Sundheds- og Ældreudvalget 2015-16
SUU Alm.del Bilag 106
Offentligt
1581395_0001.png
Survey of Boric acid
and sodium borates
(borax)
Part of the LOUS review
Survey of chemical substances in consumer
products No. 139, 2015
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Title:
Survey of Boric acid and sodium borates (borax)
Editing:
Poul Bo Larsen
Brian Svend Nielsen
Frank Leck Fotel
Peter Kortegaard
Tina Slothuus
Ole Hjelmar
Published by:
The Danish Environmental Protection Agency
Strandgade 29
1401 Copenhagen K
Denmark
www.mst.dk/english
Year:
2015
ISBN no.
978-87-93352-23-0
Disclaimer:
When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning
research and development projects within the environmental sector, financed by study grants provided by the Danish
Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or
opinion of the Danish Environmental Protection Agency.
However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content
represents an important contribution to the debate surrounding Danish environmental policy.
Sources must be acknowledged.
2
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Contents
Preface ...................................................................................................................... 6
Summary and conclusions ......................................................................................... 8
Sammenfatning og konklusion ................................................................................ 14
1.
Introduction to the substance ........................................................................... 20
1.1 Identification of the substances .......................................................................................... 20
1.2 Purity and impurities ............................................................................................................ 21
1.3 Physical and chemical properties ......................................................................................... 21
1.4 Summary .............................................................................................................................. 22
Regulatory framework...................................................................................... 23
2.1 Existing legislation ............................................................................................................... 23
2.2 Classification and labelling .................................................................................................. 28
2.2.1
Harmonised classification in the EU .................................................................... 28
2.2.2
Notified classification in the EU ........................................................................... 32
2.3 REACH ................................................................................................................................. 34
2.4 Other initiatives ................................................................................................................... 35
2.5 International agreements .................................................................................................... 36
2.6 Eco labels.............................................................................................................................. 36
2.7 Summary and conclusions................................................................................................... 36
Manufacturing ................................................................................................. 38
3.1 Manufacturing processes ..................................................................................................... 38
3.2 Use ........................................................................................................................................ 38
3.2.1
Identified uses in the EU ...................................................................................... 38
3.2.2
Glass and glass products ....................................................................................... 39
3.2.3
Insulation .............................................................................................................. 39
3.2.4
Soap and detergents .............................................................................................. 39
3.2.5
Cosmetics............................................................................................................... 40
3.2.6
Fertiliser minerals ................................................................................................. 40
3.2.7
Other food products .............................................................................................. 40
3.2.8
Use in Adhesives, paper, veneer sheets and pressed panels ............................... 40
3.2.9
Mattresses ............................................................................................................. 40
3.2.10 Paints and coatings ............................................................................................... 40
3.2.11 Pharmaceutical preparations ............................................................................... 40
3.2.12 Basic metals ............................................................................................................ 41
3.2.13 Nuclear reactors. .................................................................................................... 41
3.2.14 Electronics, optical products and lightning equipment ....................................... 41
3.2.15 Registered uses according to ECHA’s database of REACH registered
substances .............................................................................................................. 41
3.2.16 Data from ECHA ................................................................................................... 42
3.2.17 The Nordic countries ............................................................................................ 43
3.3 Historical trends in use........................................................................................................ 46
3.4 Summary and conclusions................................................................................................... 46
Waste management .......................................................................................... 47
4.1 Waste from manufacture and use of borates ...................................................................... 47
2.
3.
4.
Survey of Boric acid and sodium borates (borax)
3
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
4.2
4.3
4.4
4.5
5.
Waste treatment................................................................................................................... 47
Recycling .............................................................................................................................. 50
Incineration and energy production ................................................................................... 50
Summary and conclusions.................................................................................................... 51
Environmental effects and exposure ................................................................. 52
5.1 Environmental hazard ......................................................................................................... 52
5.1.1
Toxicity to aquatic organisms ............................................................................... 52
Toxicity to sediment living organisms ................................................................................ 53
5.1.2
Toxicity to microorganisms .................................................................................. 53
5.1.3
Toxicity to terrestrial organisms .......................................................................... 54
5.2 Environmental fate ...............................................................................................................55
5.2.1
Bioaccumulation ....................................................................................................55
5.2.2
Environmental degradation...................................................................................55
5.2.3
PBT .........................................................................................................................55
5.3 Environmental exposure ..................................................................................................... 56
5.3.1
Sources of release .................................................................................................. 56
5.3.2
Monitoring data .................................................................................................... 56
5.3.3
Calculated Predicted Environmental Concentrations (PEC) ............................... 61
5.4 Environmental impact ......................................................................................................... 62
5.5 Summary and conclusions................................................................................................... 63
Human health hazard ....................................................................................... 64
6.1 Hazards ................................................................................................................................ 64
6.1.1
Absorption, Distribution, Metabolism and Excretion ......................................... 64
Acute toxicity ......................................................................................................... 65
6.1.2
6.1.3
Irritation ................................................................................................................ 66
6.1.4
Sensitisation .......................................................................................................... 67
6.1.5
Repeated dose toxicity .......................................................................................... 67
6.1.6
Mutagenicity .......................................................................................................... 68
6.1.7
Carcinogenicity ...................................................................................................... 68
6.1.8
Reproduction and Developmental toxicity .......................................................... 69
6.1.9
Overall conclusions for boric acid and borates ..................................................... 71
6.2 Human exposure ...................................................................................................................73
6.2.1
Direct exposure ......................................................................................................73
6.2.2
Indirect exposure ...................................................................................................75
6.2.3
Summary ............................................................................................................... 76
6.3 Human health impact ........................................................................................................... 77
6.3.1
Workers .................................................................................................................. 77
6.3.2
Consumers .............................................................................................................. 77
6.4 Summary and conclusions................................................................................................... 79
Information on alternatives .............................................................................. 81
7.1 Glass and glass fiber .............................................................................................................81
7.2 Fertilisers ............................................................................................................................. 82
7.3 Paint and coating ................................................................................................................. 82
7.4 Adhesives.............................................................................................................................. 83
7.5 Metal working fluids ............................................................................................................ 83
7.6 Cellulose wool insulation ..................................................................................................... 84
7.7 Other uses ............................................................................................................................ 84
7.8 Specific cases of substitution ............................................................................................... 84
7.9 Summary and conclusions................................................................................................... 85
6.
7.
References .............................................................................................................. 86
Appendices .............................................................................................................. 90
4
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Appendix 1: Background information to chapter 2 on legal framework .................................... 91
Appendix 2: Additional data on the tonnage and numbers of products containing Boric
acid; Disodium tetraborate, anhydrous; Disodium tetraborate decahydrate;
Disodium tetraborate pentahydrate and Diboron trioxice, boric acid (data
retrieved from the Nordic Spin database) .......................................................................... 97
Appendix 3: Calculated Predicted Environmental Concentration (PEC) and
corresponding Risk Characterisation Ratios (RCRs) for environmental
compartments ...................................................................................................................... 99
Survey of Boric acid and sodium borates (borax)
5
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Preface
Background and objectives
The Danish Environmental Protection Agency’s List of Undesirable Substances (LOUS) is intended
as a guide for enterprises. It indicates substances of concern whose use should be reduced or
eliminated completely. The first list was published in 1998 and updated versions have been
published in 2000, 2004 and 2009. The latest version, LOUS 2009 (Danish EPA, 2011) includes 40
chemical substances and groups of substances which have been documented as dangerous or which
have been identified as problematic based on quantitative structure activity relationship (QSAR)
modelling or otherwise been considered of concern or in political focus. For inclusion in the list,
substances must fulfil several specific criteria. Besides the risk of leading to serious and long-term
adverse effects on health or the environment, only substances which are used in an industrial
context in large quantities in Denmark, i.e. over 100 tonnes per year, are included in the list.
Over the period 2012-2015 all 40 substances and substance groups on LOUS will be surveyed. The
surveys include collection of available information on the use and occurrence of the substances,
internationally and in Denmark, information on environmental and health effects, on alternatives
to the substances, on existing regulation, on monitoring and exposure, and information regarding
ongoing activities under REACH, among others.
The main objective of this survey is to provide background for the Danish EPA’s consideration
regarding the need for further risk management measures. On the basis of the surveys, the Danish
EPA will assess the need for any further information, regulation, substitution/phase out,
classification and labelling, improved waste management or increased dissemination of
information.
This survey concerns boric acid and sodium borates (borax) that are both subject to harmonised
classification or registered under REACH. Thus the survey covers the substances:
Boric acid (CAS 10043-35-3);
Disodium tetraborate decahydrate (CAS 1303-96-4);
Disodium tetraborate anhydrous/pentahydrate (CAS 12179-04-3);
Disodium tetraborate, anhydrous / pentahydrate/decahydrate (CAS 1330-43-4);
Tetraboron disodium heptaoxide, hydrate (CAS 12267-73-1);
Diboron trioxide, boric oxide (CAS 1303-86-2);
Boric acid, crude natural, containing not more than 85 per cent of H3BO3 calculated on the dry
weight (CAS 11113-50-1);
Orthoboric acid, sodium salt (CAS 13840-56-7);
Disodium octaborate (CAS 12008-41-2);
Disodium; boron; oxygen(2-); tetrahydrate (CAS 12280-03-4).
Boric acid and borax have been included on the LOUS list due to their classification as Repr. 1B,
H360Df (May damage fertility. My damage the unborn child), and because they are marketed in
quantities above 100 tonnes in Denmark.
6
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
The process
The survey has been undertaken by DHI from May 2013 to November 2014. The project
participants from DHI were:
Poul Bo Larsen, project manager
Tina Slothuus, contributor
Brian Svend Nielsen, contributor
Peter Kortegaard , contributor
Frank Leck Fotel, contributor
Helle Buchardt Boyd, quality supervisor
Jens Tørsløv, quality supervisor
The work has been followed by an advisory group consisting of:
Peter Hammer Sørensen, Danish EPA, Chair of advisory group
Thilde Fruergaard, Danish EPA
Nikolai Nilsen, Confederation of Danish Industry
Pia Vestergaard Lauridsen, Danish Working Environment Authority
Data collection
The survey and review is based on the available literature on the substances, information from
databases and direct inquiries to trade organisations and key market actors.
The data search included (but was not limited to) the following:
Legislation in force from Retsinformation (Danish legal information database) and EUR-Lex
(EU legislation database);
Ongoing regulatory activities under REACH and intentions listed on ECHA’s website (incl.
Registry of Intentions and Community Rolling Action Plan);
Relevant documents regarding International agreements from HELCOM, OSPAR, the
Stockholm Convention, the PIC Convention, and the Basel Convention.
Data on harmonised classification (CLP) and self-classification from the C&L inventory
database on ECHAs website;
Data on ecolabels from the Danish ecolabel secretariat (Nordic Swan and EU Flower) and the
German Angel.
Pre-registered and registered substances from ECHA’s website;
Risk assessment report on the substances from ECHA´s website;
Data on production, import and export of substances in mixtures from the Danish Product
Register (confidential data, not searched via the Internet);
Date on production, import and export of substances from the Nordic Product Registers as
registered in the SPIN database;
Monitoring data from the National Centre for Environment and Energy (DCE), the Geological
Survey for Denmark and Greenland (GEUS), the Danish Veterinary and Food Administration,
the European Food Safety Authority (EFSA) and the INIRIS database.
Reports, memorandums, etc. from the Danish EPA and other authorities in Denmark;
This survey is mainly based on a compilation of existing reports and evaluations that has been made
over time. Thus information has especially been extracted from Danish EPA reports, information
from the ECHA web-site and from the common Nordic product register database, SPIN.
Survey of Boric acid and sodium borates (borax)
7
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Summary and conclusions
This survey covers boric acid (H3BO3); various forms of sodium borate (borax) and diboron
trioxide B
2
O3 either registered under REACH or subjected to harmonised classification in the EU.
Worldwide mining of boron mineral ore were 5,410,000 tons in 2006. It is expected that the EU-27
consumes around 20% of this production.
Regulation
Both EU and Danish regulations specifically address the use of boric acid and sodium borate. Thus
specific rules apply for the use of the substances as food additive, food supplement, in food
packaging material, as micronutrient e.g. in fertilisers, and in cosmetics. Further boric acid and
sodium borate are approved as active agents in biocidal product for the purpose of wood
preservation. The use in toys is restricted due to the strict classification as Repr. 1B; H360FD of the
substances.
According to the CLP regulation, the substances (all ten CAS numbers) are classified as
reproductive toxicant as Repr. 1B; H360FD (May damage fertility. May damage the unborn child).
This has led the substances to be placed on the candidate list for authorisation under the REACH
regulation.
Very recently The European Chemical Agency has proposed that the substances should be subjected
to authorisation, however this awaits further evaluation and decision making by the EU-
Commission.
At present, some uncertainties remain to the classification limits of the substances as two disodium
octaborate substances recently were recommended by the Risk Assessment Committee at ECHA to
be classified using generic concentration limit unlike the other boric acid and sodium borate
substances where specific classification limits have been applied. If the specific concentration limit
for the other substances should be challenged/removed and the generic classification limit of 0.3%
should apply for all the boron substances this would call for a lowering of the current specific
classification limits by factors in the range of 10-30 for the substances.
Due to the classification as Repr. 1B; H360FD, chemical preparations are not to be sold to the
public if they contain the substances at concentration levels above the current classification limit. In
relation to occupational regulations the use and handling of the substances are regulated according
to the generic rules for handling dangerous substances with a Repr. 1B classification. Furthermore,
specific Danish occupational exposure limit values in the range of 1-10 mg/m
3
apply for the
substances.
National guidance values also pertain to the industrial emission into ambient air. Thus a guideline
value of 0.003 mg B/m
3
applies for the ambient air (a C-value). The content of boron in drinking
water is regulated by the EU drinking water directive (limit value of 1 mg B/L) and the national
legislation (limit value of 1 mg B/L but a maximum level of 0.3 mg B/L is recommended).
Criteria for eco-labelling restrict the use of the substances in eco-labelled products (due to their
classification as Repr. 1B H360FD).
In the context of the old chemical regulation a risk assessment document has been elaborated on
boric acid/borax. However, when REACH entered into force this was not formally agreed upon. No
8
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
specific risk assessment was undertaken (due to lack of data) for consumer exposure to the
substances, neither alone nor in combination with the background exposure from the natural
content in food and drinking water.
Uses
Boric acid (CAS 10043-35-3) and disodium tetraborate (CAS 1330-43-4) including its various
hydrated forms) are by far the most widely used boron substances covered in this report as each of
these substances are REACH-registered in the use tonnage band of 100,000 - 1,000,000 tonnes per
year.
As indicated in chapter 3 boric acid and borax are used in many industries and for many purposes.
The majority of the use (>50%) are used in the production of glass products (including glass fibre
and glass wool) and ceramics where boric acid/borax is incorporated into and thus is a part of the
glass/ceramic material. Other uses are in cosmetics, in biocides and in various chemical products
such as soap and detergents, fertilisers, paint, varnishes, adhesives, electroplating, as catalysts,
antifreeze products, lubricants and in cellulose (paper wool) insulation.
In Denmark, there has been an increase in terms of tonnage used during the last decade. In 2000
the tonnage reported was just below 100 tonnes of boric acid. This value remained more or less
unchanged until 2003 but increased markedly hereafter. In 2012 the reported tonnage was 610
tonnes. The specific use of nearly 600 tonnes of this volume was not indicated otherwise than as
“raw material” in the Danish product registry and was thus not further accounted for. About 14
tonnes was used as cooling/lubricating oil for metals. Earlier, boric acid was also included in
non-
agricultural pesticides and preservatives.
Disodium tetraborate decahydrate (CAS: 1303-96-4)
were used in
anti-freezing agents
to a large extent. But since 2005 the use within this group
decreased and in 2012 no tonnage was registered for this product group.
Cleaning and washing
agents
are now the main product group where disodium tetraborate decahydrate is used and to a
lesser extent
non-agricultural pesticides and preservatives.
Further uses of the substances are as food additive, food supplement, and in food packaging
material, as micronutrient e.g. in fertilisers, and in cosmetics.
Waste
No specific concern has been addressed in relation to boric acid/ borates in the waste stream.
Waste containing more than 1% of boron in the form of boric acid/ borates should due to the
classification as Repr. 1B be treated as hazardous waste.
A large fraction of borate may end up in the waste stream from glass and ceramics, however, due to
transformation and tight binding of borate into the glass matrix the release potential of borate from
glass/ceramics is considered very low during handling of waste. Furthermore, glass in the waste
stream is to a very high extent recycled.
Cellulose (paper wool) insulation in the waste stream may contain a relative high content of loosely
bound boric acid/ borax powder which is highly accessible and thus constitute a potential for
environmental and human exposure. For qualities containing more than 1% of boron (typically
qualities sold some years ago) the cellulose insulation should be considered as hazardous waste.
Data are lacking on how cellulose insulation today is handled in the waste stream.
A substantial amount of boron (but much less than 1 %) is found in bottom ash from waste
incineration and coal fly ash from energy production. Some of the boron may leach to the
environment from the ashes or products containing the ashes, depending on how they are managed,
The leaching of boron has not been subject to regulation in relation to utilisation or landfilling,
although quality criteria for boron exists for both groundwater and surface water.
Survey of Boric acid and sodium borates (borax)
9
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
A major part of (if not all) of coal fly ash in Denmark is used in the production of cement. This
means that most of the boron in the Danish coal fly ash eventually will end up into cement and
concrete.
Environment
Borates are naturally present and widely distributed in the environment and boron is an important -
if not essential- micronutrient to many species. Boric acid/ borax are inorganic compounds and not
degradable but subject to chemical transformation processes once released into the environment
which result in different borate containing salts. Ambient concentrations of borates are highly
variable and significantly influenced by geological conditions. In European rivers monitoring data
indicate arithmetic mean values of 3.3 µg B/L (Finland), 357 µg B/L (Portugal) and 95-percentile
values of 17 µg B/L (Scotland) and 632 µg B/L (Germany).
In ground water in Denmark boron levels may exceed 300 µg B/L (the indicative drinking water
limit value) as this was found in a total of 72 drinking water wells in 2012.
However, concentrations in the environment are reported higher for urban areas influenced by
anthropogenic sources and especially at industrial sites. The environmental risk assessment
included in the Annex XV Transitional Dossier was based on “reasonable worst-case” scenarios. The
assessments indicated risks towards sewage treatment plants, and in water and sediment in local
scenarios involving industrial uses and releases of boron. These finding need be refined and re-
assessed based on more detailed and updated information.
In contrast no risk was identified on a regional scale from the use of liquid detergents in the Hera
(2005) report.
In relation to PBT assessment boric acid / borax is classified as Repr. 1B and meet the criteria for
toxicity (T). Borates being inorganic substances cannot be evaluated for biodegradation, and further
the boron does not bioaccumulate significantly. Thus boric acid/borax does not fulfil the criteria for
B or VB, and boric acid/ borax are not considered to be PBT or vPvB substances.
Human Health, effects
When exposed via the oral or inhalational route boric acid/ borax are easily taken up (up to 100%)
into the blood stream and distributed throughout the tissues and organs of the body. By dermal
exposure an uptake of 0.5% over intact skin is considered as a maximum uptake. Boric acid is not
further metabolized in the body but is excreted mainly in the urine, with elimination half-life < 24
hours in humans. In general, under physiological conditions, the boron compounds are
transformed into boric acid; hence read-across can be made from the data on the various boron
compounds.
In humans, the critical effects following inhalation of dust containing boric acid/ borax are
considered to be nasal and eye irritation, throat irritations, cough, and breathlessness. Data from
experimental animal studies and human studies show that boron is a respiratory irritant and a
NOEC of 0.8 mg B/m
3
has been established.
In humans, acute irritant effects on the eye are well documented in human workers exposed to boric
acid/borax. In animal studies, data on boric acid show do not imply classification for skin irritation.
Boric acid/ borax are eye irritants and should therefore be classified accordingly as eye irritant (Eye
Irr. 2; H319).
In humans, acute poisoning can occur after oral and inhalation exposure as well as after dermal
exposure via damaged skin. In humans the lethal dose for oral exposure is quoted to be 2-3 g boric
acid for infants, 5-6 g boric acid for children and 15-30 g boric acid for adults.
10
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
However the most critical effects of boric acid and borates are effects in relation to fertility (adverse
effects on the testis) and developmental effects (malformations and prenatal mortality of the
foetus).
For reproductive toxicity, a NOAEL of 17.5 mg B/kg bw/day was derived from a three generation
reproduction study in rats using boric acid or sodium borate (borax). Based on the identified
NOAEL value, a DNEL
consumer
= 0.175 mg B/kg bw/day could be established using an assessment
factor of 100. Several occupational studies are available on the effects of boric acid and boron on
workers, mainly through inhalation. Although negative with respect to reproductive effects these
studies were not considered conclusive for this end-point.
A NOAEL of 9.6 mg B/kg bw/day has been established from a prenatal developmental rat study on
boric acid as increased mortality of fetuses, malformations and deceased body weight were seen at
higher dose levels. Based on this identified NOAEL value, a DNEL
consumer
= 0.096 mg B/kg bw/day
for oral exposure has been established using an assessment factor of 100. No human data exist with
regard to developmental toxicity.
The effects of boric acid and borates on reproduction and development comply with a classification
as Repr. 1B, H360FD (“May damage fertility and the unborn child”). This classification has recently
been confirmed by The Risk Assessment Committee at ECHA in the committee’s opinion on a new
proposal for harmonised classification and labelling of boric acid (ECHA/RAC opinion (2014)).
Human health, exposure
From the data found on exposure estimates, which are presented in section 6.2, it can be seen that
the dominating exposure to boric acid/ borates stems from food and drinking water. The general
back ground (typical and realistic worst case) exposure in EU has been estimated to:
Typical exposure:
Realistic worst case exposure:
2.3-2.74 mg B/person/day (0.038 – 0.046 mg B/kg bw/day)
3.5 – 3.94 mg B/person/day (0.058 – 0.066 mg B/kg bw/day)
Especially the use of boron in dietary supplements may result in additional exposure of up to 1.5-30
mg B/ day (0.02-0.4 mg B/kg bw/day).
In relation to use of boric acid/borates in cosmetics a daily dose of 1.2 mg B/day (o.02 mg B/kg
bw/day) has been estimated.
Further contribution to the exposure to boric acid/ borates may come from various other products
e.g. laundry detergents, fertilisers, biocides, cellulose insulation, and furniture.
Health impact
Occupational exposure: In some situations, when working with boric acid/borax, protective
measures such as technical measures or personal protective equipment may be necessary in order
to reduce exposure and ensure safety. This may be relevant for e.g. industrial biocide impregnation
processes, loading or unloading batches of boric acid/ borax powder, blowing cellulose wool
insulation into constructions, or in connection with cleaning operations.
Consumer exposure
In 2013 the European Food Authority, EFSA, established a group ADI for boric acid and sodium
tetraborate, expressed as boron equivalents to be 0.16 mg B/kg bw/day, i.e. 10 mg from all food
sources for an adult weighing 60 kg (EFSA, 2013). Further EFSA concluded that exposure to boron
from its natural occurrence in the diet and from other sources (dietary supplements, food contact
materials, feed for food-producing animals, cosmetics, oral hygiene products, etc.) already may lead
to exposures beyond the ADI.
Survey of Boric acid and sodium borates (borax)
11
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Thus, the background exposure from food and drinking water has to be considered when assessing
additional exposure sources for boric acid/ borax exposure. As the background exposure for some
individuals in the populations may be quite close to the acceptable daily intake (or the DNEL of
0.09 mg B/kg bw/day) additional boron exposure from dietary supplements, cosmetics, biocides,
detergents, cellulose insulation, furniture etc. may result in a total exposure exceeding the safe
levels.
One example of this has recently been identified by the Risk Assessment Committee at ECHA that
found that the extra contribution from specific uses of boron containing chemicals for photographic
applications actually resulted in a total exposure exceeding the DNEL value.
Alternatives
ECHA has recently (September 2014) made a recommendation for including the boric acid/ borax
from the candidate list on the authorisation list (Annex XIV). This of course put additional pressure
on the industry in order to find alternatives for use of boric acid and sodium borate.
However, no single substance or specific technical measure can be a one-for-all alternative to the
wide range of applications and processes in which boric acid and sodium borate are used.
For the use of borates in the glass industry there seems not for the majority of the applications to be
a suitable alternative as the borate incorporated in the glass provides the materials with quite
unique properties such a physical resistance and resistance towards thermal chock. Further boric
acid/borax is bound into the glass matrix and the exposure potential from glass ware may be
considered as negligible.
Also in relation to use of boric acid/ borax in starch and dextrin adhesives no appropriate
alternatives have been found, as use of alternatives either may affect the production processes to a
great extent and increase the cost or result in substitution to synthetic petrochemical based
adhesives.
As boron is an essential micronutrient, substitution in fertiliser is not considered possible.
In lubricating oil it may be difficult to find alternatives for borate for some applications.
However, there seems to be alternatives in other areas, e.g. surface coatings and paints, insulation
materials, welding processes, pH buffer solutions and in diagnostic applications.
Overall conclusions
From a regulatory and chemical safety perspective the following findings may be highlighted:
-
Boric acid/borax
are reprotoxic substances classified as Repr. 1B, H360Df (May damage
fertility. My damage the unborn child)
The use of boric acid/ borax is subject to strict regulation within several regulatory areas in
relation to e.g. food; cosmetics, biocides.
In REACH the substances are on the candidate list for authorisation and the European
Chemical Agency has recently recommended the substances to be included on Annex XIV
i.e. substances subject to authorisation.
At present there is an inconsistency in the classification in-between the substances with
respect to the classification limits used for mixtures.
Boric acid/borax is used widely in a variety of industrial processes and a wide range of
chemical products and articles, especially in the glass/ceramic production.
-
-
-
-
12
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
-
In Denmark boric acid has an annual tonnage use level of 600-700 tonnes of which the
specific use is known for about 40 tonnes only, according to data from the Danish Product
Registry.
In relation to handling of waste containing boron a potential for exposure may be present
when handling cellulose insulation impregnated with boric acid/ borax powder.
Boric acid/ borax are of low toxic potential in the environment and do not seem to be of
environmental concern.
Humans are exposed to boric acid/borax from several and variable sources e.g. food and
drinking water (as natural constituent) from food supplements, from cosmetics and from
various chemical products.
The human exposure from food and drinking water alone may result in an exposure that
exceeds the Derived No Effect Level of 0.09 mg B/kg bw/day.
Thus the background exposure to boron should be considered when making risk
assessment of specific sources (e.g. from chemical products) containing boric acid /borax.
-
-
-
-
-
Survey of Boric acid and sodium borates (borax)
13
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Sammenfatning og konklusion
Denne undersøgelse omfatter borsyre (H3BO3), forskellige former for natriumborat (borax) og
dibortrioxid B2O3 enten registreret under REACH eller underlagt den harmoniserede klassificering
i EU.
Udvinding af mineralsk bor fra miner var på verdensplan 5.410.000 tons i 2006. Det forventes, at
EU-27 forbruger omkring 20% af denne produktion.
Regulering
Både EU og danske lovgivning regulerer brugen af borsyre/borax på en række områder. Der gælder
der særlige regler for brugen af stofferne som tilsætningsstoffer til mad, kosttilskud, i
fødevareemballage, som mikronæringsstoffer fx i gødning, og i kosmetik. Endvidere er borsyre/
borax godkendt som aktivstoffer i biocidholdige produkter beregnet til træbeskyttelse. Anvendelse i
legetøj er begrænset på grund af stoffernes strenge klassificering som Repr. 1B;H360FD.
Ifølge CLP-forordningen er stofferne (de ti CAS-numre der er omfattet i denne rapport) klassificeret
som reproduktionstoksiske Repr. 1B;H360FD (Kan skade forplantningsevnen. Kan skade det ufødte
barn). Dette har medført, at stofferne er sat på kandidatlisten til godkendelsesordningen i henhold
til REACH-forordningen.
For ganske nylig har Det Europæiske Kemikalieagentur, ECHA foreslået, at stofferne bør
videreføres til godkendelsesordningen under REACH, men dette afventer yderligere vurdering og
endelig beslutning fra EU-Kommissionens side.
For øjeblikket er der stadig en vis usikkerhed om de specifikke klassificeringsgrænser for stofferne,
da Risikovurderingskomiteen under ECHA for nylig anbefalede, at to dinatriumoktaborat stoffer
skulle Repr. 1B klassificeres ud fra den generelle koncentrationsgrænse i modsætning til de øvrige
borsyre/ borax stoffer, der har en væsentligt højere specifik koncentrationsgrænse. Hvis den
specifikke koncentrationsgrænse for borsyre/ borax stofferne fjernes, og erstattes af den generelle
klassificeringsgrænse på 0,3%, ville dette betyde en sænkning på 10-30 gange af de nuværende
klassificeringsgrænser for stofferne.
På grund af klassificeringen som Repr 1B;H360FD må kemiske blandinger ikke sælges til
offentligheden, hvis de indeholder stofferne i koncentrationsniveauer over den nuværende
klassificeringsgrænse. For arbejdsmiljøet er der særlige forholdsregler for håndtering og arbejde
med stoffer med en Repr. 1B klassificering. Derudover gælder der i Danmark konkrete
grænseværdier i arbejdsmiljøet for stofferne (i intervallet 1-10 mg/m
3
afhængigt af stoffet).
