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BACKGROUND: Noise from wind turbines (WTs) is reported as more annoying than traffic noise at similar levels, raising concerns as to whether WT
noise (WTN) increases risk for cardiovascular disease, as observed for traffic noise.

OBJECTIVES:We aimed to investigate whether long-term exposure to WTN increases risk of myocardial infarction (MI) and stroke.

METHODS:We identified all Danish dwellings within a radius 20 times the height of the closest WT and 25% of the dwellings within 20–40 times the
height of the closest WT. Using data on WT type and simulated hourly wind at each WT, we estimated hourly outdoor and low frequency (LF) indoor
WTN for each dwelling and derived 1-y and 5-y running nighttime averages. We used hospital and mortality registries to identify all incident cases of
MI (n=19,145) and stroke (n=18,064) among all adults age 25–85 y (n=717,453), who lived in one of these dwellings for ≥one year over the pe-
riod 1982–2013. We used Poisson regression to estimate incidence rate ratios (IRRs) adjusted for individual- and area-level covariates.

RESULTS: IRRs for MI in association with 5-y nighttime outdoor WTN >42 (vs. <24) dB(A) and indoor LF WTN >15 (vs. <5) dB(A) were 1.21
[95% confidence interval (CI): 0.91, 1.62; 47 exposed cases] and 1.29 (95% CI: 0.73, 2.28; 12 exposed cases), respectively. IRRs for intermediate cat-
egories of outdoor WTN [24–30, 30–36, and 36–42 dBðAÞ vs. <24 dBðAÞ] were slightly above the null and of similar size: 1.08 (95% CI: 1.04, 1.12),
1.07 (95% CI: 1.00, 1.12), and 1.06 (95% CI: 0.93, 1.22), respectively. For stroke, IRRs for the second and third outdoor exposure groups were similar
to those for MI, but near or below the null for higher exposures.

CONCLUSIONS:We did not find convincing evidence of associations between WTN and MI or stroke. https://doi.org/10.1289/EHP3340

Introduction
During recent decades, focus on renewable energy has increased
globally, and advancements in wind energy technologies have
resulted in an increased number of wind turbines (WTs). WT noise
(WTN) has consistently been associated with annoyance among
people living near WTs (Janssen et al. 2011; Michaud et al. 2016a;
Schmidt and Klokker 2014), and some studies have indicated that
WTN may also disturb sleep (Schmidt and Klokker 2014),
although results are inconsistent (Jalali et al. 2016; Michaud et al.
2016b).

Long-term exposure to transportation noise has been associ-
ated with higher risk for myocardial infarction (MI) and stroke
(Hansell et al. 2013; Héritier et al. 2017; Sørensen et al. 2011;
Vienneau et al. 2015). The pathophysiologic pathways are
believed to involve activation of a general stress response and
disturbance of sleep, in turn leading to increases in cardiovascular
risk factors, including blood pressure, endothelial dysfunction,
and oxidative stress, as well as a weakened immune system
(Münzel et al. 2017a; Schmidt et al. 2013, 2015; van Kempen
and Babisch 2012). This assocation has raised concerns about
whether WTN may increase risk for cardiovascular disease.

The findings on traffic noise and health are not readily applicable
toWTN. Generally, levels ofWTN are considerably lower than lev-
els of traffic noise found in urban settings; e.g., in Denmark app. 30%
of all dwellings are exposed to levels of road traffic noise that exceed
58 dBðAÞ, whereas Danish legislation does not allow WTN to
exceed 44 dBðAÞ (at 8 m=s) at dwellings (except WT owners erect-
ing WTs on their private property) (Miljø- og Fødevareministeriet
2011; Miljøministeriet 2007). However, at comparable noise levels,
WTN has been associated with a higher proportion of annoyed resi-
dents than traffic noise (Janssen et al. 2011). A potential explanation
for this increased annoyance is that WTN depends on wind speed
and direction, making it less predictable for the exposed population
than road traffic noise, which often follows a distinct pattern with
high levels during rush hours and lower levels during the night. Also,
amplitudemodulation givesWTN a rhythmic quality that is different
from that of road traffic noise. It has therefore been suggested that the
characteristics of WTN relevant for annoyance may be better cap-
tured bymetrics focusing on amplitudemodulation or low frequency
(LF) noise (Waye et al. 2003), rather than the full spectrum A-
weighted noise, as typically used in studies of traffic noise (Jeffery
et al. 2014). Last, WTs are mainly located in rural areas, where the
auditory impact of WTs may be more pronounced due to lower lev-
els of background noise in general, together with an expectation of a
quieter environment among rural residents in comparison with
expectations of people living inmore densely populated areas.

Only a few studies have investigated whether residential out-
door WTN is associated with cardiovascular risk factors or dis-
eases. The studies were all of cross-sectional design. A study based
on two Swedish study populations and oneDutch study population,
with a total of 1,755 participants, found no associations between
WTN and self-reported high blood pressure or cardiovascular dis-
ease, for neither A-weighted WTN nor indoor or outdoor WT
annoyance (Pedersen 2011). Similarly, a Canadian study of 1,238
participants living within 12 km of a WT found no associations
between estimated A-weighted residential WTN and self-reported
prevalent high blood pressure, medication for high blood pressure,
or heart disease (Michaud et al. 2016a). Furthermore, the Canadian
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study found no associations between 1-y mean residential outdoor
WTN (modeled) and measurements of blood pressure, heart rate,
or hair cortisol (Michaud et al. 2016c).

We aimed to prospectively investigate whether long-term res-
idential exposure to WTN is associated with risk for MI and
stroke in a nationwide register-based study. We combined data
on WT position and type, simulated meteorological conditions
and WTN, residential addresses, socioeconomic indicators, and
development of disease over the period 1982–2013.

Methods
The study was based on the Danish population, where all citizens
since 1968 can be tracked in and across all Danish health and
administrative registers by means of a personal identification
number that is maintained by the Central Population Register
(Schmidt et al. 2014).

Locating and Classifying WTs

We identified all WTs (7,860) in operation in Denmark at any time
between 1980 and 2013 using the administrative Master Data
Register of Wind Turbines, a registry maintained by the Danish
Energy Agency (Energistyrelsen 2014). In Denmark, it is manda-
tory for all WT owners to report geographical coordinates and ca-
dastral codes of their WT(s) to the registry. Furthermore, for WTs
in operation at the time of data extraction (May 2014), the register
also contained coordinates from the Danish Geodata Agency. In
case of disagreement between these coordinates and geographical
locations reported by WT owners, the WT location was validated
against aerial photographs and historical topographic maps. We
excluded 517 offshore WTs and 87WTs for which no credible
location was found. Moreover, 314WTs wrongly recorded in the
Master Data Register were assigned new coordinates based on
maps and aerial photographs. Information on height, model, type,
and operational settings was collected through the Master Data
Register ofWind Turbines, and eachWTwas classified into one of
99 noise spectra classes, with detailed noise spectrum information
from 10 to 10,000Hz in thirds of octaves for wind speeds from 4 to
25 m=s. These noise classes were made from existing measure-
ments of sound power for Danish WTs (Backalarz et al. 2016;
Sondergaard and Backalarz 2015).

