanese
50% Labrador Retriever, 50% Bouvier des Flandres
50% Labrador Retriever, 50% Bouvier des Flandres
50% Bull Terrier (Standard), 50% Bull Terrier (Miniature)
75% Bull Terrier (Standard), 25% Bull Terrier (Miniature)
100% Bull Terrier (Standard)
100% Cavalier King Charles Spaniel
50% Poodle (Miniature), 25% Poodle (Toy), 25% Mixed-breed
Groups (Companion, Terrier)
100% Cavalier King Charles Spaniel
100% Cavalier King Charles Spaniel
100% Cavalier King Charles Spaniel
100% Dogue de Bordeaux
100% Dogue de Bordeaux
100% Poodle (Toy)
62,5% Poodle (Miniature), 37,5% Poodle (Toy)
25% Dachshund (Miniature Shorthaired), 25% Dachshund
(Miniature Wirehaired), 25% Dachshund (Wirehaired), 12,5%
41
KP98
KP99
KP100
KP101
KP102
KP103
KP104
KP105
KP106
KP107
Broholmer
Havanese*
Havenese
Mixed
Mixed
Bull Terrier
Bull Terrier
Bull Terrier
Cavapoo*
Cavapoo*
KP108 Cavalier King Charles
Spaniel
KP109 Cavalier King Charles
Spaniel
KP110 Cavalier King Charles
Spaniel
KP111 Dogue de Bordeaux
KP112 Dogue de Bordeaux
KP113 Poodle (toy)
KP114 Poodle (toy)
KP115 Daschhund*
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0042.png
KP116 Daschhund
KP117
KP118
KP119
KP120
Daschhund
Greyhound*
Greyhound
Greyhound
KP121 Large Münsterlander*
KP122 Gross Spitz***
KP123 Greenland Dog***
KP124 Greenland Dog***
KP125 Samoyed
KP126 Greater Swiss Mountain
Dog
KP127 Hovawart
KP128 Irish Glen of Imaal Terrier
KP129 Irish Glen of Imaal Terrier
KP130 Irish Wolfhound*
KP131 Irish Wolfhound
Dachshund (Miniature Longhaired), 12,5% Mixed-breed Groups
(sporting, companion, terrier)
37,5% Dachshund(Longhaired), 37,5% Dachshund (Miniature
Longhaired),
25% Dachshund (Miniature Shorthaired)
50% Dachshund (Longhaired), 37,5% Dachshund (Miniature
Longhaired), 12,5% Dachshund (Miniature Shorthaired)
100% Munsterlander (Large)
100% Greyhound
100% Greyhound
25% German Shepherd Dog, 25% Golden Retriever, 12,5% Chow
Chow, 12,5% Collie, 12,5% German Shorthaired Pointer, 12,5%
Mixed-breed Groups (herding, mountain dogs, sporting, Asian)
12,5% German Spitz, 12,5% Keeshond, 12,5% Rhodesian
Ridgeback, 62,5% Mixed-breed (herding, terrier, mountain dogs,
hound)
75% Canadian Eskimo Dog, 12,5% Alaskan Malamute,
12,5% Siberian Husky
75% Canadian Eskimo Dog, 12,5% Alaskan Malamute,
12,5% Siberian Husky
100% Samoyed
100% Greater Swiss Mountain Dog
100% Hovawart
100% Glen of Imaal Terrier
100% Glen of Imaal Terrier
50% German Shepherd Dog, 50% Irish Wolfhound
100% Irish Wolfhound
37,5% Parson Russel Terrier, 25% Russel Terrier, 12,5% Fox
Terrier (smooth), 25% Mixed-breed Groups (terrier, sporting,
companion)
50% Parson Russel Terrier, 50% Russel Terrier
62,5% Russel Terrier, 12,5% Parson Russel Terrier,
25% Mixed-breed Groups (terrier, sporting, herding)
100% German Shorthaired Pointer
100% German Shorthaired Pointer
100% German Shorthaired Pointer
100% Lagotto Romagnolo
100% Lagotto Romagnolo
50% Newfoundland, 12,5% Poodle (standard), 12,5% Saint
Bernard, 25%, Mixed-breed Groups (sporting, guard, sighthound)
100% Leonberger
42
KP132 Jack Russel Terrier*
KP133 Jack Russel Terrier
KP134 Jack Russel Terrier*
KP135
KP136
KP137
KP138
KP139
German Shorthaired Pointer
German Shorthaired Pointer