For virksomheders udledning til udeluft er der fastsat grænseværdi for bor (B-værdi på 0.03
mg/m
3
) i forbindelse med den danske B-værdivejledning. I drikkevand er der fastsat grænseværdi
for borindhold i forbindelse med EUs drikkevandsdirektiv (1 mg bor/L) og i forbindelse med den
nationale bekendtgørelse for drikkevandskvalitet (1 mg bor/L; men 0.3 mg bor/L bør tilstræbes).
Kriterier for miljømærkning hindrer brugen af stofferne i miljømærkede produkter, da stoffer med
klassificering som Repr 1B;H360FD generelt ikke må anvendes i miljømærkede produkter.
I forbindelse med den tidligere kemikalielovgivning blev der udarbejdet en EU-risikovurdering for
stofferne for borsyre og borax, men risikovurderingerne blev ikke formelt afsluttede inden REACH
14
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
trådte i kraft. I disse rapporter blev der pga. mangel på data i forbindelse med udsættelse af
forbrugere ikke foretaget nogen specifik risikovurdering for forbrugereksponering for stofferne.
Anvendelser
Borsyre (CAS 10043-35-3) og dinatriumtetraborat (CAS 1330-43-4), er langt de mest anvendte af de
borstoffer, der er dækket af denne rapport. Hvert af disse stoffer er REACH-registreret i
mængdeintervallet 100.000 - 1.000.000 tons pr. år.
Som det fremgår af afsnit 3, anvendes borsyre og borax i mange industrier og til mange formål.
Størstedelen af anvendelsen (> 50%) går til fremstilling af glas (herunder glasfiber og glasuld) og
keramik, hvor borsyren udgør en del af strukturen af glasset/det keramisk materiale. Andre
anvendelser er i kosmetik og biocider samt i forskellige kemiske produkter, såsom sæbe og
rengøringsmidler, gødning, maling, lak, lim, til galvanisering, som katalysatorer, i antifrost-
produkter, smøremidler og til cellulose (papiruld) isolering.
I Danmark har der været en markant stigning i anvendt tonnage af borsyre i det seneste årti. I 2000
var den rapporterede tonnage lige under 100 tons. Dette forbrug forblev mere eller mindre uændret
indtil 2003, men steg markant herefter. I 2012 var den rapporterede tonnage på 610 tons. Den
specifikke brug af næsten 600 tons af denne mængde blev ikke angivet på anden måde end
"råmateriale"
i Produktregistreret, og der kan derfor ikke umiddelbart redegøres for anvendelsen.
Omkring 14 tons blev anvendt som køle/smøreolie til metaller. Tidligere var der også borsyre i
ikke-
landbrugsmæssige pesticider og konserveringsmidler.
Dinatriumdecahydrat (CAS: 1303-96-4)
anvendtes før i tiden i
antifrostmidler
i stort omfang. Men siden 2005 er anvendelsen inden for
denne gruppe faldet, og i 2012 blev der ikke registreret nogen tonnage for denne produktgruppe.
Rengørings- og vaskemidler
er nu den primære produktgruppe, hvor der anvendes
dinatriumtetraborat decahydrat, og i mindre grad
ikke-landbrugsmæssige pesticider og
konserveringsmidler.
Stofferne anvendes yderligere i kosttilskud, i fødevareemballage, som mikronæringsstoffer fx i
gødning og i kosmetik.
Affald
Der er ikke rapporteret om konkrete problemstillinger vedrørende borsyre/borax i
affaldsstrømmen.
Affald, der indeholder mere end 1% bor i form af borsyre/borax skal på grund af klassificeringen
som Repr. 1B behandles som farligt affald.
En stor del af den anvendte borsyre/borax vil optræde i affaldsstrømmen i forbindelse med indhold
i glas og keramik. Her vurderes borsyren/ boraxen dog ikke at udgøre noget problem på grund af
indlejring og binding i selve glasstrukturen. Glasholdigt affald genanvendes i meget udstrakt grad.
Cellulose (papir) isolering i affaldsstrømmen kan have et relativt højt indhold af løst bundet
borsyre/borax pulver, som er meget tilgængeligt og således udgør et eksponeringspotentiale for
mennesker og miljø. Mht til affald der udgøres af cellulose isolering med mere end 1% bor (gælder
typisk ældre produkter), skal dette betragtes som farligt afflad. Der savnes imidlertid konkrete data
mht. hvordan affald fra papirisolering håndteres.
Miljø
Der er adskillige tilgængelige studier af bors toksicitet overfor vand- og jordlevende organismer.
Disse data tyder ikke på høj toksicitet.
Borater er naturligt til stede og vidt udbredt i miljøet, og bor er et vigtigt mikronæringsstof for
mange arter. Borsyre/borax er uorganiske forbindelser og er ikke nedbrydelige, men de udsættes for
Survey of Boric acid and sodium borates (borax)
15
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
kemiske omdannelsesprocesser, når de frigives i miljøet, hvilket resulterer i forskellige boratholdige
salte. Udendørs koncentrationer af borater er meget varierende og væsentligt påvirket af geologiske
forhold. I europæiske floder indikerer kontroldata aritmetiske middelværdier på 3,3 ug B/L
(Finland), 357 ug B/L (Portugal) og 95-percentiler af 17 ug B/L (Skotland) og 632 ug B/L
(Tyskland) .
I grundvand i Danmark kan borniveauer overstige 300 mg B/L (den vejledende
drikkevandsgrænseværdi), da dette blev fundet i 72 drikkevandsboringer i 2012.
I miljørisikovurderingen i Det Europæiske Kemikalie-agenturs Transitional Dossier blev der
indikeret risiko i vand og sediment for næsten alle lokale scenarier hvor der var industriel
anvendelse af bor. Der gøres opmærksom på at disse indikationer er baseret på konservative og
foreløbige estimater, og at mere detaljerede evalueringer bør baseres på yderligere opdateret
information. Der blev ikke identificeret nogen risiko for regionale delmiljøer fra anvendelse af
flydende rengøringsmidler i Hera (2005) rapporten.
I forbindelse med PBT-vurdering er borsyre/borax klassificeret som Repr. 1B, og derfor er
kriterierne for toksicitet (T) opfyldt. Borater er uorganiske stoffer og det giver ikke mening at
vurdere bionedbrydeligheden. Endvidere bioakkumuleres borater ikke i væsentligt omfang. Derfor
opfylder borsyre/borax ikke kriterierne for B eller VB, og borsyre/borax betragtes ikke som PBT-
eller vPvB-stoffer.
Sundhed, skadelige effekter
Ved oral indtagelse eller ved indåndning af støv optages borsyre/borax let (op til 100%) i blodet og
fordeles i væv og organer i kroppen. Ved hudeksponering angives en optagelse på 0,5% gennem
intakt hud som en øvre grænse for optagelse i kroppen. Borsyre omdannes ikke yderligere i
kroppen, men udskilles hovedsageligt i urinen, med en halveringstid for udskillelse på under 24
timer i mennesker. Under normale fysiologiske betingelser omdannes de forskellige borforbindelser
til borsyre; og der kan derfor foretages en analogislutning fra oplysningerne om de forskellige
borforbindelser.
Hos mennesker er de kritiske effekter efter indånding af støv indeholdende borsyre/borax næse- og
øjenirritation, halsirritation, hoste og åndenød. Humane data og data fra dyreeksperimentelle
undersøgelser angiver at borsyre/borax virker irriterende i luftvejene ved niveauer over 0,8 mg
B/m
3
, som anses for at være ikke-effekt-niveauet.
Hos mennesker er akut øjenirritation velkendt fra arbejdere, der udsættes for borsyre/borax.
Dyreeksperimentelle data peger ikke på at stoffernes skal klassificeres som hudirriterende. Da
stofferne er øjenirriterende, bør de derfor klassificeres i overensstemmelse hermed (Eye Irr. 2,
H319).
Hos mennesker kan akut forgiftning forekomme efter oral indtagelse og indånding samt efter
hudeksponering via beskadiget hud. I mennesker er den dødelige dosis for oral eksponering angivet
til at være 2-3 gram borsyre for spædbørn, 5-6 gram borsyre for børn og 15-30 gram borsyre for
voksne. De akuttoksiske effekter er baggrunden for at flere virksomheder anvender klassificeringen
Acute Tox4; H302.
De mest kritiske effekter af borsyre og borax er imidlertid effekter i relation til fertilitet (skadelige
effekter på testiklerne) og fosterets udvikling (misdannelser og øget fosterdødelighed).
Mht. effekter på forplantningsevnen er der blevet fastsat en NOAEL-værdi på 17,5 mg B/kg
legemsvægt/dag på baggrund af en tre-generations reproduktionsundersøgelse i rotter doseret med
borsyre. Baseret på denne NOAEL-værdi, har EU's Risikovurderingskomité fastsat en DNEL værdi
(et tolerabelt eksponeringsniveau ) på 0,175 mg B/kg legemsvægt/dag ved at anvende en
16
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
usikkerhedsfaktor på 100. Der forelligger flere befolkningsundersøgelser, hvor arbejdere har været
eksponeret for borsyre/borax, men selvom der ikke er fundet negative effekter på fertiliteten i disse
undersøgelser anses disse data ikke at være pålidelige nok til at frikende borstofferne for disse
effekter. Dvs. data fra dyrestudier anses for at være afgørende for vurderingen af fertilitetseffekter.
Mht. skadelige effekter på fosterudviklingen er der fastsat en NOAEL-værdi på 9,6 mg B/kg
legemsvægt/dag ud fra oral dosering af borsyre i et teratogenforsøg med rotter. Ved højere
dosisniveauer fremkom der øget fosterdødelighed, misdannelser og nedsat kropsvægt af de nyfødte
unger. Baseret på denne NOAEL-værdi, har EU's Risikovurderingskomité fastsat en DNEL værdi (et
tolerabelt eksponeringsniveau) på 0,096 mg B/kg legemsvægt/dag ved at anvende en
usikkerhedsfaktor på 100. Der foreligger ingen humane data for udviklingstoksicitet.
Disse effekter på reproduktion og udvikling medfører klassificeringen Repr 1B, H360FD (Kan skade
forplantningsevnen og det ufødte barn) for borsyre/borax. Dette blev for nylig bekræftet af
risikovurderingskomitéen i ECHA i deres udtalelse om harmoniseret klassificering og mærkning af
borsyre (ECHA/RAC udtalelse (2014)).
Sundhed, eksponering
Fra data fundet på eksponeringsestimater, som er præsenteret i afsnit 6.2, kan det ses, at den
dominerende eksponering for borsyre/borater stammer fra fødevarer og drikkevand. Den generelle
baggrundseksponering (Typisk og Realistisk Worst Case) i EU anslås til:
Typisk: 2,3-2,74 mg B/person/dag (0,038 – 0,046 mg B/kg legemsvægt/dag)
RWC: 3,5 – 3,94 mg B/person/dag (0,058 – 0,066 mg B/kg legemsvægt/dag)
Især anvendelsen af bor i kosttilskud kan resultere i yderligere eksponering på op til 1,5 - 30 mg
B/dag (0,02-0,4 mg B/kg legemsvægt/dag).
I forbindelse med brug af borsyre/borax i kosmetik er der estimeret en daglig dosis på 1,2 mg B/dag
(o.02 mg B/kg legemsvægt/dag).
Yderligere bidrag til eksponering for borsyre/borax kan komme fra forskellige andre produkter, fx
vaskemidler, gødningsstoffer, biocider, cellulose isolering og møbler.
Erhvervsmæssig eksponering: I visse situationer i arbejdsmiljøet når der håndteres borsyre/borax,
kan det være nødvendigt med særlige tekniske foranstaltninger eller anvendelse af personlige
værnemidler for at reducere eksponeringen og opnå øget sikkerheden. Dette vurderes at være
særligt relevant i forbindelse med støvende processer eller ved dannelse af aerosoler fx i forbindelse
med industrielle biocid-imprægneringsprocesser, lastning eller losning af borsyre/borax pulver, ved
indblæsning af celluloseuld-isolering i konstruktioner, eller i forbindelse med rengøringsprocesser.
Forbrugereksponering: I 2013 fastsatte Det Europæiske Fødevareagentur, EFSA, et samlet
acceptabelt dagligt indtag (ADI) til 0,16 mg B/kg legemsvægt/dag for borsyre/borax, udtrykt som
bor-ækvivalenter. Dette svarer til 10 mg bor fra alle fødevarekilder for en voksen, der vejer 60 kg
(EFSA , 2013). EFSA konkluderede yderligere, at eksponering for bor fra naturlig forekomst i kosten
og fra evt. andre kilder (kosttilskud, materialer i berøring med fødevarer, foder til
fødevareproducerende dyr, kosmetik, mundhygiejne-produkter, osv.) tilsammen kan føre til en
eksponering, der overstiger ADI-værdien.
Det er derfor vigtigt at baggrundseksponeringen fra især fødevarer og drikkevand tages i
betragtning ved vurdering af yderligere kilder hvor eksponering med borsyre/borax kan
forekomme. Da baggrundseksponeringen for nogle personer kan være ganske tæt på det acceptable
daglige indtag (eller DNEL-værdien på 0,09 mg B/kg legemsvægt/dag fastat af EU’s
Survey of Boric acid and sodium borates (borax)
17
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
risikovurderingskomité), kan yderligere boreksponering fra kosttilskud, kosmetik, biocider,
rengøringsmidler, cellulose isolering, møbler osv. resultere i en samlet eksponering, som
overskrider de sikre niveauer.
Et eksempel på dette er for nylig blevet identificeret af risikovurderingskomiteen i ECHA, som
fandt, at ekstra bidrag fra en konkret anvendelse af fotokemikalier indeholdende borsyre/borax
kunne medføre en samlet eksponering som oversteg DNEL-værdien.
Alternativer
ECHA har for nylig (September 2014) foreslået at videreføre borsyre/ borax fra kandidatlisten til
godkendelseslisten under REACH (bilag XIV). Dette lægger naturligvis yderligere pres på
industrien for at finde alternativer til anvendelsen af borsyre/borax.
Imidlertid kan der ikke peges på et én-for-alle alternativ eller en konkret teknisk foranstaltning som
kan afløse brugen af borsyre/borax.
For anvendelse af borsyre/borax i glasindustrien synes der ikke for de fleste af anvendelser at være
et egnet alternativ, da borsyre/borax indgår i glassets struktur og giver glasmaterialet særlige
tilstræbte egenskaber, såsom øget fysisk styrke samt modstand mod termisk chok. Det er vigtigt at
påpege at borsyren/boraxen er indlejret i glasmatricen, og et evt. eksponeringspotentiale herfra kan
betragtes som ubetydeligt.
I forbindelse med anvendelse af borsyre/borax i stivelse- og dextrin- klæbemidler er der heller ikke
fundet umiddelbart egnede alternativer, da anvendelse af alternativer enten vil påvirke
produktionsprocesserne mærkbart og dermed øge omkostningerne eller resultere i substitution til
syntetiske, organisk kemiske klæbestoffer.
Da bor er et essentielt mikronæringsstof, anses substitution i gødning heller ikke for muligt.
Ligeledes kan der ikke for alle anvendelser i smøreolier umiddelbart findes alternativer til brugen af
borsyre/borax.
Der synes imidlertid at være alternativer på andre områder, fx overfladebehandling og maling,
isoleringsmaterialer, svejseprocesser, pH-buffer løsninger og i diagnostiske anvendelser.
Samlet konklusion
Ud fra en regulatorisk og sundhedsmæssig tilgang kan følgende observationer i forbindelse med
denne rapport fremhæves:
-
Borsyre/borax
er reproduktionstoksiske stoffer klassificeret som Repr. 1B, H360Df (Kan
skade forplantningsevnen. Kan skade det ufødte barn.)
Anvendelsen af borsyre/borax er strengt reguleret inden for flere regulatoriske områder i
forbindelse med fx fødevarer, kosmetik, biocider.
I REACH er stofferne på kandidatlisten til godkendelse, og Det Europæiske
Kemikalieagentur har for nylig anbefalet, at stofferne skal overføres til bilag XIV og
dermed omfattes af godkendelsesordningen..
På nuværende tidspunkt er der uoverensstemmelse imellem visse af borsyre/borax
stofferne og deres til klassificeringsgrænserne for Repr 1B til brug i blandinger.
Borsyre/borax har udbredt anvendelse i en række industrielle processer samt i en lang
række kemiske produkter og artikler, især i glas-/keramikproduktion.
-
-
-
-
18
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
-
I Danmark anvendes borsyre i en årlig mængde på 600-700 tons, men den specifikke
anvendelse er kun kendt for omkring 40 tons, ifølge de offentligt tilgængelige data fra det
danske produktregister.
I forbindelse med håndtering af borsyre/borax holdigt affald vurderes håndtering af
borsyre/borax holdigt cellulose isoleringsmateriale at kunne udgøre et potentiale for
eksponering.
Borsyre/borax har lavt toksisk potentiale i miljøet og synes ikke at være af miljømæssigt
betænkeligt.
Mennesker eksponeres for borsyre/borax fra flere og variable kilder, fx fødevarer og
drikkevand (som naturlig bestanddel) fra kosttilskud, fra kosmetik og fra forskellige
kemiske produkter.
Den humane eksponering fra fødevarer og drikkevand alene kan medføre en eksponering,
der overskrider Derived No Effect Level på 0,09 mg B/kg legemsvægt/dag.
Således bør baggrundseksponering for bor medregnes, når der foretages en
risikovurdering af specifikke kilder (fx kemiske produkter), der indeholder borsyre/borax.
-
-
-
-
-
Survey of Boric acid and sodium borates (borax)
19
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0020.png
1. Introduction to the
substance
1.1
Identification of the substances
This survey covers boric acid (H3BO3) and various forms of sodium borate that are either registered
under REACH or subjected to harmonised classification in the EU. Thus, other oxidation states of
boron, e.g. perboric acid (HBO3) and sodium perborates, are not included. The same applies to the
dehydrated form of boric acid, i.e. metaboric acid (HBO2) and sodium metaborates plus
pentaboron sodium octaoxide (Table 1.1).
TABLE 1.1: IDENTIFICATION OF SUBSTANCES COVERING BORIC ACID AND SODIUM BORATE
Name/ CAS
CAS
Molecular
formula
H3BO3
H3BO3
Molecular
Weight
(g/mol)
61.83
-
Conversion
factor to boron
content
0.175
-
Boric acid
Boric acid, crude natural,
containing not more than 85 per
cent of H3BO3 calculated on the
dry weight
Disodium tetra borate anhydrous
Disodium tetra borate
pentahydrate
Disodium tetra borate
decahydrate
Tetraboron disodium heptaoxide,
hydrate
Diboron trioxide, boric oxide
Orthoboric acid, sodium salt
Disodium octaborate
Disodium; boron; oxygen(2-);
tetrahydrate
10043-35-3
11113-50-1
1330-43-4
12179-04-3
1303-96-4
12267-73-1
1303-86-2
13840-56-7
12008-41-2
12280-03-4
Na2B4O7
Na2B4O7
• 5H2O
Na2B4O7
•10H2O
Na2B4O7
• xH2O
B2O3
Na3BO3
B8Na2O13
B8Na2O13
• 4H2O
201.22
291.35
381.37
201.22
+ x • 18.02
≥69.62
127.8
340.4
412.4
0.215
0.148
0.113
0.215
(for x=1)
0.155
0.085
0.253
0.210
The
conversion from substance content to boron content
is often practical in order to compare the
concentrations between the substances. Also in relation to measurement of borate content in e.g.
food items and environmental media (and in relation to limit values) the content of boric
acid/borate is given as the boron content, as it is actually the content of elemental boron that is
measured.
This should be kept in mind when reading the following chapters as the terms boric
acid, borate/borax and boron may be used according to the term used in the references.
20
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0021.png
1.2
Purity and impurities
The purity for boric acid is indicated to be in the range of 99.9 – 100.34%. Purity above 100% is due
to the variation of crystal water in boric acid. Since boric acid consists of diboron-trioxide and water
(H3BO3
<->
1/2B2O3 + 3/2H2O), even a slight decrease in the structural water content will yield
to a higher diboron-trioxide content, which will increase the purity (ECHA/transitional annex XV
report (2009a).
For disodium tetraborates the following degrees of purity were given:
Disodium tetraborate anhydrous: 99.0 – 101.9%
Disodium tetraborate pentahydrate: 101.6 – 103.1%
Disodium tetraborate decahydrate: 101.0 – 104.6%
(ECHA/Transitional Annex XV dossier, 2009b).
In the public part of the REACH registration dossiers on boric acid (CAS 10043-35-3); disodium
tetraborate, anhydrous/pentahydrate/decahydrate (CAS 1330-43-4); diboron trioxide (CAS 1303-
86-2), and disodium octaborate (CAS 12008-41-2) are the only four registrations on the substances.
No further information could be found with respect to the impurity content.
1.3
Physical and chemical properties
Chemical structure of boric acid, H3BO3:
Chemical structure of sodium tetraborate (anhydrous), Na2B4O7:
, 2 Na
+
Survey of Boric acid and sodium borates (borax)
21
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0022.png
TABLE 1.2: PHYSICO-CHEMCIAL PROPERTIES (DATA FROM (ECHA/ TRANSITIONAL ANNEX XV REPORT
2009A+B)
Property
Boric acid
Disodium tetraborate,
anhydrous
White, crystalline,
odourless solid
Disodium tetraborate,
decahydrate
White, crystalline,
odourless solid
Physical state at 20°C
and 101.3 kPa
White, crystalline, odourless
solid
No melting point can be
defined in the range 25-
1000°C due to the
decomposition of the
substance.
D23/4 °C = 1.489
Melting/freezing point
737°C
No melting point detected
below 1000°C.
Relative density
D23/4 °C = 2.354
27.0 ± 2.7 g/l at 20 ± 0.5°C
Derived from studies with
the pentahydrate and
decahydrate
-
Non-flammable
d50 = 210 – 850μm
pKa = 9.0 at 25 °C for boric
acid in dilute solutions only
(≤ 0.025 M).
D23/4 °C = 1.74
Water solubility
49.2 g/l at 20 °C;
47.2 g/l at 20 °C
49.7 ± 3.6 g/l at 20 °C
47.0 g/l at 20 °C
Partition coefficient
octanol/water (log value)
Flammability
Granulometry
-1.09 ± 0.16 (22± 1°C)
non-flammable
d50 = <75 – 680 μm
pKa = 9.0 at 25 °C for boric
acid in dilute solutions only
(C ≤ 0.025 M).
-1.53 ± 0.05 (22 ± 1°C)
non-flammable
d50 = 90 – 400μm
pKa = 9.0 at 25 °C for boric
acid in dilute solutions only
(C ≤ 0.025 M).
Dissociation constant
1.4
Summary
This survey covers boric acid (H3BO3); various forms of sodium borate (borax) and diboron
trioxide B2O3 (boric acid consists of diboron-trioxide and water: H3BO3 <-> 1/2B2O3 + 3/2H2O)
either registered under REACH or subjected to harmonised classification in the EU.
Boric acid and the sodium borates (borax) appear as white crystalline powders that are readily
soluble in water.
22
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0023.png
2. Regulatory framework
This chapter gives an overview of how it is addressed in existing and forthcoming EU and Danish
legislation, international agreements, eco-label criteria, etc. The overview reflects the findings from
the data search.
Appendix 1 provides a brief overview of and connections between legislative instruments in the EU
and Denmark. The appendix also gives a brief introduction to chemicals legislation, explanation for
lists referred to in Chapter 3, as well as a brief introduction to international agreements and the
aforementioned eco-label schemes.
2.1
Existing legislation
The Danish EPA has included boric acid and sodium borates on the LOUS list 2009 based on its
classification as Repr. 1B; H360D and because the substances are placed on the Danish market in a
quantity > 100 tonnes (Danish EPA 2011).
The current regulation, listed in Table 2.1 below, includes registration under REACH, classification
according to the CLP regulation, regulation according to the biocides directive. Further regulations
of the use and handling of chemicals apply in the working environment (e.g. OEL-values). The
exposure of consumers is addressed through EU-regulation e.g. in relation to content in drinking
water, to the use as food additive and to the use in cosmetic products.
TABLE 2.1: LEGISLATION ADRESSING BORIC ACID AND SODIUM BORATE
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
Regulation on chemical substances and mixtures
REACH regulation
REGULATION (EC) No 1907/2006 OF THE
EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 18 December 2006 concerning
the Registration, Evaluation, Authorisation
and Restriction of Chemicals (REACH)
EU
Boric acid; Registration of production
import and uses. Tonnage band:
100,000- 1000,000 tonnes per year
Included on Annex XVII to REACH due
to classification as Repr. 1B and may not
be used in products to be sold to the
public
EU
EU harmonised classification is available
for Boric acid and sodium borate, see
CLP regulation (EC) No 1272/2008 OF THE
EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 16 December 2008 on
classification, labelling and packaging of
substances and mixtures
Danish Statutory Order No. 1075 of
24/11/2011 on ”classification, packaging,
Table 2.2
of this report
Survey of Boric acid and sodium borates (borax)
23
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0024.png
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
labelling, sale and storage of substances and
mixtures”. (Klassificeringsbekendtgørelsen)
COMMISSION DIRECTIVE 2009/91/EC of
31 July 2009 amending Directive 98/8/EC of
the European Parliament and of the Council
to include disodium tetraborate as an active
substance in Annex I thereto
DK
EU
Disodium tetraborate EC No: 215-540-4
CAS No (anhydrous): 1330-43-4 CAS No
(pentahydrate): 12267-73-1 CAS No
(decahydrate): 1303-96-4
added to Annex 1 in Directive 98/8/EC,
as wood preservative, product type 8
with expiry date, 31 august 2021
Commission Directive 2009/94/EC of 31
July 2009 amending Directive 98/8/EC of
the European Parliament and of the Council
to include boric acid as an active substance in
Annex I thereto
COMMISSION DIRECTIVE 2009/96/EC of
31 July 2009 amending Directive 98/8/EC of
the European Parliament and of the Council
to include disodium octaborate tetrahydrate
as an active substance in Annex I thereto
COMMISSION DIRECTIVE 2009/98/EC of
4 August 2009 amending Directive 98/8/EC
of the European Parliament and of the
Council to include boric oxide as an active
substance in Annex I thereto
DIRECTIVE 98/8/EC OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL
of 16 February 1998
concerning the placing of biocidal products
on the market
Commission Decision
2008/681/EC
2008/809/EC
2009/322/EC
2009/809/EC
2010/72/EC
2012/78/EU
Danish Statutory Order;
EU
Boric acid added to Annex 1 in Directive
98/8/EC, as wood preservative, product
type 8 with expiry date, 31 august 2021
EU
Disodium octaborate tetrahydrate
added to Annex 1 in Directive 98/8/EC,
as wood preservative, product type 8,
with expiry date, 31 august 2021
EU
Boric oxide added to Annex 1 in Directive
98/8/EC, as wood preservative, product
type 8, with expiry date, 31 august 2021
EU
Under article 5(2), a biocidal product
classified as Reprotoxic Category 2 (Repr
1B under CLP)shall not be authorised for
marketing, or use by the general public
EU
Lists the dates for when boric acid should
be phased out for use as a biocide in the
product types; 1,2,3,6,7,9,10,12,13,18 and
22
DK
Annex 1, Set up the conditions for use of
boric acid and other borates as wood
24
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0025.png
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
BEK nr 628 af 13/06/2014
Bekendtgørelse om brug af kemiske stoffer
og blandinger i bekæmpelsesmidler
preservatives
Annex 2 list the borates not included in
Annex 1, 1a and 1b of the biocidal
directive
Disodiumoctaborate tetrahydrate
product type 1,2,3,6,7,9,10,11,12,13 18
Disodium tetraborate anhydrous product
type 1,2,7,9,10,11,13, 18
Boric acid product type
1,2,3,6,7,9,10,11,12, 13 18,22
Environment and waste regulation
DIRECTIVE 2000/60/EC OF THE
EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 23 October 2000 establishing a
framework for Community action in the field
of water policy
DIRECTIVE 2008/98/EC of the European
Parliament and of the Council of 19
November 2008 on waste and repealing
certain directives
EU
Boric acid and sodium borate is not listed
in the directive
EU
Boric acid and sodium borate are as a
consequence of their classification as
Repr. 1B included in ANNEX III:
Properties of waste which render it
hazardous.
Boric acid and sodium borate are as a
consequence of their classification as
Repr. 1B included in Annex 4: Properties
and weight % which classifies waste as
hazardous
Boric acid and borates are as a
consequence of the classification covered
by Annex III of the Basel Convention
regarding the control of transboundary
moments of hazardous wastes and their
disposal.
Danish regulation on waste
“Affaldsbekendtgørelsen” 1309/18/12
(Danish regulation on waste)
DK
Basel Convention ON THE CONTROL OF
TRANSBOUNDARY MOVEMENTS OF
HAZARDOUS WASTES AND THEIR
DISPOSAL
Global
Working environment
COUNCIL DIRECTIVE 98/24/EC of 7 April
1998 on the protection of the health and
safety of workers from the risks related to
chemical agents at work.
EU
‘Hazardous chemical agent' means: any
chemical agent or chemical product
which meets the criteria for classification
as a dangerous substance according to
the criteria in Annex VI to Directive
Survey of Boric acid and sodium borates (borax)
25
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0026.png
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
Implemented by the
Danish executive order:
Bekendtgørelse nr. 292 af 26. april 2001 om
arbejde med stoffer og materialer (kemiske
agenser).
