
DATE: 24.09.2015

 1 | P a g e

Technical Analysis

Skatteudvalget 2014-15 (2. samling)
SAU Alm.del Bilag 48
Offentligt

DATE: 24.09.2015

 2 | P a g e

Table of Content

1 Executive Summary .. 5

1.1 Scope of Analysis ... 5

1.2 Methodology for the Technical Analysis ... 5

1.3 Key Findings ... 6

2 Scope ... 10

2.1 Scope of Analysis ... 10

2.2 Limitations .. 11

2.3 Scope of Requirements Gather and Trace ... 11

2.4 Assumptions ... 13

3 Approach & Methodology ... 14

3.1 Approach .. 14

3.2 Methodology: Establishing and Tracing Needs ... 14

3.3 Methodology: Software Development Life Cycle Assessment 17

4 Chronology of Events ... 18

5 Findings and Consequences .. 20

5.1 Requirements Trace ... 20

5.1.1 Purpose .. 20

5.1.2 Key Findings .. 20

5.1.3 Assessment Details .. 21

5.1.4 Accenture Assessment .. 24

5.2 End to end Software Development Life Cycle Review .. 24

5.2.1 Purpose .. 24

5.2.2 Key Findings .. 25

5.2.3 Assessment Details .. 25

5.2.4 Accenture Assessment .. 27

5.3 Solution Blueprint Review ... 28

5.3.1 Purpose .. 28

5.3.2 Key Findings .. 28

5.3.3 Assessment Details .. 28

5.3.4 Accenture Assessment .. 29

5.4 Interface Specifications ... 29

5.4.1 Purpose .. 29

5.4.2 Key Findings .. 29

5.4.3 Assessment Details .. 30

DATE: 24.09.2015

 3 | P a g e

5.4.4 Accenture Assessment .. 32

5.5 End to End Testing Approach ... 33

5.5.1 Purpose .. 33

5.5.2 Key Findings .. 34

5.5.3 Assessment Details .. 34

5.5.4 Accenture Assessment .. 38

5.6 EFI Code Review .. 39

5.6.1 Purpose .. 39

5.6.2 Key Findings .. 39

5.6.3 Assessment Details .. 40

5.6.4 Accenture Assessment .. 44

5.7 DMI Code Review ... 44

5.7.1 Purpose .. 44

5.7.2 Key Findings .. 44

5.7.3 Assessment Details .. 44

5.7.4 Accenture Assessment .. 50

5.8 Complexity of Design .. 50

5.8.1 Purpose .. 50

5.8.2 Key Findings .. 50

5.8.3 Assessment Details .. 51

5.8.4 Accenture Assessment .. 54

5.9 Solution Architecture Observations ... 55

5.9.1 Purpose .. 55

5.9.2 Key Findings .. 55

5.9.3 Assessment Details .. 55

5.9.4 Accenture Assessment .. 58

5.10 Focus on Simple Path ... 59

5.10.1 Purpose .. 59

5.10.2 Key Findings ... 59

5.10.3 Assessment Details .. 59

5.10.4 Accenture Assessment ... 60

5.11 Event based processing .. 61

5.11.1 Purpose .. 61

5.11.2 Key Findings ... 61

5.11.3 Assessment Details .. 61

5.11.4 Accenture Assessment ... 62

DATE: 24.09.2015

 4 | P a g e

5.12 Data Quality Impacts on Application .. 62

5.12.1 Purpose .. 62

5.12.2 Key Findings ... 62

5.12.3 Assessment Details .. 65

5.12.4 Accenture Assessment ... 66

6 Appendix: List of Defined Terms ... 68

7 Appendix: List of Meetings .. 70

7.1 Inventory of Workshops and Interviews .. 70

7.1.1 General .. 70

7.1.2 Modtag Fordring (Receive Claim) .. 70

7.1.3 Kundesaldi (Client Account Balance) ... 71

7.1.4 Betalingsordning (Payment Plans) ... 71

7.1.5 Lønindeholdelse (Salary Deduction) .. 71

8 Appendix: Examples of Missing and Incomplete Needs ... 73

9 Appendix: Documents Examined .. 77

9.1 EFI + DMI System Level ... 77

9.1.1 Analysis .. 77

9.1.2 Design .. 77

9.1.3 Test .. 77

9.2 EFI .. 77

9.2.1 Analysis .. 77

9.2.2 Design .. 77

9.2.3 Code .. 78

9.2.4 Test .. 102

9.2.5 Change Requests .. 102

9.2.6 Analysis .. 102

9.2.7 Design .. 103

9.2.8 Code .. 103

9.2.9 Test .. 104

9.2.10 Change Requests ... 104

10 Appendix: Accenture Delivery Methods ... 105

10.1 Components .. 106

10.2 Comprehensive Coverage ... 106

10.3 Structure .. 106

10.4 ADM for Custom Development .. 107

DATE: 24.09.2015

 5 | P a g e

1 Executive Summary

1.1 Scope of Analysis

Accenture has in accordance with the task defined by Skatteministeriet conducted a
technical analysis to review the EFI and DMI Applications, their integration with each other