Wind Conditions

For each WT location, we estimated the wind speed and direction
at hub height for each hour over the period 1982–2013, using
mesoscale model simulations performed with the Weather
Research and Forecasting model (Hahmann et al. 2015; Peña and
Hahmann 2017).

Noise Modeling

The WTN exposure modeling has been described in detail else-
where (Backalarz et al. 2016). In summary, we first identified
buildings that might have WTN discernable above background
noise, which we defined as having ≥24 dBðAÞ outdoor WTN or
≥5 dBðAÞ indoor LF WTN (10–160Hz) under the unrealistically
extreme scenario that all WTs ever operational in Denmark were
simultaneously operating at a wind speed of 8 m/s with downwind
sound propagation in all directions (to ensure that no eligible build-
ings were excluded). Second, we performed a detailedmodeling of
noise exposure for the 553,066 buildings identified as eligible in
the first step, calculating noise levels in one-third octave bands
from 10 to 10,000Hz, using the Nord2000 noise propagation
model (Kragh et al. 2001), and taking into account the hourly esti-
mates of wind speed and direction at hub height during the period

1982–2013. The Nord2000 model has been successfully validated
for WTs (Søndergaard et al. 2009). For each dwelling, we calcu-
lated the noise contribution from all WTs within a 6-km radius
hour by hour. Noise contributions from WTs beyond 6 km were
not evaluated because they could not appreciably affect the noise
estimate. These modeled values were then aggregated over the
nighttime period [2200 to 0700 hours (10 P.M. to 7 A.M.)], which
we considered the most relevant time window as people are most
likely at home and asleep during these hours. We calculated out-
door A-weighted sound pressure level, which is the metric most
commonly used in noise and health studies (Michaud et al. 2016c;
Pedersen 2011), as well as A-weighted indoor LF (10–160Hz)
sound pressure level. LF noise penetrates buildings well and has
been suggested as an important component of WTN in relation to
health (Jeffery et al. 2014).

We determined a validity score for the indoor and the outdoor
noise estimates as follows: For estimation of WTN, WTs were
grouped into 99 noise spectra classes with similar noise profiles.
The noise spectra for each class was determined from existing
noise data describing the noise spectra of all WT-models within
each class, typically for 8 m=s wind speed and since 2006 also for
6 m=s wind speed. For some WTs, data were available for other
wind speeds. In WT classes with many WT models, more data
were available than in classes with fewWTs. In general, fewer data
were available for old or rare WT types. For each dwelling time
point (hour by hour), the validity score reflects information for all
contributing WTs on a) the number and quality of measurement
data used to determine the WTN spectra classes, and b) how
closely the simulated meteorological conditions for that hour
resembled the conditions under which the relevant WTN spectra
were measured. These validity data were then combined for all
WTs contributing noise to a given dwelling on a given night and
subsequently aggregated over the past 1 and 5 y following the run-
ning exposure periods for each participant. The higher the number
of this score, the more reliable the noise estimate was assumed to
be. Finally, we dichotomized validity by the median among those
dwellings exposed to outdoor WTN >30 or indoor LF WTN
>10 dBðAÞ. This method was used because WTN and the likeli-
hood of a high validity score is by definition correlated, and we
wanted to focus on highly exposed subjects with comparatively
high validity for that noise level.

For the calculation of indoor LF noise, all dwellings were clas-
sified into one of six sound insulation classes, based on building
attributes in the Building and Housing register (Christensen 2011):
“1½-story houses” (residents assumed to sleep on the second floor
with most sound transmitted through the roof), “light façade” (e.g.,
wood), “aerated concrete” (and similar materials, including timber
framing), “farm houses” (remaining buildings in the registry classi-
fied as farms), “brick buildings,” and “unknown” (assigned the
mean attenuation value of the five previous classes). The frequency-
specific attenuation values for each of the six classes are shown in
Backalarz et al. 2016.

Study Population and Exposure Assignment

To define the study population, we first identified a set of “inclu-
sion dwellings,” which were all Danish dwellings located within
a radius of 20 times the height of a neighboring WT at any time
during the years 1982–2013, plus a random selection of 25% of
all dwellings within a radius of 20–40WT heights from at least
one WT during the same period. These criteria were selected to
ensure that the study population would include all people living
within a radius of 20 times the height of one or more WTs, plus
people living in the same areas, but with little or no WTN expo-
sure. We excluded all hospitals and residential institutions and all
dwellings situated within 100 m of areas classified as a “town
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center” (i.e., the central part of larger towns, characterized by
multistory adjoined buildings) in GIS data from the Danish
Geodata Agency (dataset: KORT10, precision± 1 m, data from
2013), as traffic conditions and lifestyle in town centers may dif-
fer substantially from the main study population.

We subsequently used the Danish Civil Registration System
(Schmidt et al. 2014) to identify the study cohort, defined as all
adults (age 25–84 y) who lived in one of these inclusion dwell-
ings any time between five years before the erection of the first
neighboring WT and the end of 2013. Including people before
and after a WT was operational ensured inclusion of subjects
living in exactly the same dwellings but with no exposure. For
this population, we then established complete migration histor-
ies (including also town centers and other addresses not counted
as inclusion dwellings) from five years before start of follow-up
until five years after moving from the inclusion dwelling. This
method allowed us to assign daily residential WTN exposure to
each member of the cohort based on all dwellings they had
lived in during that period. Subjects without complete geocod-
able address history for the period five years before start of
follow-up were excluded (later holes in address history resulted
in censoring).

The study was approved by the Danish Data Protection
Agency (J.nr: 2014-41-2,671). By Danish Law, ethical approval
and informed consent are not required for entirely register-based
studies.

Covariates

Selection of potential confounders was done a priori. From the
registries of Statistic Denmark, we obtained information on age and
sex, highest attained educational level (time-dependent, updated
yearly), personal income (time-dependent, updated yearly), marital
status (time-dependent, updated yearly), work-market affiliation
(time-dependent, updated yearly), and areal level (10,000m2) mean
household income (year 2010) (Baadsgaard and Quitzau 2011;
Jensen and Rasmussen 2011; Petersson et al. 2011). Information on
type of dwelling was obtained from the building and housing regis-
ter (Christensen 2011). As proxies for local road traffic noise and air
pollution, we identified the distance from each dwelling to the near-
est road with an average daily traffic count of ≥5,000 vehicles (in
2005) as well as total distance driven by vehicles within 500 m of
the residence each day as the product of street length and traffic
density.