Directive 2009/161/EU establishing a third
list of indicative occupational exposure limit
values in implementation of Council
Directive 98/24/EC and amending Directive
2000/39/EC
DK
67/548/EEC
EU
Establishes indicative occupational
exposure limits for chemical agents.
Boric acid and sodium borate are not
listed
No SCOEL recommendation regarding
OEL values is available for boric acid and
sodium borate.
Danish Statutory Order;
Bekendtgørelse nr. 507 af 17. maj 2011 om
grænseværdier for stoffer og materialer med
senere ændringer
DK
For disodium tetraborate decahydrate
the OEL of 2 mg/m
3
(8 hour average)
applies
For disodium tetraborate pentahydrate ,
and disodium tetraborate anhydrous,
the OEL of 1 mg/m
3
(8 hour average)
applies
For boron oxide an OEL of 10 mg/m
3
(8
hour average) applies.
According to this executive order the
code number for boric acid/borate would
be:
00-1 for up to 0.2% in a product
00-3 above 0.2% in a product
:
The number before the hyphen (from
00 up to 5) reflect volatility and need for
ventilation/ inhalational protection). The
number after the hyphen (from -1 up to -
6) reflects the toxicity of the substance.
Annex 4 contains a list of substances
which workers below the age of 18 years
most not handle. This covers substances
classified as Repr 1A and Repr 1B.
Boric acid is as a consequence of its
classification as Repr. 1B included. The
directive provides further measures,
which ensure a safe use
Danish executive Order on derivation of code
numbers:
Beskæftigelsesministeriets bekendtgørelse
nr. 301 af 13/05/1993 om fastsættelse af
kodenumre.
DK
Danish executive order concerning young
people at work:
Bekendtgøres nr. 239 af 6. april 2005 om
unges arbejde.
Council Directive 92/85/EEC (Measures to
encourage improvements in the safety and
health at work of pregnant workers and
workers who recently given birth or are
breastfeeding)
Consumer regulation
DK
EU
26
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0027.png
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
REGULATION (EC) No 1223/2009 OF THE
EUROPEAN PARLIAMENT AND OF THE
COUNCIL of 30 November 2009 on
cosmetic products
EU
Annex 3 Limit the use of boric acid/
sodium borates in cosmetic products
Max. concentration (as boric acid) in;
Talc; 5%
Oral products; 0.1%
Other products, excluding bath and hair
waving products; 3%
Tetraborates;
Max. concentration in;
Bath products; 18% (as boric acid)
Hair products; 8% (as boric acid)
DIRECTIVE 2009/48/EC
OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 18 June 2009
on the safety of toys
EU
Boric acid/borates are not allowed in
toys in components of toys or in micro-
structurally distinct parts of toys due to
its classification as toxic for reproduction
(CMR) of category Repr. 1B (EC) No
1272/2008.
Boric acid and sodium tetraborate are
listed for
Use as additive or polymer
production aid
2. Use as monomer or other
starting substance or
macromolecule obtained from
microbial fermentation
With a combined specific migration limit
(SML) value of 6 mg B/kg
1.
COMMISSION REGULATION (EU) No
10/2011 of 14 January 2011
on plastic materials and articles intended to
come into contact with food
EU
COMMISSION REGULATION (EC) No
1170/2009 of 30 November 2009
amending Directive 2002/46/EC of the
European Parliament and of Council and
Regulation (EC) No 1925/2006 of the
European Parliament and of the Council as
regards the lists of vitamin and minerals and
their forms that can be added to foods,
including food supplements
Danish Statutory Order;
BEK nr 1440 af 15/12/2009
Bekendtgørelse om kosttilskud
COMMISSION REGULATION (EU) No
1129/2011
of 11 November 2011
EU
Boric acid and sodium borate are listed
in annex 2, as substances (minerals) for
use in food supplements. No limits are
specified.
DK
Boric acid and sodium borate are listed
in annex 2, as substances for use in food
supplements
Boric acid is listed as a food additive,
with the E number 284
EU
Survey of Boric acid and sodium borates (borax)
27
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0028.png
Legal instrument
Reference
Requirement as concerns NMP and
national implementation
amending Annex II to Regulation (EC) No
1333/2008 of the European Parliament and
of the Council by establishing a Union list of
food additives
Sodium tetraborate is listed as a food
additive with the E number 285
Both only permitted for use in caviar
from sturgeon only, with a maximum
level of 4000 mg/kg, expressed as boric
acid
DK
Boric acid is listed as a micronutrient
Danish Statutory Order;
BEK nr 862 af 27/08/2008
Bekendtgørelse om gødning og
jordforbedringsmidler m.v.
Council Directive 98/83/83/EC on the
quality of water intended for human
consumption
BEK 1024 af 31/10/2011
Bekendtgørelse om vandkvalitet og tilsyn
med vandforsyningsanlæg
EU
Limit value for boron 1 mg/l.
DK
Sets limit value for boron in drinking
water to 1 mg/l, however, it is
encouraged to keep the content below
0.3 mg/l.
Other regulation
Danish guidance document:
Vejledning fra Miljøstyrelsen Nr. 2 2002
“B-værdivejledningen”
DK
B-value (contribution value) of 0.003 mg
B/m
3
, as a limit value
for each company's contribution to the
air pollution in the environment, for
elemental boron, the borates covered in
this survey do not have a B-value.
2.2
2.2.1
Classification and labelling
Harmonised classification in the EU
HARMONISED CLASSIFICATION AND LABELLING ARE APPOINTED TO BORIC ACID AND SODIUM
BORATES ACCORDING TO ANNEX VI OF REGULATION (EC) NO 1272/2008 (CLP REGULATION), SEE
28
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Table 2.2.
Survey of Boric acid and sodium borates (borax)
29
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0030.png
TABLE 2.2: HARMONISED CLASSIFICATION ACOORDING TO ANNEX VI OF REGULATION (EC) NO
1272/2008 ACCORDING TO CLP REGULATION (AND ACCORDING TO DSD DIRECTIVE 67/548/EEC, IN
BRACKETS)
Name/ CAS
CAS
Chemical
formula
Classification
Hazard Class and
Category Code(s)
Repr. 1B; H360FD
Repr. 1B; H360FD
Specific
concentration limit
C ≥ 5.5 %
C ≥ 5.5 %
Boric acid
Boric acid, crude natural,
containing not more than
85 per cent of H3BO3
calculated on the dry
weight
Disodium tetra borate
anhydrous
Disodium tetraborate
pentahydrate
Disodium tetra borate
decahydrate
Tetraboron disodium
heptaoxide, hydrate
Diboron trioxide, boric
oxide
Orthoboric acid, sodium
salt
Disodium octaborate*
10043-35-3
11113-50-1
H3BO3
H3BO3
1330-43-4
12179-04-3;
1330-43-4
1303-96-4;
1330-43-4
12267-73-1
1303-86-2
13840-56-7
12008-41-2
Na2B4O7
Na2B4O7
• 5H2O
Na2B4O7
•10H2O
Na2B4O7
• xH2O
B2O3
Na3BO3
B8Na2O13
Repr. 1B; H360FD
Repr. 1B; H360FD
Repr. 1B; H360FD
Repr. 1B; H360FD
Repr. 1B; H360FD
Repr. 1B; H360FD
Repr. 1B; H360FD*
C ≥ 4.5 %
C ≥ 6.5 %
C ≥ 8.5 %
C ≥ 4.5 %
C ≥ 3.1%
C ≥ 4.5%
-
*
Disodium; boron;
oxygen(2-); tetrahydrate*
12280-03-4
B8Na2O13
• 4H2O
Repr. 1B; H360FD*
-
*
H360FD : May damage fertility. My damage the unborn child.
*
In process, a proposed harmonised classification agreed by the Risk Assessment Committee at ECHA in March
2014 (ECHA/ RAC opinion 2014a+b).
The substances classified with the specific concentration limit in the range of 3.1% to 8.5% are
classified according to an overall specific concentration limit for the boron content of 1% and thus,
the various individual concentration limits for the substances reflect the differences in the boron
content as indicated in Table 1.1 showing the boron conversion factors for the substances.
HOWEVER, IT SHOULD BE NOTED THAT CLASSIFICATIONS OF THE LAST TWO SUBSTANCES IN
30
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Table 2.2 (disodium octaborate and disodium; boron; oxygen(2-); tetrahydrate ) recently have been
concluded by the Risk Assessment Committee that did not agree to base the classification on the
specific concentration limit for the boron content. RAC instead followed the new guidance on
applying a specific concentration limit from 2013 and from this they found no rationale from the
data to deviate from using the generic classification limit for the substances. Thus, RAC applied the
generic limit of 0.3% for the two substances*. This view was also stated by RAC in connection with
a classification opinion on boric acid in March 2014 (ECHA/RAC opinion 2014c); however here the
aim in this opinion was not to discuss and conclude on a classification limit.
(*If disodium; boron; oxygen(2-); tetrahydrate (CAS 12280-03-4) with a boron conversion factor of
0.210 was to be classified according to the boron content of 1% this would mean a specific
concentration limit of 4.8% for the substance. Thus the conclusion of RAC using the generic limit of
0.3% for the substance is a limit that is 16 times lower than the limit based on the boron content).
IT REMAINS, HOWEVER, TO BE SEEN WHETHER THE COMMISSION AGREES ON THIS VIEW, AS THIS
WOULD CALL FOR A REVISION OF THE CLASSIFICATION LIMITS OF ALL THE SUBSTANCES IN
Survey of Boric acid and sodium borates (borax)
31
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0032.png
Table 2.2 using the generic limit instead of the specific limits based on a boron content of 1%.
In connection with the classification the substances should furthermore be labelled with the
warning pictogram:
Health Hazards
Notified classification in the EU
2.2.2
According to the current CLP regulation companies placing chemical substances or chemical
mixtures on the market in EU are obliged to notify the classification they use for the substances to
the European Chemicals Agency, ECHA. The classifications used (and notified) by the companies
can be searched at the ECHA website in the CLP inventory database, see Table 2.3.
TABLE 2.3: NOTIFIED CLASSIFICATIONS ACCORDING TO THE CLP INVENTORY DATABASE
Name
CAS
No. of
notifications
37
Classification used in notifications
(numbers)
- used either alone or in combination -
Repr. 1B; H360 (31)
Repr. 1A ; H360 (1)
H360 (2)
Skin Irr 2; H315 (1)
STOT SE 3; H335 (1)
STOT SE1 (1); H370
STOT RE1 (1); H372
No classification (1)
Boric acid
10043-35-3
Boric acid, crude natural,
containing not more than
85 per cent of H3BO3
calculated on the dry
weight
Disodium tetra borate
anhydrous
11113-50-1
3
Repr. 1B; H360(3)
1330-43-4;
30
Repr. 1B; H360(26)
Repr 2;H360 (1)
Eye Irr 2; H319 (12)
32
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0033.png
Name
CAS
No. of
notifications
Classification used in notifications
(numbers)
- used either alone or in combination -
Eye Dam 1; H318 (1)
Acute Tox4; H302 (2)
No classification (1)
Disodium tetraborate
pentahydrate
1330-43-4
30
Repr. 1B; H360(26)
Repr 2;H360 (1)
Eye Irr 2; H319 (12)
Eye Dam 1; H318 (1)
Acute Tox4; H302 (2)
No classification (1)
Disodium tetra borate
decahydrate
1330-43-4
30
Repr. 1B; H360(26)
Repr 2;H360 (1)
Eye Irr 2; H319 (12)
Eye Dam 1; H318 (1)
Acute Tox4; H302 (2)
No classification (1)
Disodium tetra borate
decahydrate
1303-96-4
20
Repr. 1B; H360(14)
-; H360 (2)
Repr. 1A; H360 (1)
Repr 2;H360 (1)
Eye Irr 2; H319 (4)
Skin Irr 2; H315 (1)
No classification (1)
Tetraboron disodium
heptaoxide, hydrate
12267-73-1
4
Repr. 1B; H360 (4)
Eye Irr 2; H319 (1)
Diboron trioxide, boric
oxide
1303-86-2
15*
Repr. 1B; H360 (12)
Survey of Boric acid and sodium borates (borax)
33
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0034.png
Name
CAS
No. of
notifications
Classification used in notifications
(numbers)
- used either alone or in combination -
Repr. 1A ; H360 (1)
H360 (1)
Orthoboric acid, sodium
salt
13840-56-7
5
Repr. 1B; H360(5)
H350 (1)
Disodium octaborate*
Disodium; boron;
oxygen(2-); tetrahydrate*
12008-41-2
12280-03-4
4
3
Repr. 1B; H360 (4)
Repr. 1B; H360 (1)
Eye Irr 2; H319 (1)
Skin Irr 2; H315 (1)
*one notification considered as mistake and excluded due to classification of 11 different end-points.
Besides the classification as Repr. 1B, the most widely used additional classifications are Eye Irr. 2,
H319 and Skin Irr. 2. It should be noted that a few notifications do not classify at all and also a few
notifications lack a classification for reproduction toxicity.
2.3
REACH
Under REACH the following registrations within the following tonnage bands have been made:
CAS
1303-86-2
1303-86-2
1330-43-4
10043-35-3
12008-41-2
Name
diboron trioxide
diboron trioxide
disodium tetraborate, anhydrous *
boric acid
disodium octaborate
Tonnage
1,000 - 10,000 tonnes per annum
100 - 1,000 tonnes per annum
100,000 - 1,000,000 tonnes per annum
100,000 - 1,000,000 tonnes per annum
1,000 - 10,000 tonnes per annum
*this registration also covers the hydrated forms of disodium tetraborate.
Restriction
According to Annex XVII of REACH substances classified as Repr.1A or 1B shall not be placed on
the market, or used, — as substances, — as constituents of other substances, or, — in mixtures, for
supply to the general public when the individual concentration in the substance or mixture results
in a classification as Repr.1A or 1B.
Candidate list for authorisation
Boric acid/borax have been identified as substances of very high concern (SVHC) due to the
classification as Repr. 1B; H360 DF.
In the period June 2010- June 2012 the following substances were included on the Candidate List
(ECHA/MSC 2010(a+b+c) and ECHA/MSC 2012):
Boric acid (CAS 233-139-2 and CAS 10043-35-3);
Disodium tetraborate (-anhydrous CAS 1330-43-4); (-pentahydrous CAS 12179-04-3);
34
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
(-decahydrate CAS 1303-96-4); and
Tetraboron disodium heptaoxide, hydrate (CAS 12267-73-1)
Diboron trioxide (CAS 1303-86-2)
This gives further obligations for the suppliers of chemical mixtures or articles containing the
substances. For chemical mixtures even if they do not meet the criteria for hazard classification the
suppliers – on request – have to provide a safety data sheet if the mixture contains boric acid/borax
at a level above ≥ 0.1% (w/w).
Suppliers of articles containing substances on the Candidate List in a concentration above 0.1%
(w/w) have to provide sufficient information to allow safe use of the article to their customers - or
upon request, to a consumer within 45 days of the receipt of the request. This information must
contain as a minimum the name of the substance. Further there is an obligation to make
notification to ECHA if the substance is present in the articles in quantities of more than one tonne
per producer or importer per year and if the substance is present above a concentration of 0.1%
(w/w).
The placing of a substance on the REACH Candidate List is the first step towards the authorisation
process for a substance.
ECHA has recently (September 2014) made recommendations to include the boron substances
from the candidate list on the authorisation list (Annex XIV).
EU-risk assessment
Under the previous chemical regulation (EEC) No 793/93, EU- risk assessment reports on boric
acid and sodium borate have been elaborated by Austria. The work was, however, not finalised
before REACH turned into force, and thus no risk management measures were concluded from the
work. Therefore transitional Annex XV reports were made in order to feed the work into the
REACH regulation (ECHA/transitional annex XV report (2009a+b).
In the risk assessment part of the reports it was concluded that “There is a need for better
information to adequately characterise the risks to workers and consumers from boron exposure via
boric acid and sodium tetraborates”.
Thus a risk characterisation for boron exposure via consumer products was not made due to the
lack of information on all possible applications as indicated in the consumer exposure section of the
report.
As a follow-up on this, a study on borates in consumer products was carried out on behalf of the
commission (RPA 2008). This report identified further uses of boric acid and borates in relation to
consumer use. However, no overall risk assessment for consumer exposure or combined exposure
considering indirect environmental background exposure was undertaken.
The Risk Assessment Committee in 2010 made an assessment of consumer use of boric acid and
borates in photographic applications (developer and fixer). In the opinion no risk was identified for
the specific uses alone; however, when background exposure from food and drinking water risk was
included in the assessment, risk was identified for some worst case scenarios (ECHA/RAC opinion
2010a+b).
2.4
Other initiatives
Boric acid is listed in the EU SUBSPORT substance database. According to the Subsport database
boric acid is listed in Chemsec SIN list, which is a non-governmental organisation driven project
that aims to identify Substances of Very High Concern. The aim of the project is to push the
legislative process and provide tools for business and other actors to identify alternatives.
Survey of Boric acid and sodium borates (borax)
35
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Boric acid is on the Trade Union priority List of substances of Very High Concern, which from a
trade union perspective should have priority for inclusion in the REACH candidate list and
potentially in the authorisation list. Boric acid is also listed in the German UBA list, the master list
contains substances and groups of substances that are considered of concern by the German
Federal Environment Agency and should not be present in mixtures and articles.
The NOKIA substance list that identifies substances, which the company has banned, restricted, or
targeted for reduction with the aim of phasing out their use, lists boric acid. The Swiss blue sign
system also lists boric acid. The Swiss enterprise blue sign claims that it includes all harmful
substances listed in relevant restricted substances lists of the textile sector. Boric acid is listed in the
Swedish PRIO tool, which is a list of phase out substances that are considered of such concern that
they should not be used, and the list of Priority Risk-Reduction Substances, which have properties
to which special attention should be paid.
2.5
International agreements
Boric acid and the borates are not specifically addressed in any of the following international
conventions: Ospar convention; Helcom convention; Stockholm convention; Rotterdam
convention; Basel convention.
2.6
Eco labels
The general approach taken in eco-label criteria (the Nordic Swan, the EU Flower and the German
Blue Angel) adopted to date is to exclude eco-labelling when the products contain chemicals which
have certain specific properties (classification and risk phrases).
Boric acid is classified with H315, H319, H335 and H360D. Criteria documents covering the
product groups referred to in Section 3.3 were consulted. Most of these documents state that “The
materials used for the manufacture of the ecolabelled product shall not contain substances or
preparations that are assigned the classification Repr. 1B H360 (DF) (May damage fertility. May
damage the unborn child). Furthermore, some criteria documents state that
“The final product
formulation, including all intentionally added ingredients present at a concentration of greater
than 0.010 %, shall not contain substances or mixtures classified as toxic, hazardous to the
environment, respiratory or skin sensitisers, or carcinogenic, mutagenic or toxic for
reproduction in accordance with Regulation (EC) No 1272/2008 or Council Directive
67/548/EC”.
2.7
Summary and conclusions
Both the EU and Danish regulations specifically address the use of boric acid and sodium borate.
Thus specific rules apply for the use of the substances as food additives, food supplements, and in
food packaging material, as micronutrients e.g. in fertilisers, and in cosmetics. Furthermore, boric
acid and sodium borate are only approved as active agents in biocidal product for the purpose of
wood preservation. The use in toys is restricted due to the strict classification as Repr. 1B; H360FD
of the substances.
According to the CLP regulation the substances (all ten CAS numbers) are classified as reproductive
toxicants as Repr. 1B; H360FD (May damage fertility. My damage the unborn child). This has led
the substances to be placed on the candidate list for authorisation under the REACH regulation.
Very recently The European Chemical Agency has proposed that the substances should be subjected
to authorisation; however this awaits further evaluation and decision making by the EU-
Commission.
At present, some uncertainties remain to the specific classification limits of the substances as two
disodium octaborate substances recently were recommended by the Risk Assessment Committee at
36
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
ECHA to be classified without a specific concentration limit comparable to the specific
concentration limits for the other boric acid and sodium borate substances. If the specific
concentration limit for the other substances should be challenged/removed and the general
classification limit of 0.3% should apply, this would call for a lowering of the current classification
limits by factors in the range of 10-30 for the substances.
Due to the classification as Repr. 1B; H360FD, chemical preparations are not to be sold to the
public if they contain the substances at concentration levels above the current classification limit. In
relation to occupational regulations the use and handling of the substances are regulated according
to the generic rules for handling dangerous substances with a Repr. 1B classification. Furthermore,
specific Danish occupational exposure limit values in the range of 1-10 mg/m
3
apply for the
substances.
The content of boron in drinking water is regulated by the EU drinking water directive and the
national legislation. National guidance values also pertain to the industrial emission of the
substances into ambient air (C-values).
Criteria for eco-labelling restrict the use of the substances (due to their classification as Repr. 1B
H360FD) in eco-labelled products.
In the context of the old chemical regulation, a risk assessment document has been elaborated on
the substances. However, when REACH entered into force this was not formally agreed upon.
Furthermore, no specific risk assessment was undertaken (due to lack of data) for consumer
exposure to the substances, neither alone nor in combination with the background exposure from
the natural content in food and drinking water.
Survey of Boric acid and sodium borates (borax)
37
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0038.png
3. Manufacturing
3.1
Manufacturing processes
Borates are manufactured from minerals mined in boron mineral ores. Boric acid is manufactured
by reacting inorganic borate minerals with sulphuric acid in an aqueous solution. Borax
pentahydrate and decahydrate are manufactured by dissolving sodium borate minerals in hot liquor
followed by recrystallisation. The anhydrous form is produced from its hydrated forms (ECHA/
transitional annex XV report (2009b)).
Worldwide mining of boron mineral ores were 5,410,000 tons in 2006. Turkey accounts for half of
the mined tonnage. Second most is mined USA (approx. 1/5 of worldwide tonnage). It is expected
that the EU-27 consumes around 20% of this production (RPA, 2008).
Import and export
There is no mining of boron within the EU. Hence all the reported tonnage in the EU is imported.
Listed tonnage in the REACH registration dossier is 100.000 to 1.000.000 tonnes and the number
of registrants is 45 companies (REACH Registration data, 2014).
According to RPA (2008), three companies account for 95% of total imported tonnage.
Top three importing EU-countries are Belgium, Germany and The Netherlands. The same three
countries are the main exporters though in export The Netherlands tops the list in front of Belgium.
(RPA, 2008)
3.2
Use
3.2.1
Identified uses in the EU
Several uses of borates have been identified within the EU. The table below (Table 3.1) summarises
the findings reported by RPA (2008). According to this information, glass, glass products and
ceramics account for more than half (55.8%) of the used tonnage of borates and are thus by far the
largest users of boron. Second most is soap and detergent products which account for 16.8% of the
total volume used. The remaining categories each only account for smaller volumes (0.1%-8.2%)
compared to the two topmost uses.
TABLE 3.1: USES OF BORATES IDENTIFIED WITHIN THE EU (MODIFIED AFTER RPA, 2008)
Product application or industry sector
Glass, glass products and ceramics
Soap and detergents, cleaning and polishing preparations, perfumes
and toilet preparations
Fertilisers and nitrogen compounds
Chemical and fertiliser minerals
Paper and paper products (incl. currogated paper)
Basic pharmaceutical products and preparations
Wood products (e.g. veneer sheets and wood based panels) except
furniture
Paints, varnishes, coatings, printing inks and mastics
%
55.8
16.8
4.7
2.4
1.5
1.4
1.0
0.5
Tonnes
334,800
100,800
28,200
14,400
9,000
8,400
6,000
3,000
38
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0039.png
Product application or industry sector
Furniture (e.g. mattresses)
Other chemicals and chemical products:
Various chemical
processes incl. metallurgy, antifreeze, brake fluids, buffers, wallboards,
lubricants
Others:
Steel slag stabilisation, flame retardants, cellulose insulation,
nuclear, electroplating
Total
%
0.1
8.2
Tonnes
600
49,200
7.6
100
45,600
600,000
Other uses not specified in the above table are the use in biocides (as wood preservatives), in
adhesives, and as pH buffer in solutions.
3.2.2
Glass and glass products
Borates increase the mechanical strength of glass and its resistance to thermal shock, different
chemicals including acids and alkaline fluids, and water. In insulation and textile fibre glass,
borates help lower glass batch melting temperature and control the relationship between
temperature, viscosity and surface tension which is important when creating optimal glass
fiberisation. Information provided by the Glass Fibre Producers Association and presented in RPA
(2008) states that approximately 84,000 tonnes of borates are used by their members to
manufacture glass products, and they estimate that on an EU level the glass fibre production is
around one million tonnes/year. All are sold for industrial application (RPA, 2008).
The use of glass fibres within the EU is increasing 3-4%; however the trend is to apply purer forms
of borates and use other materials of lower costs (RPA, 2008).
3.2.3
Insulation
Glass wool and rock (stone) wool have together met just over half of the world’s demand for
insulation. 75% of the world’s insulation materials are used in North America and Europe.
According to The European Insulation Manufacturers Association there has been an increasing
demand for glass mineral wool, which is partly due to improved building standards and
environmental awareness (RPA, 2008).
TABLE 3.2: APPLICATION OF GLASS WOOL AND ROCK (STONE) WITHIN CONSTRUCTION (RPA, 2008)
% applied in residential
and commercial building
Glass wool
Rock (stone) and slag wool
88
80
% applied in industrial
application
12
20
In cellulose insulation, for cellulose fibre fire resistance, 12% boric acid is added. For mould and
fungus resistance, 6% borax decahydrate is added (RPA, 2008).
3.2.4
Soap and detergents
Different forms of borates are used to produce laundry detergents, household or industrial cleaners
as well as personal care products.
Boric acid and disodium tetraborate are used as enzyme stabilisers in liquid laundry detergents and
several cosmetics and oral hygiene products (RPA, 2008). Boric acid and borax are added to some
liquid fabric detergents up to 2% concentration to stabilise the protease and other enzymes in the
formulation. The annual consumption of boric acid and borax as enzyme stabilisers in detergents on
Survey of Boric acid and sodium borates (borax)
39
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
the European market was estimated to be 3,000 tonnes B
2
O
3
equivalent in 2004, equivalent to 932
tonnes of boron. This use represents approximately 1% of the total borate consumption in Europe.
The more significant use of borates in the European detergent market is for the manufacture of
sodium perborate. Modern laundry detergents contain around 15% sodium perborate or
increasingly sodium percarbonate (RPA, 2008). Sodium perborate is used as an oxidising and
bleaching agent in detergent products. Over the last years the content of sodium perborate in
detergents marketed in Western Europe has decrease due to the replacement with sodium
percarbonates. In 2007 CEFIC indicated that the manufacture of perborates was around 196,000
tonnes, which is used in soaps and detergents (RPA, 2008); of this 28% is sold within Europe, the
remaining 72% are exported.
Cosmetics
3.2.5
Borates also serve to control bacteria and fungi in personal care products (ECHA/transitional annex
XV report 2009a). Boric acid and disodium tetraborate decahydrate are according to the EU
cosmetic regulation (EC no 1223/2009) allowed for use in cosmetic products in Europe at various
concentration levels (0.1-18%) depending on the type of cosmetic.
3.2.6
Fertiliser minerals
Boron is a micronutrient essential to plant growth. Fertilisers which are applied to a diverse range
of crops, both commercially and by consumers, therefore contain boron. Boron fertilisers with a
typical content of 2-14% boron include boric acid, sodium borate, calcium borate and boron ethanol
amine (RPA, 2008).
Other food products
3.2.7
Natural levels of boron are found in food products. However, boron is also available as a dietary
supplement with claims for different health improvements (RPA, 2008).
3.2.8
Use in Adhesives, paper, veneer sheets and pressed panels
Dextrine/starch based adhesives are made from natural polymers derived from roots tubers and
seeds from higher plants. The wet tack of these polymers, however, is too low, and therefore borax
is added in the presence of sodium hydroxide in order to change the polymer to a more highly
branched polymer with a higher molecular weight which improved the wet tack. The precise
composition of adhesives varies, but borate is applied in concentrations up to 10% (RPA, 2008).
When used in paper and paperboard products as well as veneer sheets and pressed panels, borates
serve as multifunctional additives with adhesive, flame retardant and fungicidal properties.
In gypsum board panels between 0.03% and 0.15% by weight is applied (RPA, 2008).
3.2.9
Mattresses
When applied in mattresses borates are applied in the wadding for flame resistance but also for
smoulder resistance (RPA, 2008).
3.2.10
Paints and coatings
In paints and coatings borates are applied as coating additives with flame retardant, corrosion
inhibiting and buffering properties. It is estimated that the use of borates within this sector in EU is
around 3,000 tonnes/year (RPA, 2008).
3.2.11
Pharmaceutical preparations
Borates are used as antiseptics in medicaments and to combat rheumatoid arthritis and
osteoarthritis. It is also used as an eye wash (RPA, 2008).
40
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Basic metals
3.2.12
Different forms of boron are added to alloys such as ferrous, aluminium, lead, zinc, tin, copper,
nickel and uranium. These alloys are used in a range of products e.g. motor vehicles (RPA, 2008).
3.2.13
Nuclear reactors.
Boron is used to control and limit the neutron flux within nuclear reactors (RPA, 2008).