German Shorthaired Pointer
Lagotto Romagnolo
Lagotto Romagnolo
KP140 Landseer***
KP141 Leonberger
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0043.png
KP142
KP143
KP144
KP145
KP146
KP147
KP148
Maltese
Maltese
Neapolitan Mastiff
Neapolitan Mastiff
Newfoundland
Newfoundland
Newfoundland
Polski Owczarek
Podhalanski***
Polski Owczarek
Podhalanski***
Great Pyrenees
Great Pyrenees
Great Pyrenees
Samoyed
Samoyed
KP149
KP150
KP151
KP152
KP153
KP154
KP155
KP156 Scharpendos***
KP157 Scharpendos***
KP158 Scharpendos***
Belgian Tervueren
Belgian Tervueren
Belgian Tervueren
West Highland White
Terrier
KP163 West Highland White
Terrier
KP164 Whippet
KP165 Whippet
KP166 Xoloitzquintli*
KP159
KP160
KP161
KP162
100% Maltese
100% Maltese
100% Neapolitan Mastiff
100% Neapolitan Mastiff
100% Newfoundland
100% Newfoundland
100% Newfoundland
25% Kritikos Lagonikos, 12,5% English Setter,
62,5% Mixed-breed Groups (Mountain dogs, Middle East and
African, Sporting, Asian, Herding)
12,5% Kuvasz, 12,5% Schipperke, 12,5% White Swiss
Shepherd, 62,5% Mixed-breed Goups (companion, herding)
Sample failed
100% Great Pyrenees
Sample failed
100% Samoyed
100% Samoyed
12,5% English Cocker Spaniel, 12,5% Irish Water Spaniel,
75% Mixed-breed Groups (herding, Middle East and African,
sporting, terrier)
25% Dutch Shepherd Dog, 12,5% Puli, 62,5% Mixed-breed Groups
(terrier, sporting, herding)
12,5% English Cocker Spaniel, 12,5% Parson Russel Terrier, 75%
Mixed-breed Groups (sporting, herding)
100% Belgian Sheepdog
50% Belgian Sheepdog, 50% Belgian Tervuren
75% Belgian Sheepdog, 25% Belgian Tervuren
100% West Highland White Terrier
100% West Highland White Terrier
100% Whippet
100% Whippet
25% Chihuahua, 12,5% Boykin Spaniel, 12,5% Manchester Terrier
(Toy), 50% Mixed-breed Groups (companion, terrier, hound)
25% Chihuahua, 25% Yorkshire Terrier, 12,5% Manchester Terrier
(Toy), 37,5% Mixed-breed Groups (herding, sporting, companion,
Middle East and African)
37,5% Chow Chow, 25% Samoyed, 12,5% Keeshond, 25%
Mixed-breed (Middle East and African, guard, sporting)
62,5% Chow Chow, 12,5% Keeshond, 12,5% Korean Jindo, 12,5%
Samoyed
43
KP167 Xoloitzquintli*
KP168 Eurasier***
KP169 Eurasier***
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0044.png
KP170 Eurasier***
KP171 Mixed
KP172 Mixed puppy from police
KP173 Mixed puppy from police
KP174 Mixed puppy from police
KP175 Mixed puppy from police
KP176 Mixed puppy from police
KP177 Mixed puppy from police
KP178 Mixed puppy from police
KP179
KP180
KP181
KP182
KP183
KP184
Mixed puppy from police
Dandie Dinmont Terrier
Dandie Dinmont Terrier
Siberian Husky
Siberian Husky
Siberian Husky
KP185 Mixed
KP186 Mixed
KP187
KP188
KP189
KP190
KP191
KP192
KP193
KP194
Saluki
Airedal Terrier
Airedal Terrier
Coton de Tulear
Coton de Tulear
Coton de Tulear
Saluki
Saluki
50% Chow Chow, 25% Samoyed, 12,5% Keeshond, 12,5% Mixed-
breed Groups (Middle East and African, companion, sporting,
guard)
37,5% Labrador Retriever, 25% German Shepherd, 12,5% Golden
Retriever, 12,5% Rottweiler, 12,5% Samoyed
25% American Staffordshire Terrier, 25% American Bulldog,
12,5% Boxer, 12,5% Cane Corso, 12,5% Golden Retriever, 12,5%