Identification of Outcome

Cases with MI and stroke were identified by linking the personal
identification number of each member of the study population to
the nationwide Danish National Patient Register, which started in
1977 (Lynge et al. 2011), and the Danish Register of Causes of
Death from 1970 (Helweg-Larsen 2011). We defined stroke cases
using the International Classification of Diseases (ICD) 8 codes
431–434 and 436 or ICD10 codes I61, I63, and I64, and cases of
MI as ICD8 code 410 or ICD10 code I21. The subgroup of ische-
mic strokes was defined as ICD8 432–434 or ICD10 I63. We
considered only incident events (from either register) and
excluded all persons with events prior to start of follow-up.

Statistical Methods

Log-linear Poisson regression analysis was used to calculate
incidence rate ratios (IRRs) for MI and stroke according to out-
door [<24, 24− <30, 30− <36, 36− <42, and ≥42 dBðAÞ] or
indoor LF WTN [<5, 5− <10, 10− <15, and ≥15 dBðAÞ] ex-
posure, calculated as running means over the previous 1 y and
5 y. We performed categorical analyses to avoid concealment

of potential effects at high exposures due to forced linearity dic-
tated by the vast majority of our population exposed to less than
the (as-yet-unknown) levels potentially associated with the
health outcomes. The categorizations were determined a priori.
At present, there are no standards regarding categorizations of
WTN. After consulting acousticians, we chose <24 dBðAÞ out-
door and <5 dBðAÞ indoor LF WTN as the references, as the
acousticians evaluated that WTN in all likelihood will be inaud-
ible below these levels. For outdoor WTN, the upper limit of
42 dBðAÞ was chosen as this is the regulatory WTN limit in
Denmark (at wind speed 6 m=s) and therefore of interest from
an administrative point of view, and the intermediate cut points
chosen were 30 dBðAÞ and 36 dBðAÞ, which separated catego-
ries by 6 dBðAÞ. For indoor LF WTN, the Danish regulatory
limit was 20 dBðAÞ, and we chose intermediate cut points of
10 dBðAÞ and 15 dBðAÞ. However, there were very few cases
exposed to levels >20 dBðAÞ, and we therefore chose
>15 dBðAÞ as the highest exposure category.

For dwellings located so far from WTs as to never have WTN
above 24 dBðAÞ outdoors and 5 dBðAÞ indoors, or whenWTswere
not operating due to wind conditions, a value of −20 dBðAÞ was
used to represent close to no noise in calculating the average.
Follow-up was started after residents had lived one year in the
recruitment dwelling, turning 25 y or 1 January 1982, whichever
came last, and follow-up ended at time ofMI (in analyses of MI) or
stroke (in analyses of stroke), death, age 85 y, disappearance, or
having no recorded address geocodes formore than seven consecu-
tive days, 31 December 2013, or five years after moving from the
inclusion dwelling, whichever came first. In addition, we estimated
IRRs for the subgroup of strokes diagnosed as ischemic and cen-
sured all other types of stroke at time of diagnosis.

All analyses were adjusted for sex, calendar year (1982–1984,
1985–1989, 1990–1994, 1995–1999, 2000–2004, 2005–2009,
and 2010–2013) and age (25–84 y, in five-year categories).
Additionally, we adjusted for marital status [currently married/
registered partnership and other (never or formerly married)],
education (basic or high school, vocational, higher, and unknown),
work-market affiliation [employed, retired, and other (e.g., under
education or unemployed)], personal income (20 equal-sized annual
categories, and an unknown income category), area-level average
mean household income (20 equal-sized categories, and an
unknown income category; data from 2010), dwelling classification
(farm, single-family detached house, and other (e.g., apartments and
terraced housing), distance to road with ≥5,000 vehicles per day
(<500 m, 500− <1,000 m, 1,000− <2,000 m and ≥2,000 m),
and traffic load within 500 m radius of dwelling (first, and second
quartile, and above median; quartiles calculated in larger sample of
Danish addresses). Subjects were allowed to change between cate-
gories of covariates (yearly and/or at change of address) and expo-
sure variables over time.

WeusedPoissonmodels, including an interaction term, to inves-
tigate sex and age (above and below 65 y) as potential (multiplica-
tive) effect modifiers. Also, we conducted a number of sensitivity
analyses in subpopulations for whomwe hypothesized that a poten-
tial association between modeled exposure and risk could be more
pronounced. First, we investigated association among cases with a
diagnosis of MI or stroke after year 2000 (persons diagnosed with
MI or stroke before year 2000 were censored at diagnosis and not
counted as cases), reflecting improved diagnostic practices and
more comprehensive data onmoremodernWTs. Second, we looked
only at peoplewhile theywere living in dwellings classified as farms
(a large proportion of the highly exposed people live on farms, and
wehypothesize that there is less variation in lifestyle and other expo-
sures among this subpopulation in comparisonwith thewhole popu-
lation, potentially reducing susceptibility to residual confounding in
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this group). Third, we investigated people while their nearest WT
had a total height of >35 m (the WTN may qualitatively differ, for
example, in terms of frequency composition by WT size, and there
is less likelihood that the WT is owned by those exposed). Fourth,

we addressed exposure misclassification by looking at people with
validity of the cumulated noise estimate better than the median. As
exposure misclassification among individuals with very low expo-
sure was unlikely to be sufficient to alter exposure categorization,

Table 1. Characteristics of the populations for study of MI and stroke, respectively, at start of follow-up according to residential A-weighted exposure to out-
door wind turbine noise calculated as mean exposure during the preceding year.