3.2.14
Electronics, optical products and lightning equipment
Borosilicate is used in TV, computer monitors and optical instruments (RPA, 2008).
Boric oxide is often applied in the production of optical glass (RPA, 2008).
Borosilicate glass is used for light in harsh environments such as automobile light and traffic lights.
(RPA, 2008).
Borates are also used to prevent surface oxidation during welding, brazing or soldering (RPA, 2008)
Registered uses according to ECHA’s
database of
REACH registered
substances
As mentioned in Section 2.3 under REACH, the following registrations within the following tonnage
bands have been made:
CAS
1303-86-2
1303-86-2
1330-43-4
10043-35-3
12008-41-2
Name
diboron trioxide
diboron trioxide
disodium tetraborate, anhydrous *
boric acid
disodium octaborate
Tonnage
1,000 - 10,000 tonnes per annum
100 - 1,000 tonnes per annum
100,000 - 1,000,000 tonnes per annum
100,000 - 1,000,000 tonnes per annum
1,000 - 10,000 tonnes per annum
3.2.15
*this registration also covers the hydrated forms of disodium tetraborate.
Data from the five REACH registrations of boric acid, diboron trioxide (2 registrations), disodium
tetraborate, and disodium octaborate indicate registration for the following products and uses
(given as a condensed list to avoid too much overlap between the indicated uses):
Adhesives, sealants
Antifreeze and de-icing products
Base metals and alloys
Biocidal products (e.g. disinfectants, pest control)
Borate PVA solutions
Borates in metallurgy
Catalysts
Cellulose insulation
Coatings and paints, thinners, paint removes
Cosmetics, personal care products
Fillers, putties, plasters, modelling clay
Fertilisers, micronutrients
Flame retardants
Formulation into cement
Formulation in refractory mixtures
Glass production (borosilicate and crystal glass)
Glass fibre production
Heat transfer fluids
Survey of Boric acid and sodium borates (borax)
41
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Hydraulic fluids
Ink and toners Metal surface treatment products, including galvanic and electroplating products
Intermediate
Intermediate use in the production of non-oxide ceramic powders Laboratory chemicals
Leather tanning, dye, finishing, impregnation and care products (e.g. as flame retardant).
Lubricants, greases, release products
Metal-surface treatment products
Metal working fluids
Non-metal-surface treatment products
Paper and board dye, finishing and impregnation products: including bleaches and other processing
aids
Pharmaceuticals
Photo-chemicals
Polymer preparations and compounds
Production of frits
Production of glass wool
Production of high alkali glass
Production of low alkali glass
Production of metal powders
Products such as pH-regulators, flocculants, precipitants, neutralisation agents)
Reagent chemicals
Swimming pool tablets production
Water treatment chemicals
Washing and cleaning products
Welding and soldering products
The long list of the various product applications and uses illustrates the wide and dispersive use of
boric acid/borates both in relation to industrial use as well as for consumer use.
3.2.16
Data from ECHA
ECHA has recently recommended the boron substances fr0m the candidate list to be included on
the authorisation list (September 2014).
For
boric acid
(CAS 10043-35-3; CAS 11113-50-1) ECHA estimated the total volume
within the
scope for the authorisation
to be in the range of 10,000 – 100,000 tonnes/year.
For
disodium tetraborate
(CAS 1330.43-4; CAS 12179-04-3; CAS 1303-96-4) ECHA estimated the
total volume
within the scope for the authorisation
to be > 10,000 tonnes/year.
For
diboron trioxide
(CAS1303-86-2) ECHA estimated the total volume
within the scope for the
authorisation
to be in the range of 100 – 1,000 tonnes/year.
For all of these substances some uses were considered to be outside the scope of authorisation, e.g.
uses as intermediates in the manufacture of other substances (including in the glass and
ceramic/frit sectors) and uses of mixtures below the specific concentration (SCL) limit for
classification, uses in cosmetic/medicinal/biocidal products, and uses in scientific research and
development.
For tetraboron
disodium heptaoxide
(CAS 12267-73-1) ECHA noted that the substance has not
been registered under REACH, i.e. at present no registered uses.
(ECHA 2014 a+b+c+d)
42
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0043.png
The Nordic countries
3.2.17
The Nordic SPIN database (Substances in Preparations in the Nordic Countries) is the result of a
common Nordic initiative to gather non-confidential data. The database summarised information
from the Nordic product registers on the common use of chemical substances in different types of
products and industrial areas.
Information on use volumes and information on the tonnage of substances in preparation in the
period 1999-2012 in the four Nordic countries has been retrieved from the SPIN database as of
August 2014. Table 3.3 sums up the trends in the use of all 10 substances. More specific data for
each individual substance is presented graphically in Figure 3.1 to Figure 3.3 and in Appendix 2
where relevant.
TABLE 3.3: USE AS REPORTED TO THE SPIN DATABASE. SUBSTANCES MARKED WITH * HAVE SPIN DATA
PRESENTED GPRAPHICALLY IN APPENDIX 2
Substance
CAS
Use
[Numbers for DK only]
Boric acid
10043-35-3
See also Figure 3.1 and Figure 3.2.
The total tonnage of boric acid in DK has increased
over the past 10 years.
In 2011 618 tons were reported to SPIN.
SPIN lists 16 categories of use.
“Cutting fluids”,
“Non-agricultural
pesticides and preservatives”
and “Surface treatment”
are the top-3 reported uses
in 2011, but all together theses uses only account for
a tonnage of 10 tons. Unfortunately SPIN does not
account for the use of the remaining 608 tonnes.*
The total number of products with boric acid is
slightly decreasing by 25% over the years to end at
150 products in 2011.
Boric acid, crude natural,
containing not more than 85 per
cent of H3BO3 calculated on the dry
weight
11113-50-1*
Up to 30 tonnes yearly were reported in 2005-2010,
but almost no tonnage is reported for 2011. The
numbers of products are decreasing over year.
Use reported from 2005-2010 is solely in the
category
“Non-agricultural
pesticides and
preservatives”.
Up to 10 tonnes per year over the last decade, but
only two tonnes reported in 2011. No uses are
reported after 2004. Until then
“Anti-freezing
agents”
and
“Photochemicals”
were the two only
reported uses.
Below 7 tonnes per year for the last ten years. Only
three tonnes were reported to SPIN in 2011. Almost
all tonnage was reported used as
“Anti-freezing
agents”.
Tonnage in has decreased gradually from almost
200 tons in 2000 to 27 tons in 2011.
Reported uses for the last five years in SPIN is given
in Figure 3.3.
There is no information on tonnage, number of
products or use for this substance.
There is no reported use for DK. Yearly tonnage is
close to zero.
There is no reported use for DK. No yearly tonnage
is reported.
Disodium tetraborate, anhydrous
1330-43-4*
Disodium tetraborate pentahydrate
12179-04-3
Disodium tetraborate decahydrate
1303-96-4*
Tetraboron disodium heptaoxide,
hydrate
Diboron trioxide, boric oxide
Orthoboric acid, sodium salt
12267-73-1
1303-86-2*
13840-56-7
Survey of Boric acid and sodium borates (borax)
43
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0044.png
Substance
CAS
Use
[Numbers for DK only]
Disodium octaborate
Disodium; boron; oxygen(2-);
tetrahydrate
12008-41-2
12280-03-4
There is no reported use for DK. Yearly tonnage is
close to zero.
There is no reported use for DK. Yearly tonnage is
close to zero.
*As indicated in Table 3.1, a large use volume (608 tonnes) of the Danish consumption of boric acid
could not be accounted for in the SPIN database. An updated recent search in the Danish product
registry (2014) indicates a total use volume 737 tonnes of which 125 was exported. About 47.5
tonnes was used for biocides (45 tonnes for export); 14 tonnes for cooling agents/ lubricants; 66
tonnes for process agents (exported). However, for a total annual volume of 578 tonnes the specific
use could not be accounted for as only the use as raw material was indicated.
Tonnages are varying a lot from country to country. In general the reported tonnage for Denmark is
lower than the other Nordic countries – presumably due to the size of the industries in the
respective countries.
Boric acid (10043-35-3) is used in several hundred tonnes/year in all four Nordic countries. In line
with Denmark (as mentioned in Table 3.3), the reported tonnages for specific uses in the other
Nordic countries do not nearly add up to the total reported tonnage in each country. In addition the
majority of the tonnage is unspecified as it is reported in the category
“Others”, “Cutting fluids”,
“Non-agricultural pesticides and preservatives”
are other main categories. It is not possible to
explain two very high single-year reportings for Norway and Finland (Table 3.1).
Sweden and Norway have reported highest tonnages for three of the disodium tetraborates – the
anhydrous, the pentahydrate and the decahydrate (See also Appendix 2).
FIGURE 3.1: : REPORTED TONNAGES AND NUMBER OF PRODUCTS PR. YEAR (SPIN, 2014)
44
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0045.png
FIGURE 3.2: REPORTED USES OF BORIC ACID IN DENMARK (SPIN, 2014).
As seen from Figure 3.2 the total
identified
uses of boric acid in Denmark in 2012 sums up to
around 18 tonnes (the orange bars) which is far below the total use of 610 tonnes. (Negative
volumes may be due to export).
FIGURE 3.3: REPORTED USES OF DISODIUM TETRABORATE DECAHYDRATE IN DENMARK (SPIN, 2014).
Survey of Boric acid and sodium borates (borax)
45
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
In a survey on the use of boric acid and borax in cellulose/paper wool insulation, at least 4 products
were found on the Danish market using a content of 3-14% of boric acid and borax in the paper
insolation material (Larsen, 2012). This use cannot be seen from the SPIN data.
3.3
Historical trends in use
When considering the tonnage of boric acid (CAS 10043-35-3) which is being used in Denmark,
there has been a marked increased during the last decade. In 2000 the tonnage reported was just
below 100 tonnes this value remained more or less unchanged until 2003 but increased markedly
hereafter. In 2012 the reported tonnage was therefore 610 tonnes. The last few years
cutting fluids
have been reported as the main product group for the use of boric acid. Earlier boric acid was also
included in
non-agricultural pesticides and preservatives
(SPIN, 2014)
Disodium tetraborate decahydrate (CAS: 1303-96-4) used to be applied in
antifreeze agents
to a
large extent. But since 2005 the use within this group decreased and in 2012 no tonnage was
registered for this product group.
Cleaning and washing agents
are now the main product group to
apply Disodium tetraborate decahydrate and to a lesser extent
non-agricultural pesticides and
preservatives
(SPIN, 2014).
3.4
Summary and conclusions
Boric acid (CAS 10043-35-3) and disodium tetraborate including its various hydrated forms (CAS
1330-43-4) are by far the most widely used boron substances covered in this report as each of these
substances are REACH-registered in the use tonnage band of 100,000 - 1,000,000 tonnes per year.
As indicated in Chapter 3 boric acid and borax are used in many industrial processes and for many
purposes. The majority of the use (>50%) is in the production of glass products (including glass
fibre and glass wool) and ceramics where borate is incorporated into and thus is a part of the glass/
ceramic material. Other uses are in cosmetics and biocides and in various chemical products such as
soap and detergents, fertilisers, paint, varnishes, adhesives, electroplating, as catalysts, antifreeze
products, lubricants and in cellulose (paper wool) insulation.
In Denmark, there has been a marked increased during the last decade. In 2000 the tonnage
reported was just below 100 tonnes; this value remained more or less unchanged until 2003 but
increased markedly hereafter. In 2012 the reported tonnage was therefore 610 tonnes. The specific
use of nearly 600 tonnes of this volume was not indicated otherwise than “raw material” in the
product registry and was thus not further accounted for. About 14 tonnes was used as
cooling/lubricating oil for metals. Earlier boric acid was also included in
non-agricultural
pesticides and preservatives,
disodium tetraborate decahydrate (CAS 1303-96-4) used to be applied
in
antifreeze agents
to a large extent. But since 2005 the use within this group decreased and in
2012 no tonnage was registered for this product group.
Cleaning and washing agents
are now the
main product group to apply disodium tetraborate decahydrate and to a lesser extent
non-
agricultural pesticides and preservatives.
Further uses for the substances are as food additives, food supplements, and in food packaging
material, as micronutrients e.g. in fertilisers, and in cosmetics.
46
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
4. Waste management
4.1
Waste from manufacture and use of borates
Waste generated during manufacturing or from industrial use has according to the EU waste
directive and the Danish statutory order on waste to be treated as hazardous waste, if the waste
contains substances in an amount that according to classification rules for chemical substances and
preparations would result in classification for either physico-chemical, toxicological or
environmental properties (Danish MoE, 2012; DIRECTIVE 2008/98/EC).
Waste is considered hazardous if it exhibits one or more of the characteristics listed in Table 1
(Annex 4) of the Danish statutory order on waste (Bek. 1309 of 18/12/2012), as indicated in Table 2
(Annex 4) of the order, where limits in relation to the old classification (SDS) system are given.
Below is indicated the concentration limit in waste for the classification as Repr. Cat 2; R60-61 that
has been applied for boric acid and sodium borates. The specific classification limit for these
substances is in the range of 3.1% to 8.5% as seen in Table 2.2; however, this is based on an overall
specific classification limit of 1% based on the boron content of the substances, thus waste should be
considered as hazardous according to:
Repr. Cat. 2; R60-61 C ≥ 1 % (as Boron content)
As discussed in Section 2.2.1, it may be an open question whether these specific classification limits
in the range of 3.1%-8.5% would still apply for boric acid and sodium borates in the future as
arguments have been put forward to use the generic classification limit for the substances (0.3% in
the new CLP system and 0.5% in the old classification system).
4.2
Waste treatment
In the comprehensive reviews on boric acid/borates and boron (ECHA/transitional Annex XV
report (2009a+b) and ATSDR 2010), no specific data have been found regarding boric acid/
borates. The ATDSR (2010) provides some data on boron trichloride and trifluoride in relation to
waste, but no other information regarding disposal of boron or other boron compounds was located.
Thus no specific concern regarding boric acid/borate in the waste stream has been flagged in these
reviews neither in relation to industrial or domestic waste. Thus the description here will as a
starting point look at the most important uses in relation to industry and the consumers.
According to Chapter 3 regarding uses of boric acid/borates the substance may enter the waste
stream according to the use of the substances in various products and articles .
Survey of Boric acid and sodium borates (borax)
47
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0048.png
TABLE 4.1: USES OF BORATES IDENTIFIED WITHIN THE EU (MODIFIED AFTER RPA, 2008)
Product application or industry sector
Glass, glass products and ceramics
Soap and detergents, cleaning and polishing preparations, perfumes
and toilet preparations
Fertilisers and nitrogen compounds
Chemical and fertiliser minerals
Paper and paper products (incl. corrugated paper)
Basic pharmaceutical products and preparations
Wood products (e.g. veneer sheets and wood based panels) except
furniture
Paints, varnishes, coatings, printing inks and mastics
Furniture (e.g. mattresses)
Other chemicals and chemical products:
Various chemical
processes incl. metallurgy, antifreeze, brake fluids, buffers, wallboards,
lubricants
Others:
Steel slag stabilisation, flame retardants, cellulose insulation,
nuclear, electroplating
Total
%
55.8
16.8
4.7
2.4
1.5
1.4
1.0
0.5
0.1
8.2
Tonnes
334,800
100,800
28,200
14,400
9,000
8,400
6,000
3,000
600
49,200
7.6
100
45,600
600,000
The overall use of boric acid and borax in the EU as indicated in the table may give a fairly good
impression of where to find boric acid and borate in the waste stream. This may also be reflected in
the waste stream in Denmark as the products above represent widely used and rather commonly
used products.
As indicated in the above section, all types of waste fractions containing boric acid/borax above
their specific classification limits (corresponding to a boron content of 1%) should be considered as
hazardous waste. Some specific considerations may be mentioned:
Glass
A large fraction of the substances used in products may be found in glass products, including glass
fibres.
Glass fibres may contain up to 5% boron (w/w) as diboron trioxide. Glass fibres for insulation
contain between 1.5% and 3.6% boron (w/w) (RPA 2008).
In boron containing glass, the boron content has gradually been reduced from 8-10% diboron
trioxide to around 5% (1.5% boron); however, the concentration is much higher in some specialised
applications.
Some of these special applications may be the use of borosilicate glass for:
· laboratory equipment, including pharmaceutical equipment;
· pharmaceutical packaging material;
· glass fibre insulation material;
· light bulbs (and other electrical lighting);
· textile glass fibre composites (fibre glass);
· enamel frit and other enamelling products;
· glass for liquid crystal display screens (LCDs);
· radiation shielding for the nuclear industry and hospital x-ray equipment;
· solar panels;
48
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
· ophthalmic lenses, especially for high prescription eyesight correction; and
· heat resistant glass panels (e.g. in cookers).
RPA (2008)
It could be argued that formalistically glass with higher amount of borate comparable to a boron
content of 1% should be considered as hazardous waste. However, it should be recognised that
borate is bound into the glass matrix and as such does not have a potential for release. Thus,
infrared spectroscopy of various types of boron containing glass has disclosed various boron
structures incorporated in the glass matrix. This may be units of: symmetric (BO
3
)
3
− triangles, BO
4−
tetrahedral units, and asymmetric (BO
3
)
3−
units. The pure diboron trioxide glasses consist of BO
3
and BO
4
groups attached together by B-O-B bands where the structure consists of a random
network of planar BO
3
triangles with a certain fraction of sixmembered (boroxol) rings. In other
mixed types of glass the B-O-B band structures may be replaced by B-O-Metal oxide bands (Gautam
et al. 2012). This complexity adds to the view that the inherent properties of borate as bound into a
glass matrix may be considered as quite different from the inherent properties of the boric acid/
borate used as raw materials which may support the view that classification of glass waste as
hazardous waste based on the content of boron would not make any sense.
Soap and detergents
Soap and detergents are in connection to the intended use mainly released into waste water, but a
part of the products may also end up in the waste stream as chemical waste and domestic waste.
However, these types of products cannot be sold to the public if they contain boric acid/borax in a
concentration that requires classification based on the boron content. However, these products are
often classified for irritation which would imply that waste from these products should be
considered as hazardous.
Cosmetics
Also cosmetics may end up particularly in domestic use. However, waste from cosmetics would
generally not be considered as hazardous. An exception may be some types of bath and hair
products which are allowed to contain boric acid/borax in a content exceeding the specific
classification limit of the substances.
Cellulose insulation
Waste from insulation material - especially cellulose insulation - may cause concern during
handling in the waste stream if not handled properly (by either professionals or consumers) as the
insulation material may contain concentrated boric acid/borax powder loosely attached to the
surface of the insulation material. Especially older types of cellulose insulation may contain high
amounts of boric acid/borax (up to 25%), and thus this type of waste containing higher
concentration than 1% of boron should be considered and treated as hazardous waste. Cellulose
insulation on the market today cannot be sold to the public if the content of boron is higher than
1%. Thus this type of waste would not be considered as hazardous waste although the waste still
would represent a high potential for exposure to concentrated boric acid/borax dust when handled.
However, specific data regarding the potential for boric acid/borax exposure in relation to handling
waste containing cellulose insulation is not available.
Articles
In relation to waste from various articles such as boron impregnated wood, furniture/mattresses,
and paper/cardboard products, it may typically not be known how large a fraction of these types of
waste streams that in fact contains boric acid/borate, as it is not known whether these substances
have been used in the process of manufacturing.
Survey of Boric acid and sodium borates (borax)
49
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
4.3
Recycling
With respect to possible recycling, handling of the waste and waste treatment it is important to
consult the local authorities in the municipality in order to follow their local instructions.
Especially for glass products nearly 100% of recycling can be anticipated in Denmark (Danish EPA
2014).
For cellulose insulation waste the use as compost material on green areas has been described on the
website by cellulose insulation manufacturers in Denmark. However, according to §10 of the
statutory on the use of waste for agricultural purposes (Danish MoE, 2006) and the guidance
associated to this (Danish EPA, 2010), such use has to be applied for and an approval has to be
given by the local authorities.
If recycling cellulose insulation, consideration should be given to the relatively concentrated surface
layer of boric acid/borax dust that impregnates the cellulose material and therefore poses a
potential for release and exposure.
It should be noted that the major part of (if not all) coal fly ash in Denmark is used in the
production of cement (Hjelmar, 2014). This means that most of the boron in the Danish coal fly ash
will be carried over into cement and concrete.
4.4
Incineration and energy production
Ashes from waste incineration and coal energy production contain boron (probably mostly as
borates).
The boron content in incinerator bottom ash (IBA) has been measured in several European
countries (Belgium, Denmark, France, Ireland, Italy, The Netherlands, Sweden and UK). From a
total of 191 measurements, a median value of 183 mg B/kg ash (average = 198 mg B/kg ash) and a
95-percentile value of 401 mg B/kg ash were found (Hjelmar
et al.
2013). If it is assumed that the
average for European IBA is also representative of Danish conditions, then approximately 0.64
million tonnes of IBA produced annually in Denmark (Hjelmar et al., 2012) correspond to a total of
127 tonnes of boron/year. If the IBA is utilised as aggregates or landfilled, some of this boron may
eventually be released as part of the leachate produced. Since boron is not a commonly regulated
substance in relation to utilisation or landfilling, very little information is available on the leaching
of boron/borate from IBA. Data from 1986 indicate that the leaching of B from IBA may be in the
order of 2 mg B/kg ash at L/S (liquid to soil ratio) = 2 l/kg and 4 mg B/kg of ash at L/S = 5 l/kg
(measured on a mixture of 85% (w/w) IBA and 15% (w/w) fly ash from Vestforbrænding from 1985,
VKI (1986). Whether or not this may constitute an environmental problem depends on the specific
situation, but since there are quality criteria for the content of boron both in groundwater and
surface water, this cannot be totally excluded.
From the database of the
Electric Power Research Institute
(EPRI), data on the boron content in
coal fly ash indicate a 10 percentile content of 120 mg B/kg and a 90-percentile content of 1000 mg
B/kg ash. Other data indicate a median value of 37 mg B/kg ash.
As a very rough estimate the Danish consumption of 5.3 million tonnes of coal per year would result
in 335.000 tons coal fly ash. The total content of boron in this amount would then, with the above
90-percentil level of 1000 mg B/kg, contain 355 tonnes of boron. However, if more realistic the
average content is considered to be about one order of a magnitude lower.
Leaching experiments from coal fly ash in Denmark have shown leaching of 4 to 17 mg B/kg ash at
L/S = 2 l/kg and 9.2 mg B/kg ash and higher at L/S = 10 l/kg (VKI, 1986).
It should be noted that the major part of (if not all) of the coal fly ash in Denmark is used in the
production of cement (Hjelmar, 2014). This means that most of the boron in the Danish coal fly ash
50
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
will be carried over into cement and concrete, and as such it may eventually end up in construction
and demolition waste (crushed concrete), from which part of it could potentially be released to the
environment by leaching when the crushed concrete is used, e.g. in road construction. However, no
data are available on the leaching of boron/borate from crushed concrete.
4.5
Summary and conclusions
No specific concern has been addressed in relation to boric acid/borates in the waste stream.
Waste containing more than 1% of boron in the form of boric acid/borates should due to the
classification as Repr. 1B be treated as hazardous waste.
A large fraction of borate may end up in the waste stream from glass and ceramics; however, due to
transformation and tight binding of borate into the glass matrix the release potential of borate from
glass/ceramics is considered very low during handling of waste. Furthermore, glass in the waste
stream is to a very high extent recycled.
Cellulose (paper wool) insulation in the waste stream may contain a relatively high content of
loosely bound boric acid/borax powder which is highly accessible and thus constitutes a potential
for environmental and human exposure. For qualities containing more than 1% of boron (typically
qualities sold some years ago) the cellulose insulation should be considered as hazardous waste.
Data are lacking on how cellulose insulation today is handled in the waste stream.
A substantial amount of boron (but much less than 1 %) is found in bottom ash from waste
incineration and coal fly ash from energy production. Some of the boron may leach to the
environment from the ashes or products containing the ashes, depending on how they are managed.
The leaching of boron has not been subject to regulation in relation to utilisation or landfilling,
although quality criteria for boron exist for both groundwater and surface water.
A major part of (if not all) coal fly ash in Denmark is used in the production of cement. This means
that most of the boron in the Danish coal fly ash eventually will end up into cement and concrete.
Survey of Boric acid and sodium borates (borax)
51
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0052.png
5. Environmental effects and
exposure
5.1
Environmental hazard
Borates are naturally present and widely distributed in the environment and boron is an important -
if not essential - micronutrient to many species (plants, algae, fish etc.). The concentration-response
curve for boron is therefore likely to be U-shaped for many species, with adverse effects observed at
very high and very low concentrations, while no adverse effects are observed at the intermediate
concentrations (HERA, 2005).
5.1.1
Toxicity to aquatic organisms
Several studies on the toxicity of boron towards aquatic organisms are available. The table below
(Table 5.1) summarises the results from aquatic toxicity studies, which showed the highest toxicity
and which were reported in the HERA report (2005) and the ECHA/transitional Annex XV Reports
(2009a+b). In the Transitional Annex XV Reports an added risk approach is applied.
TABLE 5.1: AQUATIC TOXICITY OF BORON. VALUE IN BOLD IS APPLIED FOR THE CALCULATION OF THE
PREDICTED NO EFFECT CONCENTRATION (HERA, 2005; ECHA, TRANSITIONAL ANNEX XV REPORT,
2009A+B)
Organism
Duration
[hours]
48
21d
48
Endpoint
Result
[mg-B/L]
133-229
6.4-10
95-133
Reference
Daphnia magna
Daphnia magna
Daphnia magna
LC50
NOEC
LC50
HERA, 2005
HERA, 2005
Transitional Annex
XV Report, 2009
Transitional Annex
XV Report, 2009
HERA, 2005
Daphnia magna
Fish
21d
96
NOEC
LC50
NOEC
LOEC
NOEC
NOEC
NOEC
10-32
14.2-725
5.6
18
1.8
10-93
17.5
Fish (Brachydanio
rerio)
34d
HERA, 2005
Fish (Brachydanio
rerio)
Alge
Chlorella pyrenoidosa
Alge
Selenastrum capricornutum
34 d
96
72
Transitional Annex
XV Report, 2009
HERA, 2005
Transitional Annex
XV Report, 2009
52
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0053.png
Organism
Duration
[hours]
96
23d
Chronic
Endpoint
Result
[mg-B/L]
34
49.5
3.45
Reference
Alge
Scenedesmus subspicatus
Rana sylvatica
(frog)
SSD*
EC50
NOEC
HC5**
Transitional Annex
XV Report, 2009
HERA, 2005
HERA, 2005
*SSD: species sensitivity distribution
**HC5: Hazardous Concentration 5% (concentration which is protective of 95 % of the organisms)
Toxicity to sediment living organisms
A 28 day study with the sediment dwelling organism
Chironomus riparius
resulting in a NOEC =
180 mg B/ kg dw is available (ECHA, Transitional Annex XV Report (2009).
Predicted No Effect Concentration (PNEC)
Aquatic organisms
Based on the chronic 5
th
percentile concentration for aquatic species the calculated PNEC
aquatic
is
3.45 mg-B/L for the aquatic compartment (HERA, 2005).
Applying the NOEC
freshwater
of 1.8 mg/L for
Brachydanio rerio
and an assessment factor of 10 a
PNEC
,add.,freshwater
of 0.18 mg/L is derived in the ECHA, Transitional Annex XV Report (2009). This
value is in accordance with the PNEC
freshwater
derived in the Assessment Report on disodium
tetraborate made for Product type 8 (wood preservatives) (Assessment Report, 2009)
The high natural boron background of approximately 5 mg B/L in the open sea indicates that
marine species are likely to be less sensitive to boron toxicity than estuarine or freshwater
organisms. In the Transitional report it is therefore assumed that the PNEC
freshwater
also protects the
marine environment (open sea). In contrast to the open sea is not anticipated that the PNEC
,freshwater
will also protect estuarine species (ECHA, Transitional Annex XV Report, 2009).
Predicted No Effect Concentration (PNEC)
sediment organisms
A calculated PNEC
sediment
of 3.29 mg B/kg ww is reported for sediment in the HERA report (2005).
In the ECHA, Transitional Annex XV Report (2009) a PNEC
sediment
= 1.8 mg B/kg d.w. is calculated.
In the Assessment Report on disodium tetraborate a PNEC
sediment
of 0.24 mg B/kg ww is reported
(Assessment Report, 2009).
Toxicity to microorganisms
5.1.2
Table 5.2 below summarises the result on the toxicity towards microorganisms.
TABLE 5.2: AQUATIC TOXICITY OF BORON TOWARDS MICROORGANISMS (HERA, 2005)
Study
Duration
[hours]
Endpoint
Result [mg-
B/L]
Reference
Activated Sludge, domestic
sewage treatment plant
(OECD 209)
Activated Sludge, domestic
sewage treatment plant
(OECD 209)
Photobacterium phosphorum
3
EC20
112
HERA, 2005;
3
NOEC
17.5
Transitional Annex
XV Report, 2009
Transitional Annex
XV Report, 2009
NA
EC20
18
Survey of Boric acid and sodium borates (borax)
53
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0054.png
Predicted No Effect Concentration (PNEC)
microorganisms
In the HERA document a PNEC
STP
= 112 mg B /L is reported; the calculations are however not
stated in the report (HERA, 2005).