and the rest of the SKAT IT estate.

This technical analysis is based on review of selected parts of the EFI and DMI
Applications as well as selected processes undertaken during the development of EFI and
DMI. The report is made on our experience and assumption that the conclusions in the
report are representative also for the part of the EFI and DMI Applications that have not
been reviewed.

The report does not give a full picture with regards to the current state of EFI and DMI, the
reasons that have led to the current state of the Applications (EFI and DMI), or if the
current state of the Applications are consistent with the original contractual requirements
as described in the EFI and DMI contracts.

The scope of the analysis included the analysis, design, build and test phases of the EFI
and DMI Applications, and the combined EFI+DMI System. Most of the analysis was
performed on a sample basis. Our approach has been to select core areas that are
essential for the system operation, such as receipt of a claim, salary deduction, payment
plan and order of coverage, for CPR customers. These are found in almost every
collections system. There is a risk that this could lead to a misleadingly positive view of the
System, as this core functionality is the functionality most likely to be used and therefore
working.

1.2 Methodology for the Technical Analysis

The methodology for the technical analysis was to compare the approach used to build the
System to a normal system building approach. The Accenture Delivery Methods (ADM)
was used as the reference for the comparison. ADM provides a comprehensive definition
of the required processes, tasks and deliverables that should be completed across the
phases of the Software Development Life Cycle (SDLC).

As each phase of the SDLC was assessed, relevant documents were identified, examined
and assessed. ADM was used as the reference and framework with a degree of flexibility.
The overall EFI Programme and EFI and DMI Applications were not created by Accenture
and therefore were not created using the Accenture Delivery Methods. Therefore, a
degree of flexibility was required in assessing the existing documents and materials
against ADM. Where content equivalent to an ADM document was available in other
document(s) these were accepted and assessed.

Common industry practice is to describe software systems by detailed documented
requirements that define what the system must do, in order to operate correctly.
Requirements are used as the basis of testing (i.e. validation) that the system actually
performs these functions.

DATE: 24.09.2015

 6 | P a g e

Early in the analysis, it was identified that the Original Requirements for the Applications
and System contained less detail than expected for a system of this scale, in our
experience.

The analysis approach was extended to include an exercise to document the Needs
(requirements) for the System, and to trace the existence of these needs through the
Applications and System, in a sample of core areas for debt collection.

A detailed description of the methodology for the assessment is provided in Section 3.

1.3 Key Findings

What is the Current State of the System?

Documentation & Design

 Because of the lack of detailed documented requirements, it is not possible to
accurately describe the state of the System.

o There is not a set of detailed documented requirements for the EFI or DMI
Applications or the combined EFI+DMI System.

o Normal practice is to describe the completion state of a System in terms of the
percentage of detailed documented requirements that it meets, validated by
testing.

o Therefore, it is not possible to accurately describe the current state of the
System in a normal way, or to complete the System.