Characteristics at
start of follow-up

Outdoor wind turbine noise

<24 dBðAÞ MI/stroke
(N =587,866=589,098)

24–30 dBðAÞ MI/stroke
(N =86,280=86,194)

30–36 dBðAÞ MI/stroke
(N =29,869=29,888)

36–42 dBðAÞ MI/stroke
(N =6,063=6,050)

≥42 dBðAÞ MI/stroke
(N =1,171=1,171)

Men 50/50% 51/51% 52/52% 53/53% 54/54%
Age
<40 years 43/42% 60/60% 63/63% 65/65% 68/68%
40–50 years 19/19% 16/16% 16/16% 17/17% 17/17%
50–60 years 15/15% 11/11% 10/10% 10/10% 8/8%
≥60 years 23/23% 14/14% 10/10% 8/7% 6/6%

Year of start of follow-up
1982–1990 23/23% 6/6% 6/6% 9/9% 16/16%
1990–2000 39/39% 27/27% 28/28% 35/35% 49/49%
2000–2010 29/29% 50/50% 39/39% 44/44% 31/31%
2010–2013 8/8% 18/18% 16/16% 12/12% 4/4%
Personal income
Quartile 1 (low) 19/19% 19/19% 18/18% 18/18% 16/16%
Quartile 2 23/23% 28/28% 28/28% 27/27% 25/25%
Quartile 3 24/24% 28/28% 28/28% 28/28% 27/27%
Quartile 4 (high) 23/23% 21/21% 21/21% 21/21% 26/26%
Unknown 12/12% 4/4% 5/5% 6/6% 5/5%
Highest attained education
Basic or high school 35/35% 33/33% 32/32% 31/31% 33/33%
Vocational 37/37% 46/46% 48/48% 49/49% 46/46%
High 15/15% 18/18% 18/18% 18/18% 19/19%
Unknown 13/13% 3/3% 2/2% 2/2% 2/2%
Marital status
Married 57/57% 41/41% 40/40% 39/39% 45/45%
Divorced/widow(er) 15/15% 16/16% 15/15% 14/14% 13/13%
Never married 28/28% 43/43% 45/45% 47/47% 42/42%
Affiliation to work
market
Working 65/65% 70/70% 73/74% 75/76% 77/77%
Retired 19/19% 16/16% 12/12% 10/9% 7/8%
Othera 16/16% 14/14% 14/14% 15/15% 16/16%
Area-level incomeb

Quartile 1 (low) 24/23% 22/22% 15/15% 12/12% 15/15%
Quartile 2 28/28% 29/29% 29/29% 27/27% 21/21%
Quartile 3 27/27% 29/29% 32/32% 33/33% 33/33%
Quartile 4 (high) 19/19% 17/17% 19/19% 21/22% 25/25%
Unknown 3/3% 3/3% 5/5% 7/7% 6/6%
Type of dwelling
Farm 13/13% 14/14% 23/23% 34/34% 34/34%
Single-family
detached house

62/62% 60/60% 61/61% 52/52% 54/54%

Othersc 25/25% 25/26% 17/17% 14/13% 12/12%
Distance to major roadd

<500 m 36/36% 25/25% 19/19% 18/18% 20/20%
500–2,000 m 27/27% 30/30% 28/28% 27/27% 27/27%
≥2,000 m 37/37% 45/45% 53/53% 55/55% 53/53%

Traffic loade

<2:5million
vehicles

33/33% 40/40% 54/54% 67/67% 63/63%

2.5-5.3 million
vehicles

25/25% 27/27% 25/25% 13/13% 16/16%

5.3-9.7 million
vehicles

19/19% 21/21% 15/15% 13/13% 12/12%

>9:7million
vehicles

23/23% 12/12% 6/6% 7/7% 9/9%

Tree coveragee

<5% 13/13% 17/17% 21/21% 28/28% 28/28%
5–20% 63/63% 68/68% 68/68% 63/64% 63/63%
>20% 24/24% 15/15% 11/11% 8/8% 9/9%

aInclude under education and unemployed among others.
bAverage mean household income among all households in a 100× 100 m grid cell.
cInclude apartments and terraced housing among others.
dMajor road defined as ≥5,000 vehicles per day.
eIn a 500 meters radius around the dwelling.
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the median was calculated only among those individuals with expo-
sures ≥10 dBðAÞ LF or 30 dBðAÞ in indoor and outdoor analyses,
respectively. Fifth, we investigated effects in people living in dwell-
ings located far from a major road (>2,000 m to nearest road with
>5,000 vehicles=day, as exposure to traffic noise may maskWTN).
Last, we investigated associations among people in dwellings with
low tree coverage [<5% of the area within 500 m of dwelling cov-
ered by forest, thicket, groves, single trees, and hedgerows, accord-
ing toGIS data (dataset KORT10, precision± 1 m) from theDanish
Geodata Agency, as vegetation noise may mask WTN]. Data were
analyzed using SAS (version 9.3; SAS Institute Inc.).

Results
We identified 844,228 adults (25–84 y) living ≥one year in the
inclusion dwellings between 1982–2013. We excluded persons
who had emigrated (n=44,049) or disappeared (n=1,570) prior
to start of follow-up, who had unknown address for eight or more
consecutive days in the five years prior to start of follow-up
(n=78,830; 98% had address holes of more than 30 d and 64%
of more than a year), and who lived in hospitals or institution at
study start of follow-up (n=2,004). Also, we excluded all per-
sons diagnosed with MI (n=6,526 only relevant for the MI study
population) or stroke (n=5,374, only relevant for the stroke

study population) before start of follow-up. The final study popu-
lation was 711,249 persons for the MI analyses, of whom 19,145
(2.7%) developed MI during 7,440,090 person-years, and 712,401
persons for the stroke analyses, of whom 18,064 (2.5%) developed
stroke during 7,466,239 person-years.

In comparison with people exposed to 1-y mean outdoor WTN
<24 dBðAÞ, the likelihood of being male, <40 years of age, living
on a farm, living in areas with high area-level income and low tree
coverage increased with increasing levels of outdoor WTN,
whereas the likelihood of having high levels of traffic, major roads
nearby, or being retired decreased (Table 1). People exposed
≥24 dBðAÞ were likely to have higher levels of education than
those exposed to <24 dB, and exposure to ≥42 dBðAÞ WTN was
associated with higher income. In general, similar tendencies as
those for outdoor WTN were seen when looking at indoor LF
WTN levels, except that no differences in gender distribution were
found, and the likelihood of high personal income decreased with
increased WTN levels (Table S1). Also, when comparing people
with outdoor or indoorWTN above the respective reference levels,
the latter tended to enter the study later, live further from major
roads, have lower tree coverage, and more likely have vocational
training as highest attained education level.

People exposed to outdoor WTN above 30 dBðAÞ were more
frequently exposed to levels of indoor LF WTN above the

Table 2. Characteristics of wind turbines at the dwellings of the study participants at start of follow-up, according to residential exposure to outdoor wind
turbine noise calculated as mean exposure during the preceding year.