In the Transitional Report a NOEC of 17.5 mg B/L was divided by an assessment factor of 10 to
derive a PNEC
add, STP
of 1.75 mg B/L (ECHA, Transitional Annex XV Report, 2009). This value is in
accordance with the PNEC
STP
derived in the Assessment Report on disodium tetraborate
(Assessment Report, 2009).
5.1.3
Toxicity to terrestrial organisms
Several studies on the toxicity of boron towards terrestrial organisms are available. Table 5.3 below
summarises the results from these studies.
TABLE 5.3: TERRESTRIAL TOXICITY OF BORON. VALUE IN BOLD IS APPLIED FOR THE CALCULATION OF
THE PREDICTED NO EFFECT CONCENTRATION (HERA, 2005, ECHA, ANNEX XV TRANSITIONAL REPORT
2009)
Organism
Duration
[hours]
14d
Endpoint
Result
Reference
Eisenia fetida
(earthworm)
LC50/NOEC
LC50
>175 mg-B/kg dry soil
501 mg-B/kg dry ref
soil; 301 mg-B/kg dry
artificial soil
HERA, 2005
Lumbricus terrestris
(earthworm)
14d
NOEC
875 (est.) mg-B/kg dry
ref soil; 350 (est.) mg-
B/kg dry artificial soil
248 mg-B/kg dry
reference soil
22 mg-B/kg dry
reference soil; 44 mg-
B/kg dry artificial soil
HERA, 2005
Folsomia candida
(collembollan)
14d
LC50
HERA, 2005
HERA, 2005;
Transitional
Annex XV
Report, 2009
Transitional
Annex XV
Report, 2009
HERA, 2005;
Onychiurus folsomi
35d
NOEC
Folsomia candida
(springtail)
EC10
28
Geometric
mean EC10
13.8
15.4
Eisenia andrei
56d
NOEC
5.2 mg-B/kg dry
artificial soil
Transitional
Annex XV
Report, 2009
HERA, 2005
Phaseolus vulgaris
(field beans)
NA
NOEC
1.6 mg-B/kg
Predicted No Effect Concentration (PNEC)
terrestrial organisms
A PNEC
terrestrial
of 0.16 mg-B/kg is reported for the terrestrial compartment in the HERA report for
borate (HERA, 2005). Similarly a PNEC
add
.,
terrestrial
= 1.54 mg B/kg soil is derived in the Transitional
Annex XV reports (2009) which is based on the geometric mean of the most sensitive endpoint of
54
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
the most sensitive species (juvenile production,
Folsomia candida).
The assessment report on
disodium tetraborate reports a higher value of 0.4 mg B/kg dw. and 0.35 mg B/kg ww . (Assessment
Report, 2009).
5.2
Environmental fate
5.2.1
Bioaccumulation
Boric acid has a low measured P
ow
value (Log P
ow
= -1.09). However for inorganic chemicals,
estimates of bioaccumulation potential are not reliably predicted by octanol/water partitioning
data. The available data (i.e. reported BCF values of 0.7 to 1.4 L/kg for Pacific oysters (Crassostrea
gigas);
reported BCF < 0.1 in Chinook salmon fed boron-supplemented diets for 60 to 90 days)
indicate that borates are not significantly bioaccumulated (ECHA, Transitional Annex XV Report,
2009).
5.2.2
Environmental degradation
Boron is a naturally occurring element and is not biodegradable. However, boron and inorganic
boron-salts undergo chemical transformations.
Water
In the aquatic environment borates will form un-dissociated boric acid (H
3
BO
3
) and the borate
anion. Their solubility defines that borates will be diluted and dispersed throughout the aquatic
environment ultimately reaching the sea (HERA, 2005).
Hydrolysis
Hydrolysis is not a relevant degradation pathway since boron is inorganic and does not have
chemical bonds which can undergo hydrolysis (ECHA, Transitional Annex XV Report, 2009).
Photochemical degradation
Boric acid is considered to be resistant to photochemical degradation (ECHA, Transitional Annex
XV Report, 2009).
Sediment
There is some evidence that water-soluble borates have a slight tendency for adsorption to sediment
particles, depending e.g. on pH, organic matter content and the number of active adsorption sites
(HERA, 2005).
Soil
There is some evidence that water-soluble borates have a slight tendency for adsorption to soil
depending e.g. on pH, organic matter content and the number of active adsorption sites (HERA,
2005).
Air
The vapour pressure for boric acid is very low; therefore volatilisation is expected to be minimal
(HERA, 2005). The exception is over the oceans, where evaporation of aerosols leads to small but
measured quantities of boric acid vapours in the marine atmosphere (ECHA, Transitional Annex
XV Report, 2009).
5.2.3
PBT
The general criteria for performing a PBT assessment are described in the ECHA Guideline R.11
(ECHA, 2012). Based on these criteria it can be concluded that:
Survey of Boric acid and sodium borates (borax)
55
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0056.png
Boron is an inorganic element and does not biodegrade.
Measured BCF factors (BCF << 2,000) indicate no potential for bioaccumulation (B).
Boric acid/borates are classified as Repr. 1B, H360Df (May damage fertility. My damage the unborn
child) and therefore the substances fulfil the criteria for toxicity (T).
Boric acid/borates therefore do not fulfil the criteria for PBT or vPvB.
(ECHA, Annex XV Transitional Report, 2009; Assessment Report, 2009).
5.3
Environmental exposure
5.3.1
Sources of release
Boron is present in the environment from both natural and anthropogenic sources. Anthropogenic
sources include boron due to use of boric acid in detergents and boron from use of perborates in
cleaning and laundry products, all products which are disposed of to the sewage system after use
(HERA, 2005).
5.3.2
Monitoring data
There are some areas in Europe where boron levels are high due to local geological conditions.
Furthermore, rainwater carrying boron from adjacent oceans may contribute boron to surface
waters. An analysis of the concentration of boron in European rivers is summarised in
Fejl!
Henvisningskilde ikke fundet.
below. The data was collected at river sites specifically intended
to monitor the effects of inputs from sewage works and other anthropogenic discharges
.
In this
study the average 95
th
percentile for every monitoring point is reported as “Mean 95 percentile”.
The mean concentrations reported are in the range 3.3-367 µg B/L; however the range of
measurements are from below detection limit (nd.) to 7,490 µg B/L (HERA, 2005; ECHA, Annex
XV Transitional Report, 2009).
Monitoring data (1996-1998) from 4 UK-rivers report boron concentrations in the range of 20-530
µg B/L (mean 90
th
percentile: 283-442 µg B/L). Background concentrations were reported as
negligible; however in one river an excess of 100 μg B/L was reported (HERA, 2005; ECHA, Annex
XV Transitional Report, 2009).
Furthermore, monitoring data from the Foregs Geochemical Baseline Programme are presented
graphically in Figure 5.1 (ECHA, Annex XV Transitional Report, 2009).
TABLE 5.4: MONITORINGDATA DATA ON BORON CONCENTRATIONS (µG B/L) IN EUROPEAN RIVERS
(HERA, 2005; ECHA, ANNEX XV TRANSITIONAL REPORT, 2009)
Country
Monitoring
points
Time
period
Total No.
Values
Arithmetic
Mean
[µg B /L]
Range
[µg B/L]
Mean site 95%
percentile
[µg B/L]
Austria
Belgium
Denmark
Finland
30
651
0
463
1998-2000
1998-2000
-
1995
712
5,056
-
463
44
239
-
3.3
nd-690
25-2,029
-
<1-46
80
410
-
44
56
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0057.png
Country
Monitoring
points
Time
period
Total No.
Values
Arithmetic
Mean
[µg B /L]
Range
[µg B/L]
Mean site 95%
percentile
[µg B/L]
(lakes only)
France
Germany
Greece
Luxembourg
Ireland
Italy
Netherlands
Portugal
Spain
Sweden
UK-England
UK-Northern
Ireland
UK-Scotland
UK-Wales
25
197
28
0
185
64
9
8
328
0
98
0
10
39
1995-2000
1980-95
1997-99
-
1999-2000
1998-1999
1986-1999
1999-2000
1991-2000
-
1974-2000
-
1976-1997
1975-1999
1,304
197
Not known
-
185
926
1,842
129
4,272
-
22,329
-
3,437
4,965
146
171
144
-
26
114
111
367
137
-
65
-
9.7
13.0
nd-2,670
nd-1,300
4-2,330
-
nd-1,630
nd-894
38-878
30-3,860
nd-7,490
-
nd-1,121
-
nd-230
nd-292
261
632
-
-
101
84
218
534
288
-
95
-
17
22
The majority of the available monitoring data for the aquatic compartment are above the
PNEC
,add.,freshwater
of 0.18 mg/L which was derived in the RCHA, Transitional Annex XV Report
(2009). The fact that the concentrations in the water environment most often exceed the derived
PNEC value reflect that boron is a natural occurring element with a relatively high natural
background concentration compared to the PNEC, which is also the justification for using an added
approach in assessment of risks in the aquatic compartment. The available monitoring data often
represent sites influenced by anthropogenic discharges. Thus the data reflect local sources as well as
the natural background levels caused by the geological conditions.
Survey of Boric acid and sodium borates (borax)
57
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0058.png
FIGURE 5.1: MONITORING DATA. BASELINE B-LEVELS (DISSOLVED) IN EUROPEAN SURFACE WATERS
(FIGURE TAKEN FROM FOREGS GEOCHEMICAL BASELINE PROGRAMME) (ECHA, ANNEX XV
TRANSITIONAL REPORT, 2009).
Sediment
No monitoring data are available.
In the HERA report an estimated PEC-sediment of 0.0080 mg-B/kg for the Regional PEC, 0.0033
mg-B/kg for the Continental PEC and 0.96 mg-B/kg for the Local area was calculated applying
EUSES (HERA, 2005).
Air
The major source of boron in the atmosphere is from marine evaporation. Most of this is re-
deposited into the oceans or as precipitation in coastal areas. The estimated value is presented in
Table 5.5 together with the estimates for volcanic emissions and emissions from industry (HERA,
2005).
TABLE 5.5: ESTIMATED RELEASES OF BORON TO THE ATMOSPHERE (KG-B/YEAR) (HERA, 2005)
Source
Marine evaporation
Volcanic emission
Industry
Amount [kg-B/year]
1.3 to 4.5 * 10
9
3 *10
8
1 *10
7
Measurement of atmospheric boron levels from the analysis of rain water has shown levels of 0.002
to 0.0045 mg-B/L reported for France and 0.1 mg-B/L reported for Japan (HERA, 2005).
58
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Effluent
Boron compounds are released to water in municipal sewage from perborates in detergents and in
waste waters, from coal-burning power plants, copper smelters, and industries using boron. Borate
levels above background may be present in runoff waters from areas where boron-containing
fertilisers or herbicides were used (ATSDR, 2010). Most boron is not removed by conventional
sewage treatment, and treated effluent will be discharged into surface waters or possibly as
irrigation water. However, a fraction of the boron which is contained in sewage water will adsorb to
and be removed with sewage sludge. Results of boron concentrations in sewage sludge from a study
of 48 sewage treatment plants in Sweden showed a mean concentration of 61 kg-B/kg dw sludge
and concentrations ranging from 2-391 mg/kg dw sludge.
In Europe reported levels of boron in sewage water are within the range 0.22-2.86 mg B/L (HERA,
2005). In Denmark (2011) an average concentration of 300 µg B/L was reported in the outlet from
sewage treatment plants. The maximum concentration reported was 1,700 µg B/L (DCE, 2012). The
PEC
STP
estimated derived using EUSES and arising from use of boric acid in liquid detergents is
0.044 mg-B/L (HERA, 2005).
An average boron concentration of 1 mg/L was reported in sewage effluents in California.
Furthermore, the boron concentrations in municipal sewage in a treatment plant in England was
reported within the range 2.5 to 6.5 mg/L, releasing between 130 and 240 kg boron/day.
Concentrations reported for a Dutch sewage treatment plant in 1994 were 0.41–1.2, 0.39–0.96, and
0.44–1.0 mg/L in raw sewage, settled sewage, and effluent, respectively. These data demonstrate
that boron passes through the sewage treatment process virtually unchanged. Since boron cannot
be degraded and is not substantially absorbed during processing, there is almost no removal during
the sewage treatment process (ATSDR, 2010).
Soil
There is a natural level of boron in the soil derived from boron-bearing rocks as well as from
decomposition of soil organic matter. The world-wide range is reported as 45 to 124 mg-B/kg soil.
Boron may also be introduced into soils by the use of irrigation water containing sewage effluent
with its associated boron. The extent to which sewage effluent is used for irrigation of agricultural
crops within Europe has not been determined. However, it is anticipated that higher use will be in
Southern European countries rather than in Northern Europe. Boron is mobile with water in soils,
and in wetter areas boron is therefore unlikely to accumulate in soils, but will move with surface
and groundwater flows. Accumulation is likely in dry soils where water evaporates leaving the boron
to accumulate. The EUSES estimate of PEC-
soil porewater
associated with liquid detergent products was
0.016 mg-B/L (HERA, 2005).
Storage of treated wood after industrial treatment, in-service life and in-situ treatment of wood will
result in a release of boron to soil (Assessment Report, 2009).
Ground water
MEASURED VALUES OF BORON IN GROUNDWATER ARE PRESENTED IN THE
Survey of Boric acid and sodium borates (borax)
59
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Table 5.6 below. The ambient concentrations of boron in groundwater are highly variable and
significantly influenced by geological sources (ECHA, Annex XV Transitional Report, 2009).
60
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0061.png
TABLE 5.6: REPORTED MEASURED CONCENTRATIONS (MG/L) OF BORON IN GROUND WATER (ECHA,
ANNEX XV TRANSITIONAL REPORT, 2009)
Country
Number of
locations
Numbers of
data points
11,499
Concentration
Max
concentrat
ion
1.3 mg B/L
(urban area)
>10 mg B/L
(east Italy)
France
1,589
Generally <0.5 mg B/L
Italy
2,632
3,158
Low* (northern Italy)
Cyprus
734
1,016
1-9 B mg/L (Igneous rocks containing
glassy lavas)
2-8 mg B/L (Sedimentary rocks (chalks,
chalky marls and gypsum))
*not further elaborated in the report
In Denmark the quality criteria for boron in groundwater is 300 µg/L and the quality criteria for
drinking water is 1,000 µg/L (indicative drinking water criteria is 300 µg/L).
In 2012, the drinking water criterion for boron (1000 µg/L) was exceeded in 3 wells out of 1,572, in
eastern Zealand (Glostrup) and on Bornholm. All three intakes have also had a high level of boron
in the analyses back in 2005. The indicative drinking water criterion of 300 µg/L was exceeded in
78 wells in 2012 (GEUS, 2013).
5.3.3
Calculated Predicted Environmental Concentrations (PEC)
PEC from use of boron in detergents
Predicted Environmental Concentrations (PECs) were calculated applying the EUSES model and
reported in the HERA report (2005). Estimates were based on the use of boron in detergents and
are shown in Table 1 of Appendix 3. For detailed information on the calculations, please consult the
HERA report.
In the ECHA, Annex XV Transitional Report (2009) the local environmental exposure
concentrations (STP, water and sediment) are calculated as generic “reasonable worst-case”
exposure assessment based on modelling, to derive an EU environmental concentration (Table 2,
Appendix 3). Furthermore, measured data, i.e. site-specific or monitoring information, are used to
revise the calculated concentrations (Table 3, Appendix 3) according to the EU Technical Guidance
Documents EUSES.
High PEC-values were estimated for the water compartment. Especially high were the values
calculated for “Industry sector: Borosilicate, IFG/TFG and Ceramics” and “Life cycle stage:
industrial use” (generic
approach:
PEC
add. water
= 4,561 µg/L; 4,834 µg/L and 5,907 µg/L
respectively and
site specific approach:
PEC
add. water
= 16,262 µg/L; 5,834 µg/L and 9,800 µg/L
respectively). The lowest value was found for Industry sector: cleaners and life cycle stage:
formulation (PEC
add. water
= 124 µg/L).
The values calculated for the STP and sediment compartment were generally in the same range. The
highest PEC values were found for the same industry sector and life cycle stages which were
identified for the water compartment:
STP:
Generic approach:
PEC
STP
= 45 µg/L; 48 µg/L and 58 µg/L, and
site specific approach:
PEC
STP
=162 µg/L; 57 µg/L and 97 µg/L for borosilicate, IFG/TFG and Ceramics respectively.
Survey of Boric acid and sodium borates (borax)
61
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Sediment:
Generic approach:
PEC
sediment
= 33 µg/L; 35 µg/L and 43 µg/L, and
site specific approach:
PEC
STP
=115 µg/L 42 µg/L and 70 µg/L for borosilicate, IFG/TFG and Ceramics respectively.
5.4
Environmental impact
The risk is expressed by the calculation of a risk characterisation ratio (RCR):
RCR = PEC/PNEC,
Where a RCR below 1 indicates no risk to the compartment and a RCR above 1 indicates that risk is
to be expected.
Based on the EUSES estimates for the predicted environmental concentration and the PNEC values
derived in the HERA report a RCR has been calculated for the use of liquid detergents (Table 4,
Appendix 2). As indicated below all the calculated RCR values are below 1 indicating no risk due to
the use of boron in liquid detergents.
Furthermore, in the ECHA, Annex XV Transitional Report (2009) the RCR has been calculated for
the use of boron within different industry sectors and for different life cycle stages (Tables 5 and 6,
Appendix 3).
These calculations show a high concentration in the water compartment compared to sediment and
STP. Also as expected, the industry sectors resulting in the highest PEC values (borosilicate,
IFG/TFG and ceramics) also result in the highest risks (RCR).
In the report an added approach is applied for the risk assessment. In essence this approach
assumes that species are fully adapted to the natural background concentration, and therefore that
only the anthropogenic added (add.) fraction should be regulated or controlled. In contrast the total
risk assessment assumes that “exposure” and “effects” should be compared based on the combined
exposure from the natural background in addition to the added anthropogenic concentrations. The
Predicted No Effect Concentration (PNEC) and Predicted Environmental Concentration (PEC) is
therefore reported as PNEC
add
and PEC
add
.
As preliminary conclusions it is indicated that for sewage treatment plants (STP), surface water and
sediment, nearly all RCR ratios are above 1, indicating a risk. This risk also includes the use of
boron in detergents and cleaners (ECHA, Annex XV Transitional Report, 2009).
The report concludes that this preliminary assessment has to be refined by industry in the REACH
registrations reports.
62
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
5.5
Summary and conclusions
Several studies on the toxicity of boron towards aquatic and terrestrial organisms are available.
Data do not indicate a high toxicity.
Boric acid is an inorganic compound and not degradable, i.e. not subject to hydrolysis,
photodegradation or biodegradation. Boron and its inorganic compounds are subject to chemical
transformation processes (adsorption, complexation, precipitation, and fixation) once released to
the environment.
The criteria for persistency cannot be assessed with the traditional endpoints as they are not
relevant for inorganic substances. Boron should be considered as fulfilling the criteria for Toxicity
(Boron is classified as Repr. 1B), but not for Bioaccumulation. Therefore boron is not a PBT or a
vPvB substance.
Ambient concentrations of boron are highly variable and significantly influenced by geological
sources. Furthermore, concentrations are reported higher for urban areas influenced by
anthropogenic sources.
According to the HERA (2005) report no risk can be identified towards environmental
compartments from the use of liquid detergents. However, in the Annex XV Transitional Report
risk was indicated in scenarios with sewage treatment plants (STP), and in water and sediment in
individual local scenarios with industrial uses of boron, including detergents and cleaners. This
assessment reflects generic “reasonable worst-cases” and need be refined, e.g. in the REACH
registration report based more detailed data.
Survey of Boric acid and sodium borates (borax)
63
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
6. Human health hazard
Below in Section 6.1, the hazardous properties of borates are described. The description is mainly
based on the following reports:
ECHA/transitional annex XV report (2009a). Boric acid (Boric acid crude natural) CAS No:
11113-50-1 (10043-35-3) EINECS No: 234-343-4 (233-139-2) ANNEX XV TRANSITIONAL
REPORT
ECHA/transitional annex XV report (2009b). Disodium tetraborate anhydrous CAS No: 1330-43-
4 EINECS No: 215-540-4 ANNEX XV TRANSITIONAL REPORT.
ECHA/RAC opinion (2010b). Annex 1 to the opinion on new scientific evidence on the use of boric
acid and borates in photographic applications by consumers. Background Document.
EFSA (2013). Opinion of the Scientific Panel on the re-evaluation of boric acid (E 284) and sodium
tetraborate (borax) (E 285) as food additive. The EFSA Journal (2013) 11(10): 3407, 1-52
EFSA (2004). Opinion of the Scientific Panel on Dietic Products, Nutrition and Allergies on a
request from the Commission related to the tolerable upper intake level of Boron (Sodium Boprate
and Boric acid). The EFSA Journal (2004) 80, 1-22
SCCS (2010a). Opinion on boron compounds. Scientific Committee on Consumer Safety. 22 June,
2012. SCCS /1249/09. 1-28.
Directive 98/8/EC (2009). Concerning the placing biocidal products on the market. Assessment
report, Disodium tetraborate, Product-type 8 (Wood preservative). 20 February, 2009. Annex I
the Netherlands.
The information reported in this section is also based on the information registered under REACH
(Reach Registration data, 2013). There might be more recent studies conducted since publication
of the above mentioned reports.
6.1
Hazards
As described in section 2.1.1, boric acid and sodium borates are harmonised classified as Repr. 1B;
H360FD (May damage fertility. May damage the unborn child).
6.1.1
Absorption, Distribution, Metabolism and Excretion
Available toxicokinetic data show that boron compounds (boric acid, boron oxide and sodium
borates) behave similarly in rats and humans with respect to absorption, distribution, and
metabolism. Difference between rats and humans is seen in terms of elimination, the difference
relates to renal clearance, with the renal clearance in rats being approximately 3-4 times faster than
in humans.
64
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Absorption
Data from experimental animal studies (rat, rabbit, sheep and cattle) and human volunteer studies
show that boron compounds are readily absorbed orally (approximately 100%) as seen from the
levels of boron found in urine, blood and tissue. In humans, boron compounds are absorbed from
the gut.
In animal studies, inhaled boron oxide aerosols were readily absorbed, as seen from the increased
levels of boron excreted in the urine following inhalation exposure. In humans, studies on
occupational dust exposure to borates (borax) have shown that boron can be found in blood and
urine. As a worst-case assumption, inhalational absorption of 100% is used as default in risk
assessment (ECHA/transitional annex XV report (2009a)) (ECHA/ RAC opinion (2010b)).
Dermal absorption of boron compounds is considered very low (< 0.5%) except through mucus
membranes and severely damaged skin (ECHA/transitional annex XV report (2009a)) (ECHA/
RAC opinion (2010b)). SCCS states in their latest opinion on boron compounds that in terms of
safety evaluation, absorption of 0.5% is to be used for boron compounds (SCCS, 2010a).
Distribution
In animals and humans, absorbed boron compounds rapidly distribute in the body and appear in
the blood (mostly in plasma), body tissues (liver, muscle, colon, testis, epididymis, seminal vesicles,
prostate, adrenals) and other organs (EFSA, 2013). Studies have shown that boron compounds can
cross human placenta and can be present in breast milk (EFSA, 2013).
Metabolism
Boron compounds are not metabolised and exist mainly as boric acid in whole blood under
physiological conditions.
Excretion
Regardless of the exposure route, boron compounds are excreted exclusively in the urine. Renal
clearance is different in animals and humans based on a body weight comparison, and in rats the
clearance is 3-4 times faster compared to humans. In humans, clearance is slightly faster in
pregnant women. Excretion of boron compounds is relatively fast with a half-life of elimination of <
24 hours.
Overall,
the toxicokinetic profile for animals and humans in terms of absorption, distribution, and
metabolism is very similar. A difference in renal clearance is the major determinant in the
differences between animals and humans, with the renal clearance in rats approximately 3-4 times
faster than in humans. Absorption of borates via the oral route is nearly 100%. For the inhalation
route also 100% absorption is assumed as worst case scenario. Dermal absorption through intact
skin is very low. For risk assessment of borates a dermal absorption of 0.5% is used as a realistic
worst case approach. In the blood, boric acid is the main species present. Boric acid is not further
metabolised. Borates are distributed rapidly and evenly through the body, with concentrations in
bone 2 – 3 times higher than in other tissues. Boric acid is mainly excreted in the urine. Boron is
excreted rapidly, with elimination half-lives < 24 hours in humans.
6.1.2
Acute toxicity
In general, the boron compounds are of low acute toxicity after oral, dermal and inhalational
administration in experimental animals.
For the boron compounds (boric acid and sodium borates), the following experimental data can be
concluded (ECHA/transitional annex XV report (2009a)):
LD50 oral rat > 2000 mg/kg (489-659 mg B/kg)
LD50 dermal rat >2000 mg/kg (226-350 mg B/kg)
Survey of Boric acid and sodium borates (borax)
65
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0066.png
LC50 inhalation rat > 2 mg/l (300-371 mg B)/m3)
In humans, acute poisoning can occur after oral and inhalation exposure as well as after dermal
exposure via damaged skin. A human oral lethal dose is quoted to be 2-3 g boric acid for infants, 5-6
g boric acid for children, and 15-30 g boric acid for adults (ECHA/RAC opinion (2010b).
This may be the reason that some of the sodium borates have been classified as Acute Tox4; H302
in the company notifications to ECHA.
6.1.3
Irritation
Skin: studies in rabbits using a dose level of 0.5 g showed that boric acid, sodium tetraborate
decahydrate and sodium tetraborate pentahydrate do not cause skin irritation when applied to the
intact or abraded skin. Hence, boric compounds (boric acid and borates) are not skin irritants
(ECHA/ transitional annex XV report (2009a)).
Eye: data from experimental animal studies (rabbit) show that boric acid induced conjunctivae
redness and chemosis and minor effects on the iris of the eye. The effects were reversible within 7
days. Therefore, no classification is indicated. Results from tests carried out with disodium
tetraborate pentahydrate and decahydrate fulfil the criteria for classification as eye irritant (Eye Irr.
2; H319 or Eye Dam 1; H318). Based on read across from disodium tetraborate pentahydrate and
disodium tetraborate decahydrate, disodium tetraborate anhydrous should also be classified as eye
irritant (Eye Irr. 2; H319 or Eye Dam 1; H318) as used in several notifications.
In humans, acute irritant effects on the eye are well documented in human workers exposed to
borates (ECHA/transitional annex XV report (2009a)).
Respiratory tract: In acute experimental animal studies (rat) with disodium tetraborate
(pentahydrate & decahydrate) and boric acid, the effects observed were ocular and nasal discharge,
hunched posture and hypoactivity. In mice, a 20% reduction of the respiratory rate was observed
from inhalation of boric acid (300 mg/m3) and it was based on this response concluded that boric
acid acts as sensory irritant.
In humans, acute irritant effects are well documented in surveys of human workers exposed to boric
acid and borates; symptoms include nasal and eye irritation, throat irritation, cough, and
breathlessness. However, only one company notification to ECHA uses a classification with STOT
SE3; H335.
Based on occupational data from boron mining and processing plants, a NOEC value of 0.4 mg
B/m
3
for acute irritant was established leading to a final NOEC of 0.8 mg B/m
3
(The value has to be
corrected by a factor 2 as the methods used for exposure measurements underestimated air
concentrations). At higher levels, dose-related effects such as nose, eye and throat irritation,
sneezing, nose bleeds, coughing and breathlessness, phlegm production and broncho-constriction
were observed (ECHA/transitional annex XV report (2009a)).
Using the NOEC of 0.8 mg B/m
3
, an acute inhalational DNEL can be derived without using
assessment factors (human data, NOEC value, worker) (ECHA/transitional annex XV report
(2009a+b):
DNEL worker, acute, inhalational, local= 0.8 mg B/m
3
Overall, boric acid and borates are eye and respiratory tract irritants. In humans, borates act as
respiratory sensory irritants, and a NOEC of 0.8 mg B/m
3
has been established leading to a DNEL
for acute inhalational worker exposure of 0.8 mg B/m
3
.
66
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Sensitisation
6.1.4
Concerning the skin sensitisation potential of boron compounds (boric acid and sodium borates),
data from experimental animal studies using the Buehler test (OECD 406) show no indication of
sensitisation.
In humans, no evidence of skin sensitisation in humans exposed occupationally to boron
compounds (boric acid and sodium borates) has been reported.
Thus, boron compounds (boric acid and sodium borates) are to be considered neither skin nor
respiratory sensitisers.
6.1.5
Repeated dose toxicity
Several repeated dose toxicity studies are available for boron compounds (boric acid and borates)
where animals are exposed via the oral route (diet or drinking water). The available subchronic and
chronic studies were carried out in rats, mice and dogs. The adverse effects of boron seem to be
related to haematological effects and testis lesions indicating that the main target organ of boron
toxicity is the testis. The key studies are summarised below.
Inhalation
No experimental animal studies available.
Few human inhalation studies exist evaluating the effects from repeated boron exposure. Effects
from exposure to borax dust occupationally relate to alopecia, insomnia, headache, erythema and
desquamation with verification of boron in the urine.