Labrador Retriever
25% American Staffordshire Terrier, 25% Cane Corso, 12,5%
Boxer, 12,5% American Bulldog, 12,5% Bullmastiff, 12,5%
Labrador Retriever
37,5% American Staffordshire Terrier, 25% Cane Corso, 12,5%
Boxer, 12,5% American Bulldog, 12,5% Labrador Retriever
37,5% American Staffordshire Terrier, 25% Cane Corso, 12,5%
American Bulldog, 12,5% Bullmastiff, 12,5% Labrador Retriever
25% American Staffordshire Terrier, 25% American Bulldog, 25%
Cane Corso, 12,5% Labrador Retriever, 12,5% Mixed-breed Groups
(sporting, guard, terrier)
37,5% American Staffordshire Terrier, 25% American Bulldog,
12,5%Labrador Retriever,25% Mixed-breed Groups (guard,herding)
25% American Staffordshire Terrier, 12,5% Boxer, 12,5%
American Bulldog, 12,5% Golden Retriever, 12,5% Labrador
Retriever, 25% Mixed-breed Groups (guard, herding, sporting)
25% American Staffordshire Terrier, 25% American Bulldog, 25%
Cane Corso, 12,5% Golden Retriever, 12,5% Labrador Retriever
100% Dandie Dinmont Terrier
100% Dandie Dinmont Terrier
100% Siberian Husky
100% Siberian Husky
100% Siberian Husky
25% Dachshund (Miniature Wirehaired), 25% Shih Tzu, 12,5%
Dachshund (Wirehaired), 12,5% Parson Russel Terrier, 12,5%
Pekingese, 12,5% Tibetan Spaniel
37,5% Dachshund (Wirehaired), 25% Shih Tzu,
25% Tibetan Spaniel, 12,5% Lhaso Apso
100% Saluki
100% Airedal Terrier
100% Airedal Terrier
100% Coton de Tuelar
100% Coton de Tuelar
100% Coton de Tuelar
100% Saluki
100% Saluki
44
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0045.png
KP195 Broholmer***
KP196 Broholmer***
KP197 Broholmer***
KP198 Havanese
25% Newfoundlander, 12,5% Boxer, 12,5% German Wirehaired
Pointer, 12,5% Mastiff, 37,5% Mixed-breed Groups (sporting,
herding, companion, mountain dogs)
25% Boxer, 25% Newfoundlander, 12,5% German Shorthaired
Pointer, 12,5% German Wirehaired Pointer, 12,5% White Swiss
Shepherd, 12,5% Mixed-breed Groups (terrier, herding, mountain
dogs, sporting)
37,5% Newfoundlander, 62,5% Mixed-breed Groups (herding,
sporting,guard)
100% Havanese
Samples from the Swedish Amstaffs sent to Wisdom Health to be analyzed by Wisdom Panel 4.0:
ID
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
Kenny
Loke
Maya
Nea
Oscar
Zafira
Santos
Shanti
Stella
Breed
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
American Staffordshire Terrier
Results from Wisdom Panel
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
100% American Staffordshire Terrier
45
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0046.png
Appendix 2
Protocol from Section of Animal Genetics, Bioinformatics and breeding, Department of Veterinary
and Animal Sciences at University of Copenhagen for DNA extraction with Promega Kit.
Oprensning af DNA fra Swab eller Gyno brush (PROMEGA KIT)
Noter: Anvend filterspidser når der tages fra kittet. Skyl saks samt pincet med ethanol mellem hver
prøve.
1. Tænd for ryste-varmeblok på 55 °C
2.
Overfør swab’en til et 2,0 mL rør (klip forsigtigt skaftet af swab’en
over, så røret kan lukkes)
Brug rene og klorbehandlede picetter og sakse, husk at gøre dem rene til næste gang.
3.
Tilsæt 900 μL Cell lysis solution og inkuber i 20 min. Vortex prøverne 2-3
gange undervejs.