Wind turbine characteristics at
of the study population
dwellings at start of follow-up

Outdoor wind turbine noise

<24 dBðAÞ MI/stroke
(N =587,866=589,098)

24–30 dBðAÞ MI/stroke
(N =86,280=86,194)

30–36 dBðAÞ MI/stroke
(N =29,869=29,888)

36–42 dBðAÞ MI/stroke
(N =6,063=6,050)

≥42 dBðAÞ MI/stroke
(N =1,171=1,171)

Indoor LF wind turbine noise (1-year mean)
<5 dBðAÞ 100% 93/92% 64/64% 27/27% 7/7%
5–10 dBðAÞ 0% 7/7% 30/30% 45/45% 38/38%
10–15 dBðAÞ 0% 0/0% 6/6% 26/26% 43/43%
≥15 dBðAÞ 0% 0/0% 0/0% 3/3% 12/12%

Distance to nearest wind turbine
<500 m 1/1% 17/17% 52/52% 91/91% 95/95%
500–2,000 m 37/37% 79/79% 45/45% 7/7% 2/2%
≥2,000 m 61/61% 4/4% 3/3% 2/2% 3/3%

Total height, nearest wind turbine
<35 m 41/41% 19/19% 23/23% 35/35% 71/71%
35–70 m 41/41% 59/59% 60/60% 52/52% 27/27%
70–100 m 9/9% 20/20% 16/16% 12/12% 1/1%
≥100 m 1/1% 2/2% 2/2% 1/1% 0/0%

Note: LF, low frequency.

Table 3. Characteristics of wind turbines at the dwellings of the study participants at start of follow-up, according to residential exposure to indoor low
frequency wind turbine noise calculated as mean exposure during the preceding year.

Wind turbine characteristics at of
the study population dwellings at
start of follow-up

Indoor LF wind turbine noise

<5 dBðAÞ MI/stroke
(N =688,489=689,608)

5–10 dBðAÞ MI/stroke
(N =18,465=18,497)

10–15 dBðAÞ MI/stroke
(N =3,996=3,997)

≥15 dBðAÞ MI/stroke
(N =299=299)

Outdoor wind turbine noise (1-year mean)
<24 dBðAÞ 85/85% 0/0% 0/0% 0/0%
24–30 dBðAÞ 12/12% 35/35% 1/1% 0/0%
30–36 dBðAÞ 3/3% 48/48% 48/48% 2/2%
36–42 dBðAÞ 0/0% 15/15% 39/39% 53/53%
≥42 dBðAÞ 0/0% 2/2% 13/13% 45/45%

Distance to nearest wind turbine
<500 m 5/5% 30/30% 63/63% 91/91%
500–2,000 m 42/42% 68/68% 35/35% 7/7%
≥2,000 m 54/54% 2/2% 2/2% 2/2%

Total height, nearest wind turbine
<35 m 38/38% 11/11% 11/11% 24/25%
35–70 m 44/44% 59/59% 54/54% 56/56%
70–100 m 10/10% 26/26% 31/31% 18/17%
≥100 m 1/1% 4/4% 4/4% 2/2%

Note: LF, low frequency.
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reference level than were people exposed to lower levels of out-
door WTN, and a similar pattern was observed for indoor LF
WTN (Tables 2 and 3). Among dwellings exposed to ≥36 dBðAÞ
outdoor WTN or ≥10 dBðAÞ indoor LF WTN, the vast majority
were located <500 m from a WT. With regard to height of the
nearest WT, 71% of the dwellings with ≥42 dBðAÞ were located
near low WTs (35 m) in comparison with percentages between
19 and 41 for the lower exposure groups, whereas for indoor LF
WTN, height of nearest WT distributed more evenly across the
exposure groups.

Exposure to 1- or 5-y mean outdoor WTN above the reference
level (<24 dBðAÞ) was positively associated with point estimates
for MI in all exposure groups in the adjusted analyses; however,
IRRs did not increase monotonically with increasing exposures
(Table 4). Associations were significant for the 24–30 dBðAÞ and
30–36 dBðAÞ exposure groups (e.g., for 5-y exposure with IRRs
of 1.08; 95% CI: 1.04, 1.12; 3,616 MI events and 1.07; 95% CI:
1.00, 1.12; 1,119 MI events, respectively) and similar but not sig-
nificant for the 36–42 dBðAÞ group (IRR=1:06; 95% CI: 0.93,
1.22; 212 MI events), whereas the IRR for the highest exposure
group (≥42 dBðAÞ) was 1.21 (95% CI: 0.91, 1.62) based on 47
MI events.

For indoor LF WTN, we found no associations between 1-y
mean exposure and risk of MI. For the 5-y exposure time win-
dow, we observed IRRs of 1.02 (95% CI: 0.95, 1.11), 1.08 (95%
CI: 0.91, 1.28) and 1.29 (95% CI: 0.73, 2.28) for people exposed

to 5–10 dBðAÞ, 10–15 and ≥15 dBðAÞ, respectively in compari-
son with exposure levels <5 dBðAÞ (Table 5). Only 12 persons
with MI were exposed ≥15 dBðAÞ. In all analyses, IRRs
increased with adjustment for potential confounders (i.e., closer
to or past the null for crude IRRs<1:0, further from the null for
crude IRRs>1:0).

IRRs for stroke did not show consistent patterns of associa-
tions with 1- and 5-y outdoor WTN or indoor LF WTN (Tables 4
and 5). IRRs for 5-y outdoor WTN relative to the <24 dBðAÞ ref-
erence group were 1.09 (95% CI: 1.05, 1.13; 3,566 stroke events),
1.10 (95% CI: 1.03, 1.17; 1,095 stroke events), 0.95 (95% CI:
0.82, 1.11; 175 stroke events), and 0.69 (95% CI: 0.46, 1.05;
23 stroke events) for the 24–30, >30− 36, >36− 42, and
≥42 dBðAÞ exposure groups, respectively (Table 4). For indoor
LF WTN, all IRRs were null or inverse and nonsignificant (Table
5). As for MI analyses, adjustment for potential confounders
resulted in slightly higher IRRs. IRRs for ischemic stroke were
similar, with adjusted IRRs of 0.78 (95% CI: 0.42, 1.45; 10 stroke
events) for ≥42 vs. <24 dBðAÞ 5-y outdoor WTN, and 0.94 (95%
CI: 0.35, 2.52; 4 stroke events) for ≥15 vs. <5 dBðAÞ indoor 5-y
LF WTN (Table S2).

In general, patterns of associations between 5-y exposures
and MI were similar to estimates from the main models when re-
stricted to population or outcome subgroups, albeit often based
on reduced populations of small size (Table 6 and 7). For situa-
tions with high validity of the noise estimate, the IRR for MI

Table 4. Associations between mean 1- and 5-year exposure to residential A-weighted outdoor wind turbine noise and risk of myocardial infarction and stroke.