Oral
The available repeated dose toxicity studies in rats, mice and dogs (30 days to two years studies) on
boric acid or disodium tetraborate decahydrate in the diet or via drinking water are of varying
quality, but most studies support that boron can cause adverse hematological effects and that the
main target organ of boron toxicity is the testis. Treatment with boric acid and disodium tetraborate
decahydrate has shown to disrupt spermiation, induce degeneration of testicular tubules and to
cause testicular atrophy. In relation to effects on the blood system: extramedullary haematopoiesis,
reduced red cell volume and hemoglobin values, and deposition of haemosiderin in spleen, liver and
proximal tubules of the kidney have been described (ECHA/transitional annex XV report (2009a)).
The key studies identify NOAEL values from 90-day toxicity studies in the range of 71- 98 mg B/kg
bw/day in mice in relation to degeneration and atrophy of the seminiferous tubules and extra
medullary haematopoiesis of the spleen. In rats a NOAEL of 8.8 mg B/kg bw/day was found in a
90-day study in relation to body weight reduction, clinical signs of toxicity, and testicular atrophy.
In 2 year studies in rats the NOAEL was 17.5 B/kg bw/day in relation to body weight reduction,
clinical signs of toxicity; testicular atrophy, reductions in red cell volume and haemoglobin.
Using disodium tetraborate decahydrate (drinking water), a LOAEL of 25 mg B/kg bw/day was
identified from 30-60 days repeated dose toxicity studies in rats, in relation to reductions in testes
and liver weights, significant reduction in epididymal weight and significant loss of germinal
elements and testicular atrophy. In 2 year studies in rats (diet) the NOAEL was 17.5 B/kg bw/day in
relation to body weight reduction, clinical signs of toxicity; testicular atrophy, reductions in red cell
volume and haemoglobin.
The key study identified is the 2 year study in rats using boric acid and disodium tetraborate
decahydrate in the diet. The details for this study are summarised below.
Survey of Boric acid and sodium borates (borax)
67
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Weanling Sprague-Dawley rats (dose groups: 35 males/females, control group 70 males/females)
received boric acid and disodium tetraborate decahydrate (0, 117, 350, or 1170 ppm, equivalent to 0,
5.9, 17.5, or 58.5 mg B/kg bw/day) in the feed. Decreased red cell volume and haemoglobin were
observed in boric acid and disodium tetraborate decahydrate treated rats, mainly at the high dose
levels. At the highest dose level with both boric acid and disodium tetraborate decahydrate,
testicular atrophy and seminiferous tubule degeneration were observed at 6, 12 and 24 months.
Microscopic examination of the tissue revealed atrophied seminiferous epithelium and decreased
tubular size in the testes. No effects were observed in the control and low dose groups.
A NOAEL of 17.5 mg B/kg bw/day was derived based on the effects of boron seen, i.e. the clinical
and hematological effects and the testicular atrophy observed at the highest doses tested (58.5 mg
B/kg bw/day).
Repeated oral exposure of humans to boric acid and borax results in various symptoms, which may
appear singly or together, and include dermatitis, desquamation of the skin, alopecia, loss of
appetite, nausea, vomiting, diarrhea, menstruation disorders, anemia and focal or generalized
central nervous system irritation or convulsions. The most common effect seen from human
poisoning cases is anemia, generally seen at relatively high concentrations.
Dermal
No experimental animal studies available
Effects in humans from repeated dermal application have been described from several poisoning
cases after treatment of burned or abraded skin. No data on the exact doses for the dermal
application were found, but described effects are nausea, emesis, diarrhea, erythema, exfoliation of
the skin, and convulsions. In many cases of diaper dermatitis and severe burns, treatment with
boric acid and borax resulted in respiratory depression, cyanosis and death of the patients.
Overall,
several repeated dose toxicity studies performed in rats, mice and dogs are available for
boron compounds (boric acid and borates) where animals are exposed via the oral route (diet or
drinking water). The adverse effects of boron seem to be related to haematological effects and testis
lesions indicating that the main target organ of boron toxicity is the testis. A NOAEL of 17.5 mg
B/kg bw/day was derived based on the effects of boron seen (clinical and hematological effects and
testicular atrophy were observed at 58.5 mg B/kg bw/day).
6.1.6
Mutagenicity
Overall, none of the references used for this review indicate concern in relation to boric acid and
borates for any genotoxic potential
in vitro
and
in vivo
(gene mutation, chromosomal aberrations,
micronuclei, sister chromatide exchanges, and unscheduled DNA synthesis.
6.1.7
Carcinogenicity
Boron compounds (boric acid and sodium borates) have been tested with respect to carcinogenicity
in long-term studies in mice, rats and dogs.
In a 2-year key study (50 animals per sex per group), B6C3F1 mice were fed a diet containing 0,
2500, 5000 ppm boric acid equivalent to dose levels of 0, 446 (75 mg B) and 1150 mg boric acid
(200 mg B)/kg bw/d. No evidence of carcinogenicity was found (ECHA/ transitional annex XV
report (2009a)).
In rats, no carcinogenic effects were observed in 2-year feeding studies on boric acid and disodium
tetraborate decahydrate. Also in Beagle dogs, no carcinogenic effects were observed in a chronic
study (only 1-2 animals/sex/dose/time were examined).
68
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0069.png
All these studies were, however, not carried out according to modern standards (number of animals
examined) or to GLP (ECHA/ transitional annex XV report (2009a)) (EFSA, 2013).
Based on the studies described above, SCCS (2010a) in their expert evaluation were not able to
evaluate the carcinogenic potential, whereas ECHA/RAC (2010) concluded that there was no
indication of carcinogenic concern for humans. This was in line with the evaluation by EFSA (2013)
concluding that no evidence of carcinogenicity was seen from oral exposure of rats and mice to
boron compounds (EFSA, 2013).
Overall, there seems to be no concern for a carcinogenic potential for boric acid and sodium
borates.
Reproduction and Developmental toxicity
6.1.8
The reproductive effects of boron (boric acid and borates) have been examined thoroughly in
experimental animal studies (rat, mice and dog) using oral dosing. Effects on fertility were seen
across species in terms of testicular lesions, more pronounced in rat and mice as studies in dogs
were questionable due to insufficient dose levels and animal numbers. Overall, effects on the testis
have been observed in both subchronic and chronic studies in three species: rats, mice and dogs.
Further, a three generation study in rats and a continuous breeding study in mice showed effects on
male and female fertility. The key studies are summarised in Table 6.1 below.
TABLE 6.1: KEY REPRODUCTIVE TOXICITY STUDIES WITH BORIC ACID AND BORATES (BORAX) (ECHA/
TRANSITIONAL ANNEX XV REPORT (2009A))
Route of
exposure
Species
Exposure
period
Doses
(mg
B/kg
bw/day)
Critical effect
NOAEL
Parent
animals
NOAEL
1.genrati
on litter
NOAEL
2.genrati
on litter
Oral in
diet
Rat
14 weeks
pretreatme
nt
then
through
three
generations
(3
generation
study)
0, 5.9,
17.5 and
58.5
mg B/kg
bw/day
(Boric
and
Borates)
Top dose level caused
testes atrophy prior
to first mating so no
litters produced.
Infertility in males
and females of the
high dose when
mated with untreated
animals. No adverse
effects in mid and low
dose groups in any
generation.
Reduced sperm motility
(F0)
17.5
mg B/kg
bw/day
17.5
mg B/kg
bw/day
17.5
mg B/kg
bw/day
Oral in
diet
Mice
1 week
premating
(continuou
s breeding
study)
0, 26.6,
111.3,
220.9 mg
B/kg
bw/day
(Boric
acid)
Increased uterine
weight and
kidney/adrenal
weight, shortened
oestrus cycle and
25% reduction in sperm
concentration (F1)
Reduced adjusted
bodyweight of pups (F2)
26.6
mg B/kg
bw/day
(LOAEL)
26.6
mg B/kg
bw/day
(LOAEL)
26.6
mg B/kg
bw/day
(LOAEL)
Survey of Boric acid and sodium borates (borax)
69
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0070.png
In terms of human data, numerous epidemiological studies are available on the effects of boric acid
and boron exposure coming from occupational exposure, and mainly through inhalation. Overall,
data from epidemiological studies in humans are not conclusive in terms of absence or presence of
fertility effects of boron compounds. Several epidemiological studies have investigated fertility
effects in workers and populations living in areas with high environmental levels of boron, including
Chinese studies in mine workers working with boron. The data are not conclusive due to
questionable study design i.e. sample size, sensitivity, relevant effect parameters and description of
exposure ((ECHA/transitional annex XV report (2009a)), (SCCS 2010a), (ECHA/RAC opinion
(2010b)). Recently RAC confirmed the classification of boric acid as Repr.1B; H360FD, although a
submitted classification proposal proposed a down classification to Repr. 2; H361d based on lack of
evidence from the human data (ECHA/RAC opinion 2014).
Based on the identified NOAEL for reproductive toxicity (17.5 mg B/kg bw/day), a DNEL for
consumers using an assessment factor of 100 (Interspecies 10, Intraspecies 10) was derived (ECHA/
RAC opinion (2010b)):
DNEL
consumers
= 0.175 mg B/kg bw/day
The developmental effects of boron (boric acid) have been examined in experimental animal studies
(rat, mice and rabbit) using oral dosing. Developmental effects in terms of visceral and skeletal
malformations were observed in a dose and species dependent manner in rats, mice and rabbits;
rats being more sensitive than mice and rabbits. The key studies are summarised in Table 6.2
below.
TABLE 6.2: KEY DEVELOPMENTAL STUDIES WITH BORIC ACID (ECHA/ TRANSITIONAL ANNEX XV
REPORT (2009A))
Route of
exposure
Species
Exposure
period
Doses
(mg B/kg
bw/day)
Critical effect
-foetuses
NOAEL
(maternal)
NOAEL
teratogenicity,
embryotoxicity
Oral in diet
Rat
Day 0-20
of gestation
Phase 1:
(gd 0-20)
0; 3.3; 6.3;
9.6; 13.3;
25.0
Phase 2:
(pnd 0-21)
0; 3.3; 6.3;
9.8; 12.9;
25.4
Phase 1: Reduction of
foetal body weight on
gd 20 in 13.3 and 25
mg/kg bw/day,
malformations:
incidence of short rib
XIII or wavy ribs
increased.
Phase 2: No decreased
foetal body weights
effect. Short rib XIII,
but no wavy rib or extra
rib on lumbar I (pnd 21)
Reduction of foetal
body weight,
malformations:
Incidence of short rib
XIII
No maternal
toxicity
observed
NOAEL for
foetal skeletal
effects is 9.6
mg B/kg
bw/day
Oral in diet
Rat
Day 0-20
of gestation
0; 13.7;
28.5; 57.8;
94.3;
13.7 mg B/kg
bw/day
< 13.7 mg B/kg
bw/day, foetal
body weight
decrease
70
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0071.png
Route of
exposure
Species
Exposure
period
Doses
(mg B/kg
bw/day)
Critical effect
-foetuses
NOAEL
(maternal)
NOAEL
teratogenicity,
embryotoxicity
Oral in diet
Mice
Day 0-17
of gestation
0, 43, 79,
175
Reduced bodyweight;
skeletal malformations
including short rib XIII.
Prenatal mortality
increased,
malformations increased
primarily cardiovascular
defects (interventricular
septal)
Not
identified
43 mg B /kg
bw/day
Oral gavage
in water
Rabbit
Day 6-19
of gestation
0, 10.9,
21.9 ,43.8
43.8 mg
B/kg
bw/day
21.9 mg B/kg
bw/day
No human data exist with regard to developmental toxicity. From the available experimental animal
data, it is concluded that prenatal exposure to boron can cause developmental toxicity. The lowest
NOAEL for developmental toxicity is 9.6 mg B/kg bw/day corresponding to 55 mg boric acid/kg
bw/day.
Based upon the identified NOAEL for developmental toxicity (9.6 mg B/kg bw/day corresponding
to 55 mg boric acid/kg bw/day), a DNEL for consumers using an assessment factor of 100
(Interspecies 10, Intraspecies 10) was derived (ECHA/ RAC opinion (2010b)):
DNEL
consumer
= 0.096 mg B/kg bw/day
In their latest re-evaluation of boric acid and sodium borates, EFSA (2013) identified a group ADI
of 0.16 mg B/kg bw/day based upon the same NOAEL value of 9.6 mg B/kg bw/day for
developmental toxicity. EFSA used an uncertainty factor of 60 instead of 100 due to adjustment in
the default toxicokinetic uncertainty factor for human variability.
In the REACH registration for boric acid and sodium borate a DNEL
consumer
of 0.17 mg B/kg bw/d
has been derived (based on a BMDL 05 (lower 95 percentile bench mark dose level for the 5% effect
level) and use of an assessment factor of 60).
Overall, there is consensus among the EU scientific committees (SCCS, EFSA and RAC) that boric
acid and boron compounds are toxic to fertility and development. This has recently been confirmed
by RAC that concluded classifications of boric acid and disodium octaborate tetrahydrate with Repr.
1B, H360FD (May damage fertility and the unborn child) (RCHA/RAC-opinion 2014a+b)
6.1.9
Overall conclusions for boric acid and borates
Available toxicokinetic data indicate for boron compounds (boric acid and borates) that absorption,
distribution, and metabolism are very similar in animal and humans. A difference in renal clearance
is the major determinant in the differences between animals and humans, with the renal clearance
in rats approximately 3-4 times faster than in humans. Absorption by the oral, inhalational and
dermal routes is 100%, 100% and 0.5% (worst case approach), respectively. When absorbed, boric
acid is the main species present in the blood. Borates are distributed rapidly and evenly through the
body. Boric acid is not further metabolized and excreted mainly in the urine, elimination half-lives
< 24 hours in humans. In general, under physiological conditions, boron compounds are
transformed in boric acid; hence results can be transformed to other boron compounds.
Survey of Boric acid and sodium borates (borax)
71
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
In humans, the critical effects following inhalation of dust containing boron are considered to be
nasal and eye irritation, throat irritations, cough, and breathlessness. Data from experimental
animal studies and human studies show that boron is a respiratory irritant, and a NOEC of 0.8 mg
B/m
3
has been established leading to an acute inhalational DNEL of 0.8 mg B/m
3
. In terms of skin
sensitisation, data from animal studies and human data show that boron compounds (boric acid
and sodium borates) are not skin sensitisers.
In humans, acute irritant effects on the eye are well documented in human workers exposed to
borates. In animal studies, boric acid shows irritant effects but not indicative of a classification,
hence no classification applies. Borates are eye irritants and should therefore be classified
accordingly as eye irritant (Eye Irr. 2; H319 or Eye Dam. 1; H318).
The acute toxicity of boron compounds (boric acid and sodium borates) is low, the following
experimental animal data can be concluded:
LD50 oral rat > 2000 mg/kg (489-659 mg B/kg)
LD50 dermal rat >2000 mg/kg (226-350 mg B/kg)
LC50 inhalation rat > 2 mg/l (300-371 mg B)/m
3
)
In humans, acute poisoning can occur after oral and inhalation exposure as well as after dermal
exposure via damaged skin. A human oral lethal dose is quoted to be 2-3 g boric acid for infants, 5-6
g boric acid for children and 15-30 g boric acid for adults.
Data from several oral repeated dose toxicity studies (rat, mice and dog) on boron compounds
(boric acid and borates) identify the testis as one of the main targets of boron toxicity, although
haematological effects are also seen. A NOAEL of 17.5 mg B/kg bw/day was derived from a 2 year
study in rats using boric acid and disodium tetraborate decahydrate in the diet (identified as the key
study) based on the effects of boron seen, i.e. the clinical and hematological effects and the
testicular atrophy observed at the highest doses tested (58.5 mg B/kg bw/day).
For reproductive and developmental toxicity, male (and female) fertility comprised as testicular
lesions in different species (rat, mice and dogs) and foetal development comprised as reduced foetal
body weight as well as skeletal and visceral malformations in different species (rat, mice and rabbit)
are main targets of boron toxicity. For reproductive toxicity, a NOAEL of 17.5 mg B/kg bw/day was
derived from a three generation reproduction study in rats using boric acid or sodium borate
(borax) (identified as the key study). Based on the identified NOAEL value, a DNEL
consumer
= 0.175
mg B/kg bw/day could be established using an assessment factor of 100. In terms of human data,
numerous epidemiological studies are available on the effects of boric acid and boron exposure
coming from occupational exposure, mainly through inhalation, but these are not conclusive in
terms of absence or presence of fertility effects of boron compounds. Data from animal studies are
considered to be conclusive for fertility effects in humans.
In terms of developmental toxicity, developmental effects of boron (boric acid) have been examined
in experimental animal studies (rat, mice and rabbit) using oral dosing. Developmental effects in
terms of visceral and skeletal malformations were observed in a dose and species dependent
manner in rats, mice and rabbits, rats being more sensitive than mice and rabbits. A NOAEL of 9.6
mg B/kg bw/day for developmental effects was established in a prenatal rat study using boric acid
(identified as the key study). Based on the identified NOAEL value, a DNEL
consumer
= 0.096 mg B/kg
bw/day could be established using an assessment factor of 100. No human data exist with regard to
developmental toxicity.
The effects of boric acid and boron compounds on reproduction and development indicate that a
classification with Repr. 1B, H360FD (May damage fertility and the unborn child) should be applied
for boric acid. This was recently confirmed by RAC in their opinion on proposed harmonised
classification and labelling of boric acid (ECHA/RAC opinion (2014)).
72
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
6.2
Human exposure
6.2.1
Direct exposure
6.2.1.1
Consumers
Boron is a naturally occurring element. Boric acid and sodium salts of boron (primarily borax, or
disodium tetraborate decahydrate) are used in a number of applications from which human
exposure may be possible in various degrees. The number of applications includes: manufacture of
glass, fibre glass, insulation, porcelain enamel, ceramic glazes, and metal alloys. The compounds are
also used in cellulose insulation (as fire retardants), antifreeze agents, paints, wood preservatives,
cosmetics, detergents, laundry additives, fertilizers (SCCS, 2010a).
Below, some data regarding potential consumer exposure from various products have been
gathered:
Cosmetics
Humans may be directly exposed from different types of cosmetic products. According to the
Cosmetics Directive no1223/2009, boric acid/ borax may be used in:
Talc 5%
Bath products 18%
Hair products 8%
Products for oral hygiene 0.1%
Other products 3%
(All concentrations expressed as boric acid %)
Based on the evaluation from SCCS (2010a), the total daily systemic exposure dose (SED) of boron
from these cosmetic products is estimated to be 1.23 mg B per day corresponding to 0.02 mg B/kg
bw/day using a body weight of 60 kg (SCCS 2010a).
In a Danish product survey from 2005 eye cosmetics (so called kohl products) on the Danish market
were analysed and up to 3.2% boron was found in the products. These products are applied around
the eyes using a brush or hard or soft pencil (Danish EPA 2005).
Photographic applications
An estimation of the exposure to boron (boric acid and borates) from working with photochemical
products has been established for the inhalational and dermal exposure routes (ECHA/RAC opinion
(2010b). Various exposure scenarios (including combined exposure scenarios) were generated (i.e.
using film developer, fixer, different formulations (powder/liquid) of the products).
The estimated internal exposure from the combined dermal and inhalation exposure for the
different product types and for the various scenarios ranged from 0,0008 mg – 0,0072 B/kg
bw/day for typical exposure levels and 0,0130 mg – 0,0753 B/kg bw/day for realistic worst case
scenarios.
Paper wool insulation
Consumer exposure may occur if insulation of a house is done as do-it-yourself work, see also
Section 2.1.2. For an operator blowing paper wool insulation dust, some measurement data indicate
that short term peaks of 5 mg B/m3 could be obtained. Further, an 8 hour average of 0.22 mg B/m3
was estimated (Larsen 2012). These estimations were based on measurement of dust levels and an
anticipated content of boric acid/borax of 5% in the dust. Further, a dermal load of 4.13 mg B/kg
bw/d was estimated.
From these data a combined internal exposure of 0.077 mg B/kg bw/d was calculated.
Survey of Boric acid and sodium borates (borax)
73
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Furniture
A Danish EPA consumer survey in 2004 found that furniture made of rubber wood (Hevea
brasiliensis) may contain very high levels of fungicides based on boron. As rubber wood degrades
very fast, this wood species is always treated with fungicide, and in the survey a concentration of
801 mg B/kg wood was found from samples from a table surface (Danish EPA 2014).
Toys
In 2000 the Danish EPA in a letter to the Danish toy sales organisation and toy importers warned
against the use of boric acid in playing dough as levels up to 0.9% boric acid have been found in
such dough (Danish EPA 2000).
A Danish EPA consumer survey on slimy toys detected boron in 3 products, at a maximum of 0.84%
of the products. For a child an absorbed dose in connection with dermal exposure was calculated to
0.097 µg B/kg bw/d (dermal absorption of 23%), whereas an oral dose was calculated to 4.4 µg
B/kg bw/d (oral absorption of 100%) (Danish EPA 2006).
Fertilisers
RPA (2008) indicates that fertilisers may contain 10% boron and considers that inadvertent
ingestion by the user is unlikely to exceed 100 mg fertiliser per day or 1o mg B/day (corresponding
to 0.14 mg B/kg/d).
According to the Fertilizers Association the majority of fertilizers for soil application for consumers
are below the specific concentration limit of 0.96% related to the boron ion.
Detergents
Although boric acid/borax are used as stabilisers in liquid fabric detergents, the main exposure to
borates from detergents may stem from the use of sodium perborate as bleach in laundry
detergents.
Perborates are oxidants used as bleaching agents in detergents. Perborates are transformed to boric
acid/borat,e and thus the use of perborates is a source of boric acid/borate exposure as well.
Modern bleaching detergents typically contain 15% sodium perborate. The EU risk assessment of
perborates (EU RAR, 2007) and RPA (2008) evaluated that washing hands with detergents may
result in the highest dermal exposure to perborates resulting in 61.4 mg sodium perborate per day
(or 4.3 mg B/day). Assuming a dermal uptake of 1%, this would lead to a systemic exposure of 0.04
mg B/d (or 0.0006 mgB/kg bw/d).
Glass/Ceramics
RPA (2008) consider consumer exposure to borates from glass and ceramics to be zero as the
borates are transformed and chemically bound into the glass and ceramics.
Other chemical products
Further products such as antifreeze products for engine cooling, brake fluids, lubricants,
metalworking fluids, water treatment chemicals and fuel additives may contain boric acid and
borates. Overall RPA (2008) considers the exposure potential from these uses to be far below 10 mg
B/d (or 0.14 mg B/kg bw/d).
6.2.1.2
Occupational exposure
In Denmark, the following occupational limit values apply for boric acid/borax (Ministry of
Employment (2011):
Disodium tetra borate, anhydrous: 1 mg/m
3
Disodium tetra borate, pentahydrate: 1 mg/m
3
Disodium tetra borate, decahydrate: 2 mg/m
3
Boron oxide: 10 mg/m
3
74
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
In the ECHA/transitional Annex XV report (2009a+b) exposure estimates have been performed for
10 different occupational scenarios with the use of boric acid and borates. EASE calculations
showed typical average 8-hours exposures in the range of 0.01 – 5.9 mg B/m
3
and realistic worst
case exposures in the range of 0.01-10.8 mg B/m
3
.
A scenario for discharging borates from big bags indicated typical and realistic worst case exposure
of 5.9 and 10.8 mg B/m
3
for inhalation exposure and 113.5 and 206.4 mg B/day for dermal exposure
corresponding to dermal loads of 0.12 and 0.22 mg B/cm
2
on the exposed skin areas (960 cm
2
).
For an operator blowing paper wool insulation, dust measurements indicate that short term peaks
of 5 mg B/m
3
could be obtained. Further, an 8 hour average of 0.22 mg B/m
3
was estimated (Larsen
2012). These estimations were based on measurement of dust levels and an anticipated content of
boric acid/borax of 5% in the dust. A dermal load of 4.13 mg B/kg bw/d was estimated.
In Denmark, the Sectorial Working Environment Council on Building and Construction has
published a guidance document on how to work with insulation in general that also covers work
with cellulose wool insulation. The guidance describes how it is possible to avoid or reduce
occupational exposure to dust during the work. For cellulose wool, it is recommended to use
protective clothing (coveralls) and respirators (P2 filter). Protective gloves are recommended if the
insulation material contains boron (Branchearbejdsmiljørådet, 2011).
In a safety data sheet from a Danish manufacturer of cellulose wool insulation, respiratory
protection with P2 filter, gloves, eye goggles and dust repellant clothing is recommended during
dusty work (Papiruld Danmark, 2011).
No Danish measurement data on levels of boric acid, sodium borates in the occupational
environment have been found.
6.2.2
Indirect exposure
6.2.2.1
Air
Overall, boron does not appear to be present in ambient air at significant levels. An estimated mean
boron concentration in air has been reported to be 20 ng B/m
3
(<0.5 to 80 ng/m
3
) (ECHA/
transitional annex XV report (2009a). Therefore, assuming a respiration volume of 20 m
3
per day, a
respiratory exposure of 400 ng B/day (~0.4 μg B/day) can be calculated, hence this is assumed as
negligible in comparison with exposure from other boron sources.
6.2.2.2
Soil
Data on boron concentrations in soils have been reported in the EU (ECHA/transitional annex XV
report (2009a). For Finland and Sweden, boron concentrations in top soils ranged between 0.5 and
13 mg B/kg soil in Sweden and 1.6 and 14.2 mg B/kg soil in Finnish top soils. An EU-PEC soil
concentration of 5 mg B/kg soil was derived. Using this value a theoretical scenario could be:
Consumption of 20 mg soil/person per day yields an average boron intake of 0.1 μg B/day (i.e. 5 mg
B/kg of soil x 0.00002 kg of soil consumed per person per day = 0.0001 mg B/person/day). For
small children with an average soil ingestion rate of up to 200 mg/day the dose would be 0.001 mg
B/person/day.
6.2.2.3
Drinking water
Humans are also exposed to boron through drinking water estimated to be around 0.4 mg B/L and
a worst case content of 1 mg B/L (the maximum limit permitted by the EU Drinking Water
Directive). Assuming a daily consumption of 2L/person/day, the typical intake from drinking water
is at 0,8 mg B/person/day (0.133 mg B/kg bw/day) whereas the realistic worst case intake is 2 mg
B/person/day (0.03 mg B/kg bw/day) (ECHA/ transitional annex XV report (2009a)).
Survey of Boric acid and sodium borates (borax)
75
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
6.2.2.4
Food
Humans are exposed to boron as a natural constituent in food. The richest sources of boron are
fruits, vegetables, pulses, legumes and nuts. Dairy products, fish, meats and most grains are poor
sources of boron (EFSA 2013).
Based on the United Kingdom National Food Survey (MAFF, 1991), the mean dietary intake of
boron in the United Kingdom ranged from 0.8 to 1.9 mg/day. Increased consumption of specific
foods with high boron content will increase the boron intake significantly; for example, one serving
of wine or avocado provides 0.42 or 1.11 mg, respectively. Moreover, for the population obtaining
their drinking water from the 10% of the public water systems that provide water containing > 0.4
mg boron/L, water used for drinking and cooking may be the major, or a significant source of
boron.
Further, based on the data in
ECHA/transitional annex XV report (2009b),
the Risk Assessment
Committee at ECHA used the following background exposure levels to boron form drinking water
and food in their risk assessment (ECHA/ RAC opinion (2010b)). Thus the total daily boron uptake
of man (60 kg) via food and drinking water was estimated to:
Typical: 2.3-2.74 mg B/person/day (0.038 – 0.046 mg B/kg bw/day)
Realistic worst case: 3.5 – 3.94 mg B/person/day (0.058 – 0.066 mg B/kg bw/day)
Boric acid and sodium borate are used as food additives, however, the only use permitted is in
caviar from sturgeon.
In 2013, EFSA estimated the highest average exposure to boron across European Member States to
be 0.04 mg/kg bw/day for children, 0.01 mg/kg bw/day for adolescents, 0.01 mg/kg bw/day for
adults and 0.01 mg/kg bw/day for the elderly and the very elderly. The exposure to boron from the
use of boric acid and sodium tetraborate as food additives at the highest 95th percentile, for
consumers only, would be 0.56, 0.37, 0.13 and 0.15 mg B/kg bw/day for children, adolescents,
adults and the elderly, respectively. In the same evaluation, EFSA established a group ADI for boric
acid and sodium tetraborate, expressed as boron equivalents to be 0.16 mg B/kg bw/day, i.e. 10 mg
from all food sources for an adult weighing 60 kg (EFSA, 2013). Considering the price of sturgeon
caviar, the number of regular consumers must be assumed to be very small. The EFSA evaluation
was based on fish roe (in which no boron is applied) consumption rates, not sturgeon caviar
consumption data. Hence, the resulting average exposure is grossly overestimated.
Boric acid and sodium borate may be used as boron mineral sources in the manufacture of dietary
supplements according to Regulation (EC) No. 1170/2009 of 30 November 2009. Multivitamin–
mineral supplements for human use, listed as being for non-prescription use, may contain up
to 150 µg of boron from calcium borate, magnesium borate and sodium borate, all in magnesium
oxide (ECHA 2013).
Body-building supplements contain 1.5–10 mg boron per serving, with a median of 4 mg boron per
serving. These supplements could result in daily exposures of 1.5–30 mg boron, as some are taken
up to three times a day (ECHA 2013).