4.
Tag forsigtigt swab’en op og overfør til nyt rent 2,0
mL rør
(NB! Den skal tilbage igen)
5.
Spin v. max speed i 5 min, fjern supernantanten og kom swab’en og evt. rester af væsken
tilbage.
6.
Tilsæt 600 μL nuclei lysis solution, 15 μL EDTA og 20 μL Proteinase K. (Tilsæt proteinase
K i stinkskabet)
7. Inkubér 3 timer ved 55°c v. 700 rpm.
8.
Spind kort ned i mini spind og tilsæt 3 μL RNase, vortex. Inkuber v. 37°c i 15 min (Hvis der
er kommet blodprøver af forældredyrene, kan de startes her og køres parallelt)
9.
Tag swab’en op og smid væk.
NB! Kør den op af siden så al væsken kommen ned i røret.
10.
(Stinkskab!!!) Tilsæt 200 μL Protein Precipitation solution, vortex 20 sek., stå på is i 5 min.
11. Spin v. max speed i 10 min
12. Overfør supernantanten til nyt 2,0 mL rør.
13.
Fæld med 650 μL isopropanol. Vend og ryst prøven godt (Stinkskab!!!)
14. Spin 10 min. v. max speed.
15. Fjern supernantanten til affaldsbøtte C2
16.
Vask m. 500 μL 70% EtOH, spin 5 min ved max.
17. Fjern supernantanten og lufttørre i 5 min.
18.
Genopløs i 16 μl 1xTE buffer.
19. Vortex godt, spin ned og lad stå O.N. v.16 °c på rystebordet mål derefter OD.
46
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0047.png
Appendix 3
Wisdom Panel report from a purebred dog.
47
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0048.png
48
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0049.png
49
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0050.png
50
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0051.png
51
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0052.png
52
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0053.png
53
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0054.png
54
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0055.png
Appendix 4
Wisdom Panel report from a mixed-breed dog.
55
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0056.png
56
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0057.png
57
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0058.png
58
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0059.png
59
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0060.png
60
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0061.png
61
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0062.png
62
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0063.png
63
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0064.png
64
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0065.png
Appendix 5
Complete list of alleles found by microsatellite genotyping in the Swedish and American Amstaff
samples.
Samples marked with red were not included in the analysis.
Sample Name Marker
Andy
AHT121
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
AHT121
Allele 1 Allele 2
94
96
98
98
100
94
96
94
98
94
94
96
96
96
94
98
96
100
98
98
96
98
104
98
98
98
104
104
104
98
104
102
108
108
104
104
96
98
98
104
100
104
104
104
Sample Name Marker
Andy
INRA21
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
INRA21
Allele 1
95
95
95
95
95
95
95
95
95
95
95
101
95
95
95
95
95
95
95
95
95
95
95
95
95
Allele 2
113
97
113
97
101
99
65
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0066.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
AHT137
Allele 1 Allele 2
137
137
137
147
137
137
147
137
137
137
137
143
143
143
131
151
147
137
137
137
137
149
147
145
137
147
147
147
147
149
147
137
145
147
147
147
147
147
?