Outdoor wind turbine noise

Myocardial infarction Stroke

Person-years N cases
Crude IRR
(95% CI)a

Adjusted IRR
(95% CI)b Person-years N cases

Crude IRR
(95% CI)a

Adjusted IRR
(95% CI)b

1-year mean exposure
<24 dBðAÞ 5,543,711 13,916 1 (ref) 1 (ref) 5,562,511 13,136 1 (ref) 1 (ref)
24–30 dBðAÞ 1,313,384 3,756 1.10 (1.06-1.14) 1.09 (1.05-1.13) 1,318,515 3,596 1.06 (1.02-1.10) 1.08 (1.04-1.12)
30–36 dBðAÞ 467,029 1,200 1.05 (0.99-1.11) 1.08 (1.02-1.15) 468,658 1,136 1.03 (0.97-1.10) 1.10 (1.03-1.17)
36–42 dBðAÞ 96,282 228 0.99 (0.87-1.13) 1.07 (0.94-1.22) 96,736 175 0.84 (0.72-0.97) 0.92 (0.80-1.07)
≥42 dBðAÞ 19,685 45 1.09 (0.81-1.46) 1.21 (0.90-1.63) 19,819 21 0.62 (0.41-0.95) 0.71 (0.46-1.08)

5-year mean exposure
<24 dBðAÞ 5,644,428 14,151 1 (ref) 1 (ref) 5,664,088 13,205 1 (ref) 1 (ref)
24–30 dBðAÞ 1,265,628 3,616 1.09 (1.05-1.13) 1.08 (1.04-1.12) 1,270,239 3,566 1.07 (1.03-1.11 ) 1.09 (1.05-1.13)
30–36 dBðAÞ 425,855 1,119 1.04 (0.97-1.10) 1.07 (1.00-1.12) 427,200 1,095 1.04 (0.98-1.11) 1.10 (1.03-1.17)
36–42 dBðAÞ 85,193 212 0.99 (0.87-1.14) 1.06 (0.93-1.22) 85,595 175 0.87 (0.75-1.01) 0.95 (0.82-1.11)
≥42 dBðAÞ 18,986 47 1.10 (0.82-1.46) 1.21 (0.91-1.62) 19,117 23 0.62 (0.41-0.94) 0.69 (0.46-1.05)

Note: CI, confidence interval; IRR, incidence rate ratio.
aAdjusted for age, sex, and calendar year.
bAdjusted for age, sex, calendar year, personal income, education, marital status, work-market affiliation, area-level socioeconomic status, type of dwelling, traffic load in 500-m
radius, and distance to major road.

Table 5. Associations between mean 1- and 5-year exposure to residential A-weighted indoor low frequency wind turbine noise and risk of myocardial infarc-
tion and stroke.

Indoor low frequency wind
turbine noise

Myocardial infarction Stroke

Person-years N cases
Crude IRR
(95% CI)a

Adjusted IRR
(95% CI)b Person-years N cases

Crude IRR
(95% CI)a

Adjusted IRR
(95% CI)b

1-year mean exposure
<5 dBðAÞ 7,031,863 18,189 1 (ref) 1 (ref) 7,056,494 17,157 1 (ref) 1 (ref)
5–10 dBðAÞ 329,970 780 0.97 (0.91-1.05) 1.04 (0.96-1.12) 331,166 749 0.94 (0.87-1.01) 1.02 (0.95-1.10)
10–15 dBðAÞ] 72,551 165 0.97 (0.83-1.13) 1.09 (0.93-1.27) 72,847 148 0.88 (0.75-1.04) 1.00 (0.85-1.18)
≥15 dBðAÞ 5,706 11 0.80 (0.44-1.44) 0.92 (0.51-1.67) 5,732 10 0.76 (0.41-1.40) 0.89 (0.48-1.65)

5-year mean exposure
<5 dBðAÞ 7,097,455 18,319 1 (ref) 1 (ref) 7,122,406 17,288 1 (ref) 1 (ref)
5–10 dBðAÞ 283,001 681 0.96 (0.89-1.04) 1.02 (0.95-1.11) 283,933 656 0.92 (0.85-1.00) 0.99 (0.92-1.07)
10–15 dBðAÞ] 55,408 133 0.97 (0.82-1.15) 1.08 (0.91-1.28) 55,660 111 0.81 (0.67-0.97) 0.91 (0.75-1.10)
≥15 dBðAÞ 4,226 12 1.11 (0.63-1.96) 1.29 (0.73-2.28) 4,239 9 0.87 (0.45-1.67) 1.02 (0.53-1.96)

Note: CI, confidence interval; IRR, incidence rate ratio.
aAdjusted for age, sex and calendar-year.
bAdjusted for age, sex, calendar year, personal income, education, marital status, work-market affiliation, area-level socioeconomic status, type of dwelling, traffic load in 500-m radius
and distance to major road.

Environmental Health Perspectives 000000-6 00(0) 0 0000



among people with outdoor WTN ≥42 dBðAÞ was 1.43 (95% CI:
0.74, 2.75; 9 MI events) and for indoor LF WTN ≥15 dBðAÞ the
corresponding IRR was 1.55 (95% CI: 0.64, 3.72; 5 MI events).
When restricted to subjects living in inclusion dwellings where
the height of the closest WT was ≥35 m, the IRR for outdoor
WTN ≥42 dBðAÞ was increased relative to the main model
(IRR=1:54; 95% CI: 1.04, 2.26; 26 MI events), whereas the IRR
for indoor LF WTN ≥15 dBðAÞ was similar to the main model
(IRR=1:36; 95% CI: 0.75, 2.45; 11 MI events). Conversely,
when we restricted to people living in dwellings with less than
5% tree coverage within a 500-m radius of their dwelling, indoor
LF WTN ≥15 dBðAÞ was associated with an IRR for MI of 2.43
(95% CI: 1.26, 4.67; 9 MI events), whereas the corresponding
IRR for outdoor WTN ≥42 dBðAÞ was 0.92 (95% CI: 0.48, 1.78;
9 MI events).

For stroke, we observed patterns of associations between 5-y
exposures of outdoor or indoor LF WTN and risk for stroke to be

similar in comparison with estimates from the main models when
restricted to population or outcome subgroups (Tables S3 and
S4). In analyses restricted to people with high validity score of
the exposure estimate, IRRs could not be shown for the highest
exposure group for both exposures as the categories contained
three stroke events or less, which cannot be presented due to
Danish anonymity legislation.

We found no significant effect modification by sex (all
p>0:07) or age (all p>0:22) for neither indoor nor outdoor
noise in relation to MI or stroke (Tables S4 and S5).