6.2.3
Summary
From the data found on exposure estimates, the dominating exposure to boric acid/borates stems
from food and drinking water. The general background typical and realistic worst case (RWC)
exposure in EU has been estimated to:
Typical: 2.3-2.74 mg B/person/day (0.038 – 0.046 mg B/kg bw/day)
RWC: 3.5 – 3.94 mg B/person/day (0.058 – 0.066 mg B/kg bw/day)
Especially the use of boron in dietary supplements may result in additional exposure up to 1.5-30
mg B/ day (0.02-0.4 mgB/kg bw/day).
76
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
In relation to use of boric acid/borates in cosmetics a daily dose of 1.23 mg B/day (o.02 mg B/kg
bw/d) has been estimated.
Further contribution to the exposure to boric acid/borates may come from various other products,
e.g. laundry detergents, fertilisers, cellulose insulation and furniture.
6.3
Human health impact
6.3.1
Workers
General scenarios
In the ECHA/transitional annex XV report (2009a+b) exposure estimates have been performed as
indicated in section 6.1.1.2.
For 6 of 10 inhalation scenarios, risk was identified for local effects (irritation of eyes and
respiratory tract) whereas for two scenarios (discharging borates from ships and from
cleaning/sweeping) risk was identified in relation to reproductive toxicity. No risk was identified in
connection with dermal exposure.
Biocides
With respect to use of boric acid/borax as a biocide an assessment report was elaborated by the
Netherlands (2009a+b). In these reports an acceptable operator exposure level (AOEL) of 0.1 mg
B/kg bw/d as a rounded figure from a NOAEL of 9.6 mg/kg bw/d and using an overall assessment
factor of 100. It was evaluated that professionals would not be at risk when using standard personal
protective equipment when using the biocides in industrial production.
Glass wool
In relation to the borate content in glass wool, Jensen (2009) made a risk assessment of the
inhalational dose of boron when working with the insulation material. In connection with a glass
wool content of 1 fibre/cm
3
in the inhalational air during work (the occupational limit value) a daily
dose of 0.08-0.16 mg B (or 0.001-0.002 mg B/kg bw/d) was calculated based on a worst-case boron
content of 3.5% in the glass wool. This dose was concluded as insignificant compared to a daily
background exposure from food and drinking water of about 1.5 mg boron in adults and also
compared to the EFSA (2006) TDI value of 10 mg B/d.
Cellulose wool
For an operator blowing paper wool insulation, dust measurements indicate that short term peaks
of 5 mg B/m
3
could be obtained. Further, an 8 hour average of 0.22 mg B/m
3
was estimated (Larsen
2012). These estimations were based on measurement of dust levels and an anticipated content of
boric acid/borax of 5% in the dust. A dermal load of 4.13 mg B/kg bw/d was estimated.
When using an absorption rate of 100% from inhalation and a dermal uptake rate of 0.5% from the
dermal load, a total systemic dose of 0.077 mg B/kg bw/d was calculated. If further adding
contribution from the background exposure of 0.066 mg/kg bw/d (considered as worst case), a
total dose of 0.14 mg/kg bw/d was calculated. This was considered an exposure just below a DNEL
value for workers of 0.19 mg B/kg bw/d (Larsen 2012). (In the report the DNEL value for workers
was set to twice the DNEL value for consumers (0.096 mg B/kg bw/d derived by ECHA/RAC
opinion (2010b)).
6.3.2
Consumers
Chemical products
In the ECHA/transitional annex XV reports (2009a+b) no risk assessment was made for consumer
exposure due to lack of data and knowledge regarding exposure. Therefore, the EU-Commission
initiated the work of RPA (2008) in order to assess the risk to consumers from borates.
Survey of Boric acid and sodium borates (borax)
77
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Although the RPA (2008) report mostly make qualitative assessments of various types of consumer
exposure, some rough exposure estimates for some consumer products are also made. However, no
attempt is made by RPA (2008) to add background exposure or to add various types of consumer
exposures for the risk assessment.
Food
EFSA established a group ADI for boric acid and sodium tetraborate, expressed as boron
equivalents to be 0.16 mg B/kg bw/day, i.e. 10 mg from all food sources for an adult weighing 60 kg
(EFSA, 2013). Based on the intake estimates on boric acid and sodium borate used as food additives
in caviar, it was concluded that the worst case exposure estimates exceeded the derived ADI. It was
estimated that the ADI for an adult person would be exceeded with a daily intake of 13.7 g caviar
containing 4 g boric acid/kg. However, it was concluded that this type of exposure is unlikely to
occur on a regular basis.
Further, EFSA (2013) concluded that exposure to boron from its natural occurrence in the diet and
from other sources (dietary supplements, food contact materials, feed for food-producing animals,
cosmetics, oral hygiene products, etc.) already may lead to an exposure that exceeds the ADI.
Cosmetics
SCCS (2010a) evaluated the safety of boric acid/borax in cosmetic product. Using an aggregated
exposure from use of various cosmetic products, a systemic exposure of 0.02 mg/kg bw/d was
calculated leading to a margin of exposure (MoE) of 480 compared to the NOAEL of 9.6 mg B/kg
bw/d in relation to developmental toxicity. Thus the exposure from cosmetic products was by SCCS
(2010a) considered safe also when considering the background exposure from food and drinking
water.
SCCS (2010b) evaluated the safety of the boron exposure from the cosmetic use of sodium
perborate and perboric acid, which are bleaching agents (hydrogen peroxide releasing substances)
that during use are transformed to boric acid/borate. Using an aggregated exposure from use of
various cosmetic products a systemic exposure of 0.016 mg/kg bw/d was found. Overall the SCCS
(2010b) found the use of sodium perborate and perboric acid (and boric acid/borate) in cosmetic
products to be safe. However, it was noted that exposure to the substances from other sources
(including background exposure) was not considered in this report.
Biocides
With respect to the use of boric acid/borax as a biocide an assessment report was prepared by the
Netherlands (2009a+b). In these reports an acceptable operator exposure level (AOEL) of 0.1 mg
B/kg bw/d as a rounded figure from a NOAEL of 9.6 mg/kg bw/d and using an overall assessment
factor of 100. This value was also used in connection with non-professional use (application by
brush or spraying). It was concluded that even for unprotected non-professional users the exposure
would be below the AOEL value (exposure figures not given in the report).
For indirect exposure of e.g. children playing outside on an area with boron impregnated wood, the
potential exposure was considered as negligible.
Photographic applications
The Risk Assessment Committee at ECHA has derived a DNEL value of 0.09 mg B/kg bw/d. In a
risk assessment of one specific exposure scenario using boric acid for photographic applications, it
was concluded that the DNEL was exceeded, but only when background exposure to boron (from
drinking water and food) was also taken into account.
Overall, the background exposure to borates may be very close to the DNEL value (and in some
cases even above) and thus additional sources from e.g. cosmetics, dietary supplements, fertilisers,
78
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
boric acid dust from cellulose insulation, etc. may for some already highly exposed people lead to
exceedance of the DNEL value.
6.4
Summary and conclusions
Effects
When exposed via the oral or inhalational route, boric acid and borates are easily taken up (up to
100%) into the blood stream and distributed throughout the tissues and organs of the body. By
dermal exposure an uptake of 0.5% is considered a maximum uptake. Boric acid is not further
metabolised in the body, but is excreted mainly in the urine with an elimination half-life < 24 hours
in humans.
In humans, the critical effects following inhalation of dust containing boron are considered to be
nasal and eye irritation, throat irritation, cough, and breathlessness. Data from experimental
animal studies and human studies show that boron is a respiratory irritant, and a NOEC of 0.8 mg
B/m
3
has been established leading to an acute inhalational DNEL of 0.8 mg B/m
3
.
In humans, acute irritant effects of the eye are well documented in human workers exposed to
borates. In animal studies, boric acid show irritant effects but not indicative of a classification,
hence no classification applies. Borates are eye irritants and should therefore be classified
accordingly as eye irritant (Eye Irr. 2; H319 or Eye Dam. 1; H318).
In humans, acute poisoning can occur after oral and inhalation exposure as well as after dermal
exposure via damaged skin. A human oral lethal dose is quoted to be 2-3 g boric acid for infants, 5-6
g boric acid for children and 15-30 g boric acid for adults.
However, the most critical effects of boric acid and borates are effects in relation to fertility (adverse
effects on the testis) and development effects (malformations and prenatal mortality of the foetus).
For reproductive toxicity, a NOAEL of 17.5 mg B/kg bw/day was derived from a three generation
reproduction study in rats using boric acid or sodium borate (borax) (identified as the key study).
Based on the identified NOAEL value, a DNEL
consumer
= 0.175 mg B/kg bw/day could be established
using an assessment factor of 100. In terms of human data, numerous epidemiological studies are
available on the effects of boric acid and boron exposure coming from occupational exposure,
mainly through inhalation, but these are not conclusive in terms of absence or presence of fertility
effects of boron compounds. Data from animal studies are considered to be conclusive for fertility
effects in humans.
For developmental toxicity a NOAEL value of 9.6 mg B/kg bw/day for developmental effects was
established in a prenatal rat study using boric acid (identified as the key study). Based on the
identified NOAEL value, a DNEL
consumer
= 0.096 mg B/kg bw/day could be established using an
assessment factor of 100. No human data exist with regard to developmental toxicity.
The effects of boric acid and borates on reproduction and development comply with a classification
as Repr. 1B, H360FD (May damage fertility and the unborn child). This was recently confirmed by
RAC in their opinion on proposed harmonised classification and labelling of boric acid (ECHA/RAC
opinion (2014)).
Exposure
From the data found on exposure estimates, the dominating exposure to boric acid/borates stems
from food and drinking water. The general background typical and realistic worst case exposures in
EU have been estimated to:
Typical: 2.3-2.74 mg B/person/day (0.038 – 0.046 mg B/kg bw/day)
Survey of Boric acid and sodium borates (borax)
79
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
RWC: 3.5 – 3.94 mg B/person/day (0.058 – 0.066 mg B/kg bw/day)
Especially the use of boron in dietary supplements may result in additional exposure up to 1.5-30
mg B/day (0.02-0.4 mg B/kg bw/day).
In relation to use of boric acid/borates in cosmetics, a daily dose of 1.2 mg B/day (o.02 mg B/kg
bw/d) has been estimated.
Further contribution to the exposure to boric acid/borates may come from various other products,
e.g. laundry detergents, fertilisers, biocides, cellulose insulation and furniture.
Health impact
Occupational exposure
In some situations when working with boric acid/borax, protective measures such as technical
measures or personal protective equipment may be necessary in order to ensure safety. This may be
relevant for industrial biocide impregnation processes, loading/unloading batches of boric
acid/borax powder, blowing cellulose wool insulation into constructions, or in connection with
cleaning operations).
Consumer exposure
The European Food Agency, EFSA established a group ADI for boric acid and sodium tetraborate,
expressed as boron equivalents to be 0.16 mg B/kg bw/day, i.e. 10 mg from all food sources for an
adult weighing 60 kg (EFSA, 2013). Further EFSA (2013) concluded that exposure to boron from its
natural occurrence in the diet and from other sources (food supplements, food contact materials,
feed for food-producing animals, cosmetics, oral hygiene products, etc.) already may lead to an
exposures which exceed the ADI.
Thus, the background exposure from food and drinking water has to be considered when assessing
additional exposure sources for boric acid/ borate exposure. As the background exposure for some
individuals in the population may be quite close to the acceptable daily intake or the DNEL of 0.09
mg B/kg bw/d, additional boron exposure from dietary supplements, cosmetics, biocides,
detergents, cellulose insulation, furniture, etc. may result in a total exposure exceeding the upper
safe level.
One example of this has recently been identified by the Risk Assessment Committee at ECHA, who
found that the extra contribution for specific uses of boron containing chemicals for photographic
applications actually resulted in a total exposure (i.e. + background exposure) exceeding the DNEL
value.
80
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
7. Information on alternatives
As ECHA recently (September 2014) has made a recommendation for including the boron
substances from the candidate list on the authorisation list (Annex XIV), this put additional
pressure on the industry in order to find alternatives for use of boric acid and sodium borate.
Obviously no single substance or specific technical measure can be a one-for-all alternative to the
wide range of applications and processes in which boric acid and sodium borate are used (see the
list of registered uses in section 3.2.15).
However, for some specific uses, the RPA (2008) report has examined the consequences for
substituting boric acid/borates. Sections 7.1 to 7.5 below are based on this report that primarily
based its analysis on responses from questionnaires and information from the industry and
industry organisations. The data from this report are the main source for this section as other
surveys regarding alternatives and substitution of these boron substances were not found.
In connection with substitution the Danish Working Environment emphasizes that when
substituting a substance or a technical process due to one specific concern it should be carefully
considered and examined that the substitution does not lead to other potential risks/ concerns in
the working environment.
7.1
Glass and glass fiber
Information provided by the manufacturers of glass fiber indicate that borax pentahydrate or
diboron trioxide are used for the glass fiber production. The boron content is generally less than
5%; however, concentrations in some specialized applications are higher.
Borate additives lower the melting and forming temperature of SiO2 glass, but without raising the
electrical conductivity. The boron added to the glass forms covalent bonds with oxygen atoms in the
silica network and the boron is an integral part of the structure. The majority of E-glass (electrical
grade glass) produced in Europe contains < 5% by weight of boron as di-boron tri-oxide (B2O3).
A strong relationship exists between boron content of glass, fibre forming temperature, and
crystallisation temperature. Therefore, the production of continuous fibre glass with low or zero
boron contents requires special technology. However, such technology is not freely available on the
market due to patent restrictions. In addition, the very high temperatures involved demands a
special infrastructural design that most plants cannot incorporate.
In addition to the effects described above, information provided by glass manufacturers indicates
that borates also:
· increases chemical resistance to water, acids and alkaline liquids;
· increases resistance to thermal shock (three times that of soda-lime glass);
· improves resistance to stress;
· improves radiation shielding properties;
· increases in strength (over twice as strong as soda-lime glass)
· lowers thermal expansion (coefficient one third that of soda-lime glass); and
· lowers electrical conductivity.
Survey of Boric acid and sodium borates (borax)
81
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
As such, the combination of properties produced through the addition of borates to glass is unique.
These properties together make borosilicate glass uniquely suited to the production of e.g.
laboratory equipment and cookware.
Information provided by several companies and industry associations indicates that overall
borosilicate glass is used for:
· heat resistant glass cookware;
· laboratory equipment, including pharmaceutical equipment;
· pharmaceutical packaging material;
· glass fibre insulation material;
· light bulbs (and other electrical lighting);
· textile glass fibre composites (fibre glass);
· enamel frit and other enamelling products;
· glass for liquid crystal display screens (LCDs);
· radiation shielding for the nuclear industry and hospital x-ray equipment;
· solar panels;
· ophthalmic lenses, especially for high prescription eyesight correction; and
· heat resistant glass panels (e.g. in cookers).
With respect to possible non-use of borates, information provided from glass producers and their
trade associations indicates that there are currently no known viable alternatives to the use of
borates in the manufacture of borosilicate glass or indeed, mineral wool insulation products. Since
borates are an integral component for glass fibre manufacturing, non-use of borates would mean
that fibre glass products could no longer be manufactured.
Further, RPA (2008) concluded the substitution of borates in glass not to be relevant as the
presence of borates in glass products is extremely unlikely to result in any significant exposure to
borates of consumers using such products, since the borates are chemically bound into a crystal
lattice of interconnected oxide molecules in the glass.
7.2
Fertilisers
Boron is one of the seven elements which are essential to plant growth and classified as ‘micro-
nutrients’. As such, boron containing fertilisers are applied to a diverse range of crops and plants
(both commercially and by consumers). As an essential element there seems to be no alternatives to
boron in fertilisers (RPA 2008).
7.3
Paint and coating
In paints and coatings, borates are multi-functional coating additives with flame retardant,
corrosion inhibiting and buffering properties, which may be found in offset printing inks and
interior wall paint.
In some applications, it is currently unclear whether borates can be substituted (e.g. in flame
retardant coatings, where they serve a critical life-saving function).
(RPA 2008)
82
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
7.4
Adhesives
The precise composition of adhesives varies by application, but up to 10% of the borate may be
added to starch and dextrin based adhesives.
According to the manufacturers’ organisation non-use of borates in the adhesives would be more
expensive and the client would have to apply a thicker adhesives films. Also the machines using the
adhesives in the processes would have to run at a slower speed.
Further, starch and dextrine based adhesives would have to be replaced by non-renewing synthetic
and petrol based alternatives. Thus, biodegradable casein labelling adhesives for returnable wash
off applications are likely to be replaced by synthetic adhesives that are not easily biodegradable. In
all systems, there would be the need for higher amounts of preservatives.
In corrugated board adhesives, the industry indicates that there is currently no alternative
technology commercially available.
In tube winding adhesives, the industry also indicates that there is currently no direct alternative
technology commercially available without rebuilding tube winding factories. While some mills use
sodium silicates, this is only possible with adapted production equipment such as drying tunnels
and they need more energy to dry the tubes. The average dry solids for a sodium silicate-based
adhesive is 45% while for a dextrin based adhesive, it is 65% dry solids. Using dextrin based
adhesives, a tube winding company does not have to dry the tubes. In order for a tube winding
factory to use alternative adhesive technologies, the factory will have to invest in extra stock and
drying oven.
For use of borates as pH buffers (stabilisers) in aminoplastic resins for wooden (medium density
fibre board and chipboard) panels production, sodium acetate may be a possible alternative. It is
based on the same technology and the technical performance is similar, although there is a higher
substance consumption. The costs are indicated to be similar. Borates are not considered critical in
this use.
(RPA 2008)
7.5
Metal working fluids
The primary functions of the borate substances in metalworking fluids are corrosion protection and
pH buffering. Borate compounds offer excellent long term stability with low foam and good
tolerance to hard water conditions. Borate esters possess friction reducing, anti-wear and anti-
oxidant characteristics in lubricating oils.
Borate polyols and polyamines in lubricants form an extremely resilient film on metal load-bearing
surfaces that improves load capacity and protects from wear and tear. Potassium borates are also
used in high pressure lubricants due to their stable dispersion of microspheres.
Information provided by downstream user companies indicates that borate-based end products
cannot be replaced in the lubricant industry with the same level of performance and cost efficiency.
While a number of possible substitutes have been evaluated, at this stage, none have the same
efficiency as borates and none are as cost effective. Furthermore, it is considered that the end-
products are used in highly automated industries.
According to the European Lubricant Industry there are no simple (drop-in) alternatives to boric
acid in metalworking fluids that can be used as a direct replacement. In general, products have to be
reformulated with other ingredients and the physico-chemical, functional and stability properties
assessed and maintained.
(RPA 2008)
Survey of Boric acid and sodium borates (borax)
83
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0084.png
7.6
Cellulose wool insulation
Insulation of building constructions may be performed as well with other fire resistant materials
such as stone wool, mineral wool or glass wool insulation. Also polystyrene insulation products may
be used; however this material is not in itself fire resistant.
Dollerup and Skov (2005) in a research project looked for alternative substances to replace boric
acid and borates in cellulose insulation: They compared (and tested) cellulose insulation with
alternative substances against cellulose insulation containing boric acid/borates with respect to fire
resistance, emissions in connection with fire, properties regarding humidity, microbial properties,
insulation properties, and environmental hazards. From the testing it was overall concluded that it
was not possible to find an appropriate alternative without affecting the cost of manufacture due to
more expensive processing using the alternative substances.
However, when looking at websites regarding cellulose insulation products, there seems to be
alternative and boron free cellulose insulation products available today.
7.7
Other uses
RPA (2008) tabulated further uses of borates and the availability of alternatives, Table 7.1.
TABLE 7.1: SUMMARY OF AVAILABILITY OF ALTERNATIVES TO BORATES (RPA 2008)
Availability of
Application/Product
Antifreezes (engine coolant)
Brake fluids
Lubricants/Metal working fluids
Alternatives
Unknown
Unknown
No
May be a critical use
Reformulation costs could be
significant
Costs may need to be considered
Other Comments
Water treatment chemicals
Fuel additives
Yes
Unknown
7.8
Specific cases of substitution
The database “Subsport” contains some examples/cases of substitution of boric acid/borates that
have been reported to the database by companies/institutions making the substitution, e.g.:
Jewellery
Borax has been successfully substituted in a welding processes in gold jewelry production and in
gem stone protection, where a welding process was applied using liquids (flux agents) containing
borax. Borax was substituted with either alterative substances (acetone and hydrogen) or a laser
welding technique.
Cooling lubricants
In cooling lubricants, boric acid as a bactericidal agent has been successfully substituted using lactic
acid instead.
84
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Diagnostics
In a solution for diagnostic staining, a solution of boric acid, ethidium bromid, diethylether, and
trypan blue was substituted with a solution containing acetic acid, sodium hydroxide, and acid black
2 which was considered a far less toxic alternative.
Playing dough
Playing dough traditionally contained boric acid/borates as preservatives. In this case the
conventional playing dough was substituted by an alternative playing dough product containing
flour, starch, egg powder, palm oil, maltodextrin and other food ingredients.
7.9
Summary and conclusions
ECHA has recently (September 2014) made a recommendation for including the boron substances
from the candidate list on the authorisation list (Annex XIV). This of course put additional pressure
on the industry in order to find alternatives for use of boric acid and sodium borate.
However, no single substance or specific technical measure can be a one-for-all alternative to the
wide range of applications and processes in which boric acid and sodium borate are used.
For the use of borates in the glass industry there seems not for the majority of the applications to be
a suitable alternative, as the borate incorporated in the glass provides the materials with quite
unique properties such a physical resistance and resistance towards thermal chock. Further, borate
is covalently bound into the glass matrix and the exposure potential to borate from glass ware may
be considered as negligible.
Also in relation to use of borate in starch and dextrin adhesives no appropriate alternatives have
been found as use of alternatives either may affect the production processes to a great extent and
increase the costs or result in substitution to synthetic petrochemical-based adhesives.
As boron is an essential micronutrient, substitution in fertiliser is not considered possible.
In lubricating oil it may be difficult to find alternatives for borate for some applications.
However, there seems to be alternatives in other areas, e.g. surface coatings and paints, insulation
materials, welding processes, pH buffer solutions, and in diagnostic applications.
Survey of Boric acid and sodium borates (borax)
85
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
References
ATSDR, 2010. Toxicological Profile for Boron. Agency for Toxic Substances and Disease Registry
ff
(ATSDR),US Department of Health and Human Services. Public Health Service. November 2010.
248 pp.
v
Ministry of Employment (2011). Bekendtgørelse nr. 507 af 17. maj 2011 om grænseværdier for
stoffer og materialer med senere ændringer
Danish EPA (2000). Opfordring til ophør med salg af legetøj indeholdende borsyre. Brev til danske
legetøjeorganisationer og importører.
Danish EPA (2004). Afgivelse af kemiske stoffer fra produkter af eksotisk træ. Kortlægning af
kemiske stofferi forbrugerprodukter, Nr. 49.
Danish EPA (2005). Kortlægning af kemiske stoffer i kohl- og hennaprodukter. Kortlægning af
kemiske stoffer i forbrugerprodukter, Nr. 65.
Danish EPA (2006). Kortlægning og afgivelse af kemiske stoffer i "slimet" legetøj. Kortlægning af
kemiske stoffer i forbrugerprodukter, Nr. 67.
Danish EPA (2010). Anvendelse af affald til jordbrugsformål. Vejledning fra Miljøstyrelsen nr. 1,
2010.
Danish EPA (2011). List of undesirable substances 2009. Environmental Review No. 3 2011
Orientering fra Miljøstyrelsen.
Danish EPA (2014). Affaldsstatistik 2012. Notat MST-7761-00562.
Danish MoE (2006). Bekendtgørelse nr 1650 af 13/12 2006 om anvendelse af affald til jord-
brugsformål (Slambekendtgørelsen). Ministry of Environment of Denmark.
Danish MoE (2012). Statutory Order no. 1309, 18/12/2012 on Waste. Ministry of Environment of
Denmark.
Assessment report (2009). Disodium tetraborate, Product-type 8 (Wood preservative). 20
February, 2009. Annex I – the Netherlands. Directive 98/8/EC (2009). Concerning the placing
biocidal products on the market.
DIRECTIVE 2008/98/EC. DIRECTIVE 2008/98/EC OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL of 19 November 2008 on waste and repealing certain Directives.
Dollerup H, Skov C (2005). Forsøgsplatform og imprægnering & Substitution af bor-afprøvninger.
Et forskningsprojekt under Energistyrelsen, 78pp.
DCE (2012): Videnskabelig rapport fra DCE – Nationalt Center for Miljø og Energi nr. 36.
VANDMILJØ OG NATUR 2011, NOVANA. Tilstand og udvikling – faglig sammenfatning
86
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
(In English: Scientific Report from DCE - National Center for Environment and Energy)
http://dkprojects/11813746-
3/Working%20documents/Data/ENV/NOVANA_Vandmiljoe_Natur_2011.pdf
ECHA (2012): Guidance Document, R. 11, Version 1.1: Guidance on information requirements and
chemical safety assessment Chapter R.11: PBT Assessment.
ECHA (2014a). Draft background document for boric acid. 1. September 2014
ECHA (2014b). Draft background document for disodium tetraborate, anhydrous. 1. September
2014
ECHA (2014c). Draft background document for diboron trioxide. 1. September 2014
ECHA (2014d). Draft background document for tetraboron disodium heptaoxide, hydrate.
1. September 2014
ECHA/MSC agreement (2010a). AGREEMENT OF THE MEMBER STATE COMMITTEE ON THE
IDENTIFICATION OF DISODIUM TETRABORATE, ANHYDROUS AS A SUBSTANCE OF VERY
HIGH CONCERN According to Articles 57 and 59 of Regulation (EC) 1907/2006 (REACH) Adopted
on 9 June 2010.
ECHA/MSC agreement (2010b). AGREEMENT OF THE MEMBER STATE COMMITTEE
ON THE IDENTIFICATION OF BORIC ACID AS A SUBSTANCE OF VERY HIGH CONCERN
According to Articles 57 and 59 of Regulation (EC) 1907/2006 (REACH) Adopted on 9 June 2010.
ECHA/MSC agreement (2010c).AGREEMENT OF THE MEMBER STATE COMMITTEE ON THE
IDENTIFICATION OF TETRABORON DISODIUM HEPTAOXIDE, HYDRATE AS A SUBSTANCE
OF VERY HIGH CONCERN According to Articles 57 and 59 of Regulation (EC) 1907/2006
(REACH) Adopted on 9 June 2010.
ECHA/MSC agreement (2012). MEMBER STATE COMMITTEE SUPPORT DOCUMENT FOR
IDENTIFICATION OF DIBORON TRIOXIDE AS A SUBSTANCE OF VERY HIGH CONCERN
BECAUSE OF ITS CMR PROPERTIES. Substance Name: Diboron trioxide EC Number: 215-125-8
CAS Number: 1303-86-2. Adopted on 24 May
ECHA/ RAC opinion (2010a). Opinion on new scientific evidence on the use of boric acid and
borates in photographic applications by consumers ECHA/RAC/A77-O-0000001273-82-05/F.
ECHA/ RAC opinion (2010b). Annex 1 to the opinion on new scientific evidence on the use of boric
acid and borates in photographic applications by consumers. Background Document
ECHA/ RAC opinion (2014a). Opinion proposing harmonised classification and labelling at EU
level of Disodium Octaborate Anhydrate. EC number: 234-541-0; CAS number: 12008-41-2.
ECHA/ RAC opinion (2014b). Opinion proposing harmonised classification and labelling at EU
level of Disodium octaborate tetrahydrate. EC number: 234-541-0; CAS number: 12280-03-4
ECHA/ RAC opinion (2014c). Opinion proposing harmonised classification and labelling at EU
level of Boric Acid. EC number: 233-139-2, 234-343-4. CAS number: 10043-35-3, 11113-50-1
ECHA/ transitional annex XV report (2009a). Boric acid (Boric acid crude natural) CAS No: 11113-
50-1 (10043-35-3) EINECS No: 234-343-4 (233-139-2) ANNEX XV TRANSITIONAL REPORT
Documentation of the work done under the Existing Substance Regulation (EEC) No 793/93 and
Survey of Boric acid and sodium borates (borax)
87
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0088.png
submitted to the European Chemicals Agency according to Article 136(3) of Regulation (EC) No
1907/2006. http://echa.europa.eu/documents/10162/13630/trd_austria_boric_acid_en.pdf
ECHA/ transitional annex XV report (2009b). Disodium tetraborate anhydrous CAS No: 1330-43-4
EINECS No: 215-540-4 ANNEX XV TRANSITIONAL REPORT. Documentation of the work done
under the Existing Substance Regulation (EEC) No 793/93 and submitted to the European
Chemicals Agency according to Article 136(3) of Regulation (EC) No 1907/2006.
http://echa.europa.eu/documents/10162/13630/trd_austria_trisodiumtetraborate_en.pdf
EFSA (2013). Opinion of the Scientific Panel on the re-evaluation of boric acid (E 284) and sodium
tetraborate (borax) (E 285) as food additive. The EFSA Journal (2013) 11(10): 3407, 1-52
EFSA (2004). Opinion of the Scientific Panel on Dietic Products, Nutrition and Allergies on a
request from the Commission related to the tolerable upper intake level of Boron (Sodium Boprate
and Boric acid). The EFSA Journal (2004) 80, 1-22
EU-RAR (2007). European Risk Assessment Report on perboric acid, sodium salt (CAS 11138-47-
9). European Chemicals Bureau.