147
147
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
INU005
Allele 1
132
124
110
110
126
124
110
110
118
110
110
124
124
124
124
124
110
110
124
110
110
124
124
126
124
Allele 2
124
124
132
132
130
132
126
124
124
132
124
132
126
132
132
132
66
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0067.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
AHTh171
Allele 1
231
225
219
215
219
233
225
221
229
231
225
219
219
219
229
225
225
231
225
221
221
233
221
221
225
Allele 2
233
229
233
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
INU030
Allele 1
150
150
150
150
150
124
150
150
150
150
150
150
144
144
150
150
144
150
150
150
150
150
150
150
150
Allele 2
229
233
233
235
225
225
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
150
152
239
229
233
233
233
229
225
233
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
150
67
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0068.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
AHTh260
Allele 1
238
246
238
246
240
238
238
238
240
246
238
250
246
240
238
246
238
238
238
238
238
238
238
240
240
Allele 2
240
246
246
240
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
INU055
Allele 1
210
218
210
218
218
218
218
210
218
210
210
218
218
210
210
214
210
210
214
218
210
218
218
218
214
Allele 2
218
218
214
214
246
248
246
252
250
246
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
214
212
218
218
218
218
218
220
246
246
246
246
250
246
246
246
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
68
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0069.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
AHTk211
Allele 1
87
87
87
87
87
87
87
87
87
87
87
87
87
87
89
87
87
87
87
87
87
87
87
87
87
Allele 2
Sample Name Marker
Andy
Asko
Boss
Bruno
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
REN162C04
Allele 1
202
202
202
200
202
202
202
200
202
202
202
202
200
202
202
202
202
202
202
202
206
202
202
202
Allele 2
206
208
208
208
208
206
89
89
Ciara
Daisy
Doris
Ella
Franko
Harry
89
91
95
91
97
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
208
206
202
206
208
206
208
206
208
208
69
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0070.png
Sample Name Marker
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
AHTk253
Allele 1
286
286
288
292
286
292
286
288
292
288
288
288
288
288
288
286
286
286
286
286
286
286
Allele 2
288
Sample Name Marker
Asko
Boss
Bruno
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
REN169D01
Allele 1
212
210
210
210
210
212
210
210
210
210
212
212
214
210
212
212
218
212
212
212
212
210
216
Allele 2
216
218
212
212
216
212
216
212
216
212
216
216
216
218
216
218
216
218
216
216
292
Ciara
Daisy
Doris
Ella
292
292
Franko
Harry
Inka
KP85
292
KP86
KP87
KP88
KP89
292
292
292
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
288
292
Shanti
Stella
Vand
Zafira
70
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0071.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Amelogenin
Allele 1
Y
Y
?
X
X
Y
Allele 2
X
X
X
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
REN169O18
REN169O18
REN169O1
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O18
REN169O81
Allele 1
156
168
170
166
162
162
156
166
162
170
156
164
164
168
156
168
170
168
168
156
168
162
168
170
Allele 2
168
170
168
168
170
170
170
170
170
168
170
170
170
170
170
170
170
170
170
X
Franko
Harry
Inka
Y
X
Y
X
X
Y
Y
X
X
Y
?
X
X
X
X
X
KP85
KP86
KP87
KP88
KP89
KP90
X
X
Kenny
Loke
Maya
Nea
X
X
Oscar
Santos
Shanti
Stella
Vand
Zafira
71
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0072.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
CXX279
Allele 1
124
124
118
118
124
124
118
124
124
124
118
120
118
118
116
116
124
124
118
124
124
124
124
124
118
Allele 2
126
126
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
Allele 1
268
271
268
268
272
268
268
268
268
270
268
268
268
272
Allele 2
270
272
272
272
272
270
272
272
126
126
Doris
Ella
Franko
Harry
124
130
120
120
118
124
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
REN247M23
270
268
270
272
270
272
272
272
272
266
272
272
272
272
126
126
130
Ocar
Santos
Shanti
Stella
Vand
Zafira
272
72
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0073.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
FH2054
Allele 1
160
152
160
160
152
160
152
156
152
160
152
152
152
156
160
152
152
152
152
160
156
152
156
Allele 2
164
160
164
164
160
160
160
160
164
160
176
176
160
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
REN54P11
Allele 1
236
236
236
236
236
236
236
236
236
236
236
236
222
226
226
234
228
236
236
236
236
236
236
236
236
Allele 2
236
236
236
236
236
160
164
160
156
160
160
164
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
160
164
73
MOF, Alm.del - 2018-19 (1. samling) - Endeligt svar på spørgsmål 654: Spm. om Københavns Universitets undersøgelse af MARS testen konkluderer, at testen må bruges til juridiske formål, til miljø- og fødevareministeren
2041069_0074.png
Sample Name Marker
Andy
Asko
Boss
Bruno
Ciara
Daisy
Doris
Ella
Franko
Harry
Inka
KP85
KP86
KP87
KP88
KP89
KP90
Kenny
Loke
Maya
Nea
Oscar
Santos
Shanti
Stella
Vand
Zafira
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
FH2848
Allele 1
238
238
240
238
240
238
238
238
238
240
238
240
238
228
238
240
240
238
238
240
238
238
240
240
240
Allele 2
240
240
240
240
240
240
240
242
240
244
240
244
240
240
74