Discussion
For both long-term nighttime outdoor WTN above 42 dBðAÞ and
indoor LF WTN above 15 dBðAÞ, we found slightly elevated rel-
ative risk estimates for MI in comparison with exposures below
24 dBðAÞ and 5 dBðAÞ, respectively, but the number of cases

Table 6. Associations between 5-year exposure to outdoor wind turbine noise and risk of myocardial infarction in different subpopulations.

Sub-populations

Outdoor wind turbine noise

Exposure categories Person-years N cases Adjusted IRR (95% CI)a

Allb

<24 dBðAÞ 5,644,428 14,151 1 (ref)
24–30 dBðAÞ 1,265,628 3,616 1.08 (1.04-1.12)
30–36 dBðAÞ 425,855 1,119 1.07 (1.00-1.12)
36–42 dBðAÞ 85,193 212 1.06 (0.93-1.22)
≥42 dBðAÞ 18,986 47 1.21 (0.91-1.62)

Diagnosis of MI after 2000
<24 dBðAÞ 3,288,875 8,590 1 (ref)

24–30 dBðAÞ 948,866 2,643 1.04 (0.99-1.08)
30–36 dBðAÞ 312,238 814 1.04 (0.97-1.12)
36–42 dBðAÞ 55,170 131 1.00 (0.84-1.19)
≥42 dBðAÞ 9,074 27 1.36 (0.93-1.98)

Living on a farm
<24 dBðAÞ 726,414 1,408 1 (ref)

24–30 dBðAÞ 250,387 504 0.98 (0.88-1.08)
30–36 dBðAÞ 129,503 277 1.04 (0.91-1.18)
36–42 dBðAÞ 37,124 80 1.07 (0.86-1.35)
≥42 dBðAÞ 7,345 15 1.13 (0.68-1.87)

Total height of nearest wind turbine ≥35 m
<24 dBðAÞ 3,922,187 10,116 1 (ref)

24–30 dBðAÞ 1,042,138 2,999 1.08 (1.03-1.12)
30–36 dBðAÞ 339,990 893 1.07 (1.00-1.15)
36–42 dBðAÞ 58,893 147 1.06 (0.90-1.25)
≥42 dBðAÞ 7,175 26 1.54 (1.04-2.26)

High validity score of noise estimatec

<24 dBðAÞ 4,349,483 10,161 1 (ref)
24–30 dBðAÞ 780,854 2,220 1.16 (1.11-1.22)
30–36 dBðAÞ 256,089 654 1.11 (1.03-1.21)
36–42 dBðAÞ 39,720 102 1.19 (0.98-1.45)
≥42 dBðAÞ 3,164 9 1.43 (0.74-2.75)

Dwelling ≥2,000 m from major roadd

<24 dBðAÞ 1,977,176 5,128 1 (ref)
24–30 dBðAÞ 609,642 1,825 1.12 (1.06-1.18)
30–36 dBðAÞ 235,000 629 1.07 (0.98-1.16)
36–42 dBðAÞ 48,496 115 1.01 (0.84-1.22)
≥42 dBðAÞ 10,943 30 1.28 (0.89-1.84)

Less than 5 % tree coveragee

<24 dBðAÞ 670,421 1,571 1 (ref)
24–30 dBðAÞ 222,014 613 1.12 (1.02-1.22)
30–36 dBðAÞ 98,341 254 1.12 (0.98-1.27)
36–42 dBðAÞ 24,062 64 1.25 (0.98-1.61)
≥42 dBðAÞ 5,202 9 0.92 (0.48-1.78)

Note: CI, confidence interval; IRR, incidence rate ratio.
aAdjusted for age, sex, calendar-year, personal income, education, marital status, work-market affiliation, area-level socioeconomic status, type of dwelling, traffic load in 500-m
radius and distance to major road.
bCorresponding to IRRs and CIs in Table 4.
cIncludes only study participants with validity score better than the median among those with exposures ≥30 dBðAÞ outdoor wind turbine noise. The validity score reflects the esti-
mated uncertainty associated with all aspects of noise estimation at a specific address and day.
dMajor road defined as ≥5,000 vehicles per day.
eIn a 500-m radius around the dwelling.
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were low in the highest exposure groups, and the associations
were not statistically significant. There was no monotonic expo-
sure–response relationship between WTN and MI, especially for
outdoor WTN, where we found slightly increased relative risks
of similar size in the three intermediate exposure groups. The
IRRs for MI in the highest exposure group for both indoor LF
and outdoor WTN were unchanged or slightly higher across dif-
ferent subpopulations in comparison with the IRRs in the main
analysis. For stroke, all levels of indoor LF WTN were associated
with IRRs close to unity, whereas for outdoor WTN, we observed
IRRs above unity in the intermediate exposure groups and below
unity in the highest exposure groups.

A major strength of this study is the prospective nationwide
design with information on potential socioeconomic and environ-
mental confounders, the large number of incident cases identified
through a high-quality nationwide register (Helweg-Larsen 2011;
Lynge et al. 2011), and access to complete residential address his-
tory for the entire exposure and follow-up period. Also, we esti-
mated long-term exposure to WTN using a state-of-the-art
exposure model that used detailed WTN spectra for all WT types
and allowed for time varying wind direction, wind speed, and cli-
matic conditions. The later information was modeled hour by hour
for each WT position, which allowed us to estimate noise levels

specifically for nighttime, when people are most likely to be at
home sleeping. Additionally, we estimated exposure to the poten-
tially more biologically relevant indoor noise, accounting for dif-
ferent housing sound insulation properties, although we could only
differentiate into few insulation categories, based on relatively
crude information. Further strengths were estimation of WTN for
all dwellings in Denmark that might experience WTN, the access
to a number of individual and area-level socioeconomic variables,
and that we accounted for living on a farm, which is conceivably
associated withmany differences in lifestyle and environment.

Due to the register-based nature of the study, we did not have
access to detailed potential lifestyle confounders, such as dietary
habits, obesity, and physical activity, which is a study weakness.
It is, however, important to note that adjusting for lifestyle in
studies of noise is not straightforward, as studies have indicated
that traffic noise may be associated with factors such as obesity,
physical activity, and smoking habits (Christensen et al. 2015;
Eriksson et al. 2014; Foraster et al. 2016; Pyko et al. 2015;
Roswall et al. 2017; Roswall et al. 2018), suggesting that these
are intermediaries and not confounders on the pathway between
noise and disease. Another limitation is the rather crude adjust-
ment for local road traffic noise, using traffic load and distance to
major road. However, residual confounding by traffic noise is

Table 7. Associations between 5-year exposure to indoor low frequency wind turbine noise and risk of myocardial infarction in different subpopulations.