Gautam C, Yadav AK, Singh AK (2012). A review on infrared spectroscopy of borate glasses with
effects of different additives. ISRC Ceramics volume 2012 Article 428497, 17pp.
GEUS (2013): Grundvand - Status og udvikling 1989-2012. Grundvandsovervågning 2013 (In
English: Ground water - Status and development 1989-2012. Ground water survey 2013)
www.grundvandsovervaagning.dk
HERA (2005): Human and Environmental Risk Assessment on ingredients of Household Cleaning
Products, Substance Boric acid (CAS No 10043-35-3). Edition 1.0
Hjelmar, O., Hansen, E.Aa., Oberender, A. (2012): Trends in the environmental properties of
Danish MSWI bottom ash during the period 1998 to 2010. Presentation made at Ash 2012, 25-27
January, Stockholm, Sweden.
Hjelmar, O., van der Sloot, H.A. & van Zomeren, A. (2013): Hazard property classification of high
temperature waste materials. Proceedings Saridinia 2013, Fourteenth International Waste
Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 30 September to 4
October 2013.
Larsen PB (2012). Cellulose/ paper wool insulation- aspects in relation to regulatory requirements
and risk assessment. Report prepared by DHI. Rockwool A/S, Denmark.
http://www.rockwool.dk/files/media/DK/press_and_news/2012_news/DHI%20_report_borates
_in_cellulose_wool_insulation.pdf
Ministry of Employment (2011). Bekendtgørelse nr. 507 af 17. maj 2011 om grænseværdier for
stoffer og materialer med senere ændringer
REACH Registration data (retrieved 2014): http://echa.europa.eu/information-on-chemicals
RPA (2008). Assessment of the Risk to Consumers from Borates and the Impact of Potential
Restrictions on their Marketing and Use. Final Report prepared for European Commission
DG Enterprise and Industry.
SCCS (2010a). Opinion on boron compounds. Scientific Committee on Consumer Safety. 22 June,
2012. SCCS /1249/09. 1-28.
88
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0089.png
SCCS (2010b). Opinion on perborate and perboric acid. Scientific Committee on Consumer Safety.
22 June, 2012. SCCS /1345/10. 1-25.
SUBSPORT (2014). Substitution support portal: http://www.subsport.eu/
VKI (1986): Unpublished results produced for I/S Vestforbrænding and I/S Amagerforbrænding,
Danish Water Quality Institute (VKI), Hørsholm, Denmark.
Survey of Boric acid and sodium borates (borax)
89
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
Appendices
90
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0091.png
Appendix 1: Background information to chapter 2 on legal framework
The following annex provides some background information on subjects addressed in Chapter 2.
The intention is that the reader less familiar with the legal context may read this concurrently with
chapter 2.
EU and Danish legislation
Chemicals are regulated via EU and national legislations, the latter often being a national
transposition of EU directives.
There are four main EU legal instruments:
Regulations (DK: Forordninger) are binding in their entirety and directly applicable in all EU
Member States.
Directives (DK: Direktiver) are binding for the EU Member States as to the results to be
achieved. Directives have to be transposed (DK: gennemført) into the national legal framework
within a given timeframe. Directives leave margin for manoeuvering as to the form and means
of implementation. However, there are great differences in the space for manoeuvering
between directives. For example, several directives regulating chemicals previously were rather
specific and often transposed more or less word-by-word into national legislation.
Consequently and to further strengthen a level playing field within the internal market, the
new chemicals policy (REACH) and the new legislation for classification and labelling (CLP)
were implemented as Regulations. In Denmark, Directives are most frequently transposed as
laws (DK: love) and statutory orders (DK: bekendtgørelser).
The European Commission has the right and the duty to suggest new legislation in the form of
regulations and directives. New or recast directives and regulations often have transitional
periods for the various provisions set-out in the legal text. In the following, we will generally
list the latest piece of EU legal text, even if the provisions identified are not yet fully
implemented. On the other hand, we will include currently valid Danish legislation, e.g. the
implementation of the cosmetics directive) even if this will be replaced with the new Cosmetic
Regulation.
Decisions are fully binding on those to whom they are addressed. Decisions are EU laws
relating to specific cases. They can come from the EU Council (sometimes jointly with the
European Parliament) or the European Commission. In relation to EU chemicals policy,
decisions are e.g. used in relation to inclusion of substances in REACH Annex XVII
(restrictions). This takes place via a so-called comitology procedure involving Member State
representatives. Decisions are also used under the EU ecolabelling Regulation in relation to
establishing ecolabel criteria for specific product groups.
Recommendations and opinions are non-binding, declaratory instruments.
In conformity with the transposed EU directives, Danish legislation regulate to some extent
chemicals via various general or sector specific legislation, most frequently via statutory orders (DK:
bekendtgørelser).
Survey of Boric acid and sodium borates (borax)
91
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0092.png
Chemicals legislation
REACH and CLP
The REACH Regulation
1
and the CLP Regulation
2
are the overarching pieces of EU chemicals
legislation regulating industrial chemicals. The below will briefly summarise the REACH and CLP
provisions and give an overview of 'pipeline' procedures, i.e. procedures which may (or may not)
result in an eventual inclusion under one of the REACH procedures.
(Pre-)Registration
All manufacturers and importers of chemical substance > 1 tonne/year have to register their
chemicals with the European Chemicals Agency (ECHA). Pre-registered chemicals benefit from
tonnage and property dependent staggered dead-lines:
30 November 2010: Registration of substances manufactured or imported at 1000 tonnes or
more per year, carcinogenic, mutagenic or toxic to reproduction substances above 1 tonne per
year, and substances dangerous to aquatic organisms or the environment above 100 tonnes per
year.
31 May 2013: Registration of substances manufactured or imported at 100-1000 tonnes per
year.
31 May 2018: Registration of substances manufactured or imported at 1-100 tonnes per year.
Evaluation
A selected number of registrations will be evaluated by ECHA and the EU Member States.
Evaluation covers assessment of the compliance of individual dossiers (dossier evaluation) and
substance evaluations involving information from all registrations of a given substance to see if
further EU action is needed on that substance, for example as a restriction (substance evaluation).
Authorisation
Authorisation aims at substituting or limiting the manufacturing, import and use of substances of
very high concern (SVHC). For substances included in REACH annex XIV, industry has to cease use
of those substance within a given deadline (sunset date) or apply for authorisation for certain
specified uses within an application date.
Restriction
If the authorities assess that that there is a risks to be addressed at the EU level, limitations of the
manufacturing and use of a chemical substance (or substance group) may be implemented.
Restrictions are listed in REACH annex XVII, which has also taken over the restrictions from the
previous legislation (Directive 76/769/EEC).
Classification and Labelling
The CLP Regulation implements the United Nations Global Harmonised System (GHS) for
classification and labelling of substances and mixtures of substances into EU legislation. It further
specifies rules for packaging of chemicals.
1
2
Regulation (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
Regulation (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures
92
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0093.png
Two classification and labelling provisions are:
1.
Harmonised classification and labelling
for a number of chemical substances. These
classifications are agreed at the EU level and can be found in CLP Annex VI. In addition to newly
agreed harmonised classifications, the annex has taken over the harmonised classifications in
Annex I of the previous Dangerous Substances Directive (67/548/EEC); classifications which have
been 'translated' according to the new classification rules.
2.
Classification and labelling inventory.
All manufacturers and importers of chemicals
substances are obliged to classify and label their substances. If no harmonised classification is
available, a self-classification shall be done based on available information according to the
classification criteria in the CLP regulation. As a new requirement, these self-classifications should
be notified to ECHA, which in turn publish the classification and labelling inventory based on all
notifications received. There is no tonnage trigger for this obligation.
Ongoing activities - pipeline
In addition to listing substance already addressed by the provisions of REACH (pre-registrations,
registrations, substances included in various annexes of REACH and CLP, etc.), the ECHA web-site
also provides the opportunity for searching for substances in the pipeline in relation to certain
REACH and CLP provisions. These will be briefly summarised below:
Community Rolling Action Plan (CoRAP)
The EU member states have the right and duty to conduct REACH substance evaluations. In order
to coordinate this work among Member States and inform the relevant stakeholders of upcoming
substance evaluations, a Community Rolling Action Plan (CoRAP) is developed and published,
indicating by who and when a given substance is expected to be evaluated.
Authorisation process; candidate list, Authorisation list, Annex XIV
Before a substance is included in REACH Annex XIV and thus being subject to Authorisation, it has
to go through the following steps:
1.
2.
3.
It has to be identified as a SVHC leading to inclusion in the candidate list3
It has to be prioritised and recommended for inclusion in ANNEX XIV (These can be found as
Annex XIV recommendation lists on the ECHA web-site)
It has to be included in REACH Annex XIV following a comitology procedure decision
(substances on Annex XIV appear on the Authorisation list on the ECHA web-site).
The candidate list (substances agreed to possess SVHC properties) and the Authorisation list are
published on the ECHA web-site.
Registry of intentions
When EU Member States and ECHA (when required by the European Commission) prepare a
proposal for:
a harmonised classification and labelling,
an identification of a substance as SVHC, or
a restriction.
This is done as a REACH Annex XV proposal.
It should be noted that the candidate list is also used in relation to articles imported to, produced in or distributed in the EU.
Certain supply chain information is triggered if the articles contain more than 0.1% (w/w) (REACH Article 7.2 ff).
3
Survey of Boric acid and sodium borates (borax)
93
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0094.png
The 'registry of intentions' gives an overview of intensions in relation to Annex XV dossiers divided
into:
current intentions for submitting an Annex XV dossier,
dossiers submitted, and
withdrawn intentions and withdrawn submissions
for the three types of Annex XV dossiers.
International agreements
OSPAR Convention
OSPAR is the mechanism by which fifteen Governments of the western coasts and catchments of
Europe, together with the European Community, cooperate to protect the marine environment of
the North-East Atlantic.
Work to implement the OSPAR Convention and its strategies is taken forward through the adoption
of decisions, which are legally binding on the Contracting Parties, recommendations and other
agreements.
Decisions and recommendations
set out actions to be taken by the Contracting Parties.
These measures are complemented by
other agreements
setting out:
issues of importance
agreed programmes of monitoring, information collection or other work which the Contracting
Parties commit to carry out.
guidelines or guidance setting out the way that any programme or measure should be
implemented
actions to be taken by the OSPAR Commission on behalf of the Contracting Parties.
HELCOM - Helsinki Convention
The Helsinki Commission, or HELCOM, works to protect the marine environment of the Baltic Sea
from all sources of pollution through intergovernmental co-operation between Denmark, Estonia,
the European Community, Finland, Germany, Latvia, Lithuania, Poland, Russia and Sweden.
HELCOM is the governing body of the "Convention on the Protection of the Marine Environment of
the Baltic Sea Area" - more usually known as the
Helsinki Convention.
In pursuing this objective and vision the countries have jointly pooled their efforts in
HELCOM, which is works as:
an environmental policy maker for the Baltic Sea area by developing common environmental
objectives and actions;
an environmental focal point providing information about (i) the state of/trends in the marine
environment; (ii) the efficiency of measures to protect it and (iii) common initiatives and
positions which can form the basis for decision-making in other international fora;
a body for developing, according to the specific needs of the Baltic Sea, Recommendations of
its own and Recommendations supplementary to measures imposed by other international
organisations;
a supervisory body dedicated to ensuring that HELCOM environmental standards are fully
implemented by all parties throughout the Baltic Sea and its catchment area; and
a co-ordinating body, ascertaining multilateral response in case of major maritime incidents.
Stockholm Convention on Persistent Organic Pollutants (POPs)
The Stockholm Convention on Persistent Organic Pollutants is a global treaty to protect human
health and the environment from chemicals that remain intact in the environment for long periods,
become widely distributed geographically, accumulate in the fatty tissue of humans and wildlife,
94
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
and have adverse effects to human health or to the environment. The Convention is administered
by the United Nations Environment Programme and is based in Geneva, Switzerland.
Rotterdam Convention
The objectives of the Rotterdam Convention are:
to promote shared responsibility and cooperative efforts among Parties in the international
trade of certain hazardous chemicals in order to protect human health and the environment
from potential harm;
to contribute to the environmentally sound use of those hazardous chemicals, by facilitating
information exchange about their characteristics, by providing for a national decision-making
process on their import and export and by disseminating these decisions to Parties.
The Convention creates legally binding obligations for the implementation of the Prior
Informed Consent (PIC) procedure. It built on the voluntary PIC procedure, initiated by UNEP
and FAO in 1989 and ceased on 24 February 2006.
The Convention covers pesticides and industrial chemicals that have been banned or severely
restricted for health or environmental reasons by Parties and which have been notified by Parties
for inclusion in the PIC procedure. One notification from each of two specified regions triggers
consideration of addition of a chemical to Annex III of the Convention. Severely hazardous pesticide
formulations that present a risk under conditions of use in developing countries or countries with
economies in transition may also be proposed for inclusion in Annex III.
Basel Convention
The Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their
Disposal was adopted on 22 March 1989 by the Conference of Plenipotentiaries in Basel,
Switzerland, in response to a public outcry following the discovery, in the 1980s, in Africa and other
parts of the developing world of deposits of toxic wastes imported from abroad.
The overarching objective of the Basel Convention is to protect human health and the environment
against the adverse effects of hazardous wastes. Its scope of application covers a wide range of
wastes defined as “hazardous wastes” based on their origin and/or composition and their
characteristics, as well as two types of wastes defined as “other wastes” - household waste and
incinerator ash.
The provisions of the Convention center around the following principal aims:
the reduction of hazardous waste generation and the promotion of environmentally sound
management of hazardous wastes, wherever the place of disposal;
the restriction of transboundary movements of hazardous wastes except where it is perceived
to be in accordance with the principles of environmentally sound management; and
a regulatory system applying to cases where transboundary movements are permissible.
Eco-labels
Eco-label schemes are voluntary schemes where industry can apply for the right to use the eco-label
on their products if these fulfil the ecolabelling criteria for that type of product. An EU scheme (the
flower) and various national/regional schemes exist. In this project we have focused on the three
most common schemes encountered on Danish products.
EU flower
The EU ecolabelling Regulation lays out the general rules and conditions for the EU ecolabel; the
flower. Criteria for new product groups are gradually added to the scheme via 'decisions'; e.g. the
Commission Decision of 21 June 2007 establishing the ecological criteria for the award of the
Community eco-label to soaps, shampoos and hair conditioners.
Survey of Boric acid and sodium borates (borax)
95
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0096.png
Nordic Swan
The Nordic Swan is a cooperation between Denmark, Iceland, Norway, Sweden and Finland. The
Nordic Ecolabelling Board consists of members from each national Ecolabelling Board and decides
on Nordic criteria requirements for products and services. In Denmark, the practical
implementation of the rules, applications and approval process related to the EU flower and Nordic
Swan is hosted by Ecolabelling Denmark "Miljømærkning Danmark" (http://www.ecolabel.dk/).
New criteria are applicable in Denmark when they are published on the Ecolabelling Denmark’s
website (according to Statutory Order no. 447 of 23/04/2010).
Blue Angel (Blauer Engel)
The Blue Angel is a national German eco-label. More information can be found on:
http://www.blauer-engel.de/en.
96
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0097.png
Appendix 2: Additional data on the tonnage and numbers of products
containing Boric acid; Disodium tetraborate, anhydrous; Disodium
tetraborate decahydrate; Disodium tetraborate pentahydrate and Diboron
trioxice, boric acid (data retrieved from the Nordic Spin database)
Tonnage and products reported in Nordic countries in the years 1999-2011. Data is only presented
for boric substances where data are sufficient for graphic presentation.
Boric acid, crude natural, containing not more than % of H
3
BO
3
calculated
on the dry weight - 11113-50-1
35
30
25
Tons
20
15
10
5
0
35
Number of products
30
25
20
15
10
5
0
SE tonnage
DK tonnage
FI tonnage
NO tonnage
SE products
DK products
FI products
NO products
Disodium tetraborate, anhydrous - 1330-43-4
3000
80
70
60
2000
Tons
1500
1000
500
50
40
30
20
10
Number of products
SE tonnage
DK tonnage
FI tonnage
NO tonnage
SE products
2500
DK products
FI products
NO products
0
69,63
0
Survey of Boric acid and sodium borates (borax)
97
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0098.png
Disodium tetraborate decahydrate - 1303-96-4
7000
6000
5000
4000
Tons
3000
2000
1000
0
350
300
Number of products
250
200
150
100
50
0
SE tonnage
DK tonnage
FI tonnage
NO tonnage
SE products
DK products
FI products
NO products
Disodium tetraborate pentahydrate - 12179-04-3
5000
4500
4000
3500
3000
2500
2000
1500
1000
500
0
60
Number of products
50
40
30
20
10
14,01
0
SE tonnage
DK tonnage
FI tonnage
NO tonnage
SE products
DK products
FI products
Tons
NO products
Diboron trioxide, boric oxid- 1303-86-2
450
400
350
300
Tons
250
200
150
100
50
0
60
Number of products
50
40
30
20
SE tonnage
DK tonnage
FI tonnage
NO tonnage
SE products
DK products
FI products
NO products
10
0
98
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0099.png
Appendix 3: Calculated Predicted Environmental Concentration (PEC) and
corresponding Risk Characterisation Ratios (RCRs) for environmental
compartments
TABLE 1
PREDICTED ENVIRONMENTAL CONCENTRATIONS BASED ON THE USE OF BORON IN DETERGENTS (EUSES
CALCULATIONS) (HERA, 2005)
Environmental Concentration
Regional PEC in surface water (total)
Continental PEC in surface water (total)
Local PEC in surface water (average annual)
Regional PEC in sediment
Local PEC in fresh-water sediment
Regional PEC in agricultural soil
Continental PEC in agricultural soil
Local PEC in agricultural soil (averaged over 30 days)
Local PEC in agricultural soil (averaged over 180 days)
Local PEC in grassland (averaged over 180 days)
Local PEC in pore water of agricultural soil
Local PEC in STP effluent
Value as B
0.45 mg/L
0.0013 mg/L
0.45 mg/L
0.0080 mg/kg w. w.
0.96 mg/kg w. w.
<0.00008 mg/kg w. w.
<0.00002 mg/kg w. w.
0.029 mg/kg w. w.
0.028 mg/kg w.w.
0.006 mg/kg w. w.
0.016 mg/L
0.044 mg/L
Value as Boric Acid
2.6 mg/L
0.0074 mg/L
2.6 mg/L
0.046 mg/kg w. w.
5.5 mg/kg w. w.
<0.00046 mg/kg w. w.
<0.00011 mg/kg w. w.
0.17 mg/kg w. w.
0.16 mg/kg w. w.
0.037 mg/kg w. w.
0.091 mg/L
0.25 mg/L
TABLE 2
CALCULATED PREDICTED ENVIRONMENTAL CONCENTRATIONS (PECS) (GENERIC
ASSESSMENT)
BASED ON THE
USE OF BORON WITHIN DIFFERENT INDUSTRY SECTORS AND FOR DIFFERENT LIFE CYCLE STAGES (EUSES
CALCULATIONS) (ECHA/ TRANSITIONAL ANNEX XV REPORT (2009A+B)
Industry
sector
Producers
Life cycle stage
PEC
add. STP
[µg/L]
PEC
add. water
[µg/L]
2,325.4
PEC
add. sediment
[mg/kg d. w.]
17.3
Production/import
22.31
Borosilicate
Formulation
3.75 - 5.36
470.4 - 630.4
4.2 - 5.4
IFG/TFG
Formulation
3.8 - 7.6
474.4 - 854.4
4.3 - 6.9
Ceramics
Formulation
4.88 - 6.98
582.4 - 791.4
5 - 6.5
Industrial
Formulation
4.65
558.4
4.9
Survey of Boric acid and sodium borates (borax)
99
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0100.png
Industry
sector
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Borosilicate
IFG/TFG
Ceramics
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Life cycle stage
PEC
add. STP
[µg/L]
PEC
add. water
[µg/L]
PEC
add. sediment
[mg/kg d. w.]
Formulation
Formulation
4.12
7.51
506.4
845.4
4.5
6.9
Formulation
Formulation
Formulation
4.71
0.29
1.74
565.4
124.4
269.4
4.9
1.8
2.8
Formulation
3.44
438.4
4
Industrial use
Industrial use
Industrial use
Industrial use
44.67
47.5
58.13
7.75
4,561.4
4,834.4
5,907.4
856.4
32.6
34.6
42.6
7
Industrial use
Industrial use
3.3
0.375
425.4
132.4
3.9
1.9
Private use
Private use
Industrial use
3.06
0.53
4.36
401.4
147.4
530.4
3.8
2
4.7
Industrial use
5.43
637.4
5.4
100
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0101.png
TABLE 3
CALCULATED PREDICTED ENVIRONMENTAL CONCENTRATIONS (PECS) (SITE
SPECIFIC ASSESSMENT)
BASED ON
THE USE OF BORON WITHIN DIFFERENT INDUSTRY SECTORS AND FOR DIFFERENT LIFE CYCLE STAGES (EUSES
CALCULATIONS) (ECHA/ TRANSITIONAL ANNEX XV REPORT (2009A+B).
Industry
sector
Producers
Life cycle stage
PEC
add. STP
[µg/L]
PEC
add. water
[µg/L]
1,933.4 –
3,201.4
375.4 – 1,064.4
PEC
add. sediment
[mg/kg d. w.]
14.5 - 23.4
Production/import
18.38 - 31.07
Borosilicate
Formulation
2.81 - 9.7
3.6 - 8.4
IFG/TFG
Formulation
0.89 - 3.45
174.4 - 439.4
2.2 - 4
Ceramics
Formulation
1.75 - 5.82
269.4 - 677.4
2.8 - 4
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Borosilicate
IFG/TFG
Ceramics
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Formulation
2.35 - 5.11
329.4 - 605.4
3.3 - 5.2
Formulation
Formulation
0.73 - 1.35
10.87
167.4 - 229.4
1,181.4
2.1 - 2.5
9.2
Formulation
Formulation
Formulation
*
*
0.52 - 1.93
*
*
146.4 - 288.4
*
*
2-3
Formulation
0.95 - 2.8
189.4 - 380.4
3.4
Industrial use
Industrial use
Industrial use
Industrial use
161.67
57.44
97.06
5.11
16,262.4
5,834.4
9,800.4
605.4
114.6
41.9
69.7
5.2
Industrial use
Industrial use
1.35
0.38
229.4
229.4
2.5
2
Private use
*
*
*
Survey of Boric acid and sodium borates (borax)
101
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0102.png
Industry
sector
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Life cycle stage
PEC
add. STP
[µg/L]
PEC
add. water
[µg/L]
*
*
PEC
add. sediment
[mg/kg d. w.]
*
*
Private use
Industrial use
*
*
Industrial use
6.66
760.4
6.3
*site specific data not available
TABLE 4
CALCUALTED RISKS (RCRS) FOR THE ENVIRONMENTAL COMPARTMENTS DUE TO THE USE OF BORON IN LIQUID
DETERGENTS (HERA, 2005)
Environmental compartment
Surface Water
Regional
Continental
Local
River monitoring data
Freshwater sediment
Regional
Continental
Local
Agricultural soil
Regional
Continental
Local 30 days
Local 180 days
Grassland soil
Local 180 days
Irrigation
PEC value as B
PNEC value as B
RCR (PEC/PNEC)
0.45 mg/L
0.0013 mg/L
3.45 mg/L
0.45 mg/L
0.447 mg/L
0.13
<0.01
0.13
0.13
0.008 mg/kg
0.003 mg/kg
0.96 mg/kg
3.29 mg/kg ww.
<0.01
<0.01
0.29
<0.00008 mg/kg
0.00002 mg/kg
0.16 mg/kg ww.
0.029 mg/kg
0.028 mg/kg
<0.01
<0.01
0.18
0.17
0.006 mg/kg
0.16 mg/kg ww.
0.04
102
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0103.png
Environmental compartment
Soil Porewater
STP effluent
Sewage treatment plant
Local
PEC value as B
0.016 mg/L
PNEC value as B
RCR (PEC/PNEC)
0.02
1 mg/L
0.044 mg/L
0.04
0.044 mg/L
112 mg/L
< 0.01
TABLE 5
CALCULATED RISK CHARACTERISATION RATIOS (RCRS) (GENERIC
ASSESSMENT)
BASED ON THE USE OF BORON
WITHIN DIFFERENT INDUSTRY SECTORS AND FOR DIFFERENT LIFE CYCLE STAGES (ECHA/ TRANSITIONAL ANNEX
XV REPORT (2009A+B).
Industry
sector
Producers
Life cycle stage
RCR
add. STP
RCR
add. water
RCR
add. sediment
Production/import
12.75
12.92
9.61
Borosilicate
Formulation
2.14 -3.06
2.61 - 3.50
2.33 - 3.00
IFG/TFG
Formulation
2.17- 4.34
2.61 - 3.50
2.39 - 3.83
Ceramics
Formulation
2.79 - 3.99
3.24 - 4.40
2.78 - 3.61
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Borosilicate
IFG/TFG
Formulation
2.66
3.10
2.72
Formulation
Formulation
2.35
4.29
2.81
4.70
2.50
3.83
Formulation
Formulation
Formulation
2.69
0.17
0.99
3.14
0.69
1.50
2.72
1.00
1.56
Formulation
1.97
2.44
2.22
Industrial use
Industrial use
25.53
27.14
25.34
26.86
18.11
19.22
Survey of Boric acid and sodium borates (borax)
103
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0104.png
Industry
sector
Ceramics
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Life cycle stage
RCR
add. STP
RCR
add. water
RCR
add. sediment
Industrial use
Industrial use
33.22
4.43
32.82
4.76
23.67
3.89
Industrial use
Industrial use
1.89
0.21
2.36
0.74
2.17
1.06
Private use
Private use
Industrial use
1.75
0.30
2.49
2.23
0.82
2.95
2.11
1.11
2.61
Industrial use
3.10
3.54
3.00
TABLE 6
CALCULATED RISK CHARACTERISATION RATIOS (RCRS) (SITE
SPECIFIC ASSESSMENT)
BASED ON THE USE OF
BORON WITHIN DIFFERENT INDUSTRY SECTORS AND FOR DIFFERENT LIFE CYCLE STAGES (ECHA/ TRANSITIONAL
ANNEX XV REPORT (2009A +B)
Industry
sector
Producers
Life cycle stage
RCR
add. STP
RCR
add. water
RCR
add. sediment
Production/import
10.5 - 17.75
10.74 - 17.79
8.06 - 13
Borosilicate
Formulation
1.61 - 5.54
2.09 - 5.91
2.00 - 4.67
IFG/TFG
Formulation
0.51 - 1.97
0.97 - .44
1.22 - 2.22
Ceramics
Formulation
1.00 -3.33
1.50 - 3.76
1.56 - 2.22
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Formulation
1.34 - 2.92
1.83 - 3.36
1.83 - 2.89
Formulation
Formulation
0.42 - 0.77
6.21
0.93 - 1.27
6.56
1.17 - 1.39
5.11
Formulation
*
*
*
104
Survey of Boric acid and sodium borates (borax)
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0105.png
Industry
sector
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Borosilicate
IFG/TFG
Ceramics
Industrial
fluids
Metallurgy
Flame
retardants
Detergents
Cleaners
Agriculture
(fertilisers)
Various
chemical
effects
Life cycle stage
RCR
add. STP
RCR
add. water
RCR
add. sediment
Formulation
Formulation
*
0.30 - 1.10
*
0.81 - 1.60
*
1.11 - 1.67
Formulation
0.54 - 1.63
1.05 - 2.11
1.28 - 1.89
Industrial use
Industrial use
Industrial use
Industrial use
92.38
32.82
55.46
2.92
90.35
32.41
54.45
3.36
63.67
23.28
38.72
2.89
Industrial use
Industrial use
0.77
0.22
1.27
0.74
1.39
1.11
Private use
Private use
Industrial use
*
*
*
*
*
*
*
*
*
Industrial use
3.81
4.22
3.5
*site specific data not available RCR not calculated
Survey of Boric acid and sodium borates (borax)
105
SUU, Alm.del - 2015-16 - Bilag 106: Henvendelse af 15/12-15 fra Bjørn Flygenring vedr. bivirkninger ved HPV-vaccine
1581395_0106.png
Survey of Boric acid and sodium borates (borax)
This survey is part of the Danish EPA’s review of the substances on the List of Undesirable Substances
(LOUS). The survey concerns the substance boric acid and the salts thereof called borates. This
substance was included in the LOUS list in 2009 due to its reproductive toxic effects. The report defines
the substances and present information on the use and occurrence of boric acid and the borates
internationally and in Denmark, information on existing regulation, on environmental and health effects,
on monitoring and exposure, on waste management and on alternatives to the substances.
Denne kortlægning er et led i Miljøstyrelsens kortlægninger af stofferne på Listen Over Uønskede Stoffer
(LOUS). Kortlægningen omhandler stofferne borsyre og de afledte borsalte kaldet borater. Rapporten
definerer stofferne og indeholder blandt andet en beskrivelse af brugen og forekomsten af borstofferne
internationalt og i Danmark, om eksisterende regulering, en beskrivelse af miljø- og sundhedseffekter af
stoffet, af moniteringsdata, af affaldsbehandling samt alternativer til stofferne.
Strandgade 29
1401 Copenhagen K, Denmark
Tel.: (+45) 72 54 40 00
www.mst.dk