Subpopulations

Indoor low frequency wind turbine noise

Exposure categories Person-years N cases Adjusted IRR (95% CI)a

Allb

<5 dBðAÞ 7,097,455 18,319 1 (ref)
5–10 dBðAÞ 283,001 681 1.02 (0.95-1.11)

10–15 dBðAÞ 55,408 133 1.08 (0.91-1.28)
≥15 dBðAÞ 4,226 12 1.29 (0.73-2.28)

Diagnosis of MI after 2000
<5 dBðAÞ 4,312,355 11,496 1 (ref)

5–10 dBðAÞ 249,411 584 1.00 (0.92-1.08)
10–15 dBðAÞ 49,101 115 1.06 (0.88-1.27)
≥15 dBðAÞ 3,358 10 1.33 (0.71-2.47)

Living on a farm
<5 dBðAÞ 1,017,885 2,025 1 (ref)

5–10 dBðAÞ 103,730 205 0.97 (0.84-1.13)
10–15 dBðAÞ 26,980 47 0.90 (0.68-1.21)
≥15 dBðAÞ 2,177 7 1.62 (0.77-3.40)

Total height of nearest wind turbine ≥35 m
<5 dBðAÞ 5,063,410 13,427 1 (ref)

5–10 dBðAÞ 254,128 624 1.04 (0.95-1.12)
10–15 dBðAÞ 49,379 119 1.07 (0.89-1.28)
≥15 dBðAÞ 3,465 11 1.36 (0.75-2.45)

High validity score of noise estimatec

<5 dBðAÞ 4,122,053 9,636 1 (ref)
5–10 dBðAÞ 124,062 305 1.16 (1.04-1.31)

10–15 dBðAÞ 25,344 59 1.12 (0.86-1.44)
≥15 dBðAÞ 1,547 5 1.55 (0.64-3.72)

Dwelling ≥2,000 m from major roadd

<5 dBðAÞ 2,684,822 7,269 1 (ref)
5–10 dBðAÞ 158,807 364 0.97 (0.88-1.08)

10–15 dBðAÞ 34,642 85 1.11 (0.89-1.37)
≥15 dBðAÞ 2,985 9 1.33 (0.69-2.56)

Less than 5 % tree coveragee

<5 dBðAÞ 933,801 2,304 1 (ref)
5–10 dBðAÞ 67,112 159 1.08 (0.92-1.27)

10–15 dBðAÞ 17,311 39 1.05 (0.76-1.44)
≥15 dBðAÞ 1,816 9 2.43 (1.26-4.67)

Note: CI, confidence interval; IRR, incidence rate ratio.
aAdjusted for age, sex, calendar year, personal income, education, marital status, work-market affiliation, area-level socioeconomic status, type of dwelling, traffic load in 500-m ra-
dius, and distance to major road.
bCorresponding to IRRs and CIs in Table 5.
cIncludes only study participants with validity score better than the median among those with exposures ≥10 dBðAÞ LF indoor wind turbine noise. The validity score reflects the esti-
mated uncertainty associated with all aspects of noise estimation at a specific address and day.
dMajor road defined as ≥5,000 vehicles per day.
eIn a 500-m radius around the dwelling.
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probably not a major issue in the present study, as adjusting for
the traffic-related proxies resulted in only minor changes on the
second decimal in estimates (data not shown), and we obtained
similar estimates among people living far from major roads in
comparison with the whole study population. Another limitation
is potential bias from missing data.

The Nord2000 has been successfully validated for WTs
(Sondergaard et al. 2009). Even so, there is inevitable exposure
misclassification in the modeled noise-exposure metrics. This
circumstance is unlikely to depend on the case status and will
in most cases influence the estimates towards the null. Although
not covering all aspects of uncertainty pertaining to the noise
estimates, our validity score allowed us to look further into this
uncertainty. Although based on small numbers, our finding of a
higher IRR for MI for both outdoor and indoor LF WTN among
people with a high validity score indicates that exposure mis-
classification may have affected the results. For stroke, the num-
ber of highly exposed cases was too small (<4), precluding
meaningful interpretation. It was also a limitation that we could
not model exposure from WTs before 1982. However, only 103
cohort members were recruited due to living within a 1000 m of
one of the relatively small WT operating before 1982. Lastly,
statistical power was impaired for the highest exposure groups
by the small number of cases with high exposure toWTN.

The few previous studies that investigated associations between
WTNand cardiovascular disease found no indications of an associa-
tion (Michaud et al. 2016a; Michaud et al. 2016c; Pedersen 2011).
However, these studies were all cross-sectional, they were based on
much smaller study populations than the present study, they had
more crude exposure models, and the diagnosis of cardiovascular
disease was self-reported, which makes direct comparison with the
present study difficult.

We found that long-term high exposure to WTN was associ-
ated with slightly elevated point estimates for MI, both for expo-
sure to outdoor WTN and for exposure to the potentially more
biologically relevant indoor WTN noise. This pattern persisted
across a range of subpopulations, for whom we hypothesized that
a potential association between exposure and outcome could be
more pronounced, such as high validity of the noise estimate and
living far from major roads. However, the numbers of MI cases
in the highest exposure groups were small, and the CIs were
wide. Furthermore, we did not observe any monotonic exposure–
response trends. This observation was most evident for outdoor
WTN, where small and almost identical increases in risk were
found for the three intermediate exposure groups. Also, because
the biological mechanisms behind an effect of noise on disease
are believed similar for MI and stroke (Münzel et al. 2017b) and
because traffic noise has been associated with both diseases
(Hansell et al. 2013; Héritier et al. 2017; Sørensen et al. 2011;
Vienneau et al. 2015), we expected similar results for MI and
stroke in the present study. However, for outdoor WTN above
42 dBðAÞ, the IRR was below unity for stroke. We are not aware
of plausible biological mechanisms to explain a protective effect
of WTN. Also, numbers of highly exposed stroke cases were
small, the CI was wide, and the IRR was noninsignificant; fur-
thermore, high exposure to the potentially more biologically rele-
vant indoor WTN noise was not associated with a decreased risk
for stroke. The discrepant results for MI and stroke among the
highly exposed in the present study further underscores that the
observed IRRs for MI and stroke should be interpreted with
caution.

In conclusion, although we found the highest levels of WTN
to be associated with the highest relative risk for incident MI,
numbers of highly exposed cases were small, and the associations
were nonsignificant. Inverse or null associations between high

exposures and stroke were also based on a small number of cases.
Therefore, it is not possible to draw firm conclusions from our
finding. Future studies should, if possible, include larger numbers
of highly exposed individuals.
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