 During the design of EFI and DMI there was no documented end-to-end process
description of how the overall solution should work to process claims from start to
finish. The high-level designs that did exist (use cases) were separate for EFI and
DMI. These were not integrated and they were also not used to validate that the
end-to-end solution worked

Structure

 EFI and DMI are separate Applications. They are developed and deployed as
separate technical components. Together EFI and DMI are a single System with
integration into the SKAT IT estate.

o Neither EFI nor DMI can perform any useful collections function without the
other. For example, screens that display the details of debts or interests require
EFI and DMI to interact.

o It is our opinion they should therefore be considered as a single software
System that should have requirements, processes, designs, and tests for the
System.

DATE: 24.09.2015

 7 | P a g e

o When EFI or DMI require replacement, there is either a very large body of work
required to re-implement the same interfaces again on the new component, or
both EFI and DMI must be replaced together.

 The debt collection System is separated into two tightly integrated Applications. In
our experience collections System are usually implemented as a single application.
As a result of this separation, performance, reliability, maintenance costs and
functionality are negatively impacted.

 EFI and DMI has been designed with the aspiration of providing future flexibility.
Some flexibility has been provided, however it is not clear this level of flexibility was
required. Most of the flexibility has not in fact been used to date. It is not clear all
the functionality controlled by the flexibility works.

 The interfaces between EFI and DMI and the systems they interact with including
the ones within the rest of the SKAT were insufficiently designed. This led to a
number of problems such as:

o Extensive, ongoing change being required over a long period to fully evolve the
interfaces.

o EFI and DMI Applications taking more time and effort to finalise.

o Making the testing of realistic paths through the code difficult due to being
unable to create accurate program stubs. Stubs are normally used in large
system implementations to test components or applications well before end-to-
end (complete system) testing is performed. Realistic stubs, which enable
testing of more than the simple path depend on detailed designs

Technical

 EFI does not implement rigorous external validation on input data from external
Systems or end users. EFI+DMI is partially or completely unable to process records
that are missing key fields, and lacks mechanisms to manage the consequences of
this. As a result, the System cannot process some real world data

 Most automation in the System has been disabled since the go-live. The event
based processing approach, used for “monitoring” results in excessive numbers of
events and changes from a customer perspective. In practice, this means that if the
automation were enabled as originally designed and implemented, customers would
receive excessive numbers of communications and events from EFI+DMI

 DMI is the financial engine at the core of the System. Unusually for a financial
application it does not enforce Referential Integrity. This has allowed DMI to store
invalid records. This reduces the data quality in DMI and the overall integrity of
financial processing in SKAT Collections.

 DMI represents an unusual approach to an SAP Revenue implementation. There is
a low usage of SAP package functionality combined with an unusually high
percentage of custom objects. The consequences of this are that the licensed SAP
product functionality is relatively lightly used. DMI is in fact, mostly a custom

DATE: 24.09.2015

 8 | P a g e

Application, rather than an SAP application. This will impact maintainability over the
lifespan of DMI

 The source code for EFI is slightly better than average quality, the source code to
DMI slightly lower than average quality. The quality refers to technical aspects of
the code such as complexity, error handling, maintainability, cohesion and
commenting. The source code quality is not a primary cause of problems with the
System

How did the System get into this state?

 The overall testing approach was compromised both by the lack of detailed
documented requirements to test for, and the test approach. Analysis of the testing
records confirmed with the EFI Programme test manager shows that 53.8% of the
originally planned tests were executed. 52.3% of the original tests (80.5% of non-
descoped tests at go-live) were recorded as passing testing. This resulted in a
substantially untested System being put into production use

 The scope of the System was not well defined at any stage. The complexity of the
Original Needs was not well described in the Original Requirements and use cases,
or at any subsequent phase. It is our opinion that the complexity of implementing
the variety of debts and legal persons, combined with the extent of automation was
never fully understood. This resulted in essential functionality being omitted from
the System

 There was a pervasive approach through the analysis, design, build and test of the
System to focus on the “simple path”, the most common path through the System.
Throughout the Original Requirements, use cases, designs, code and tests the
System is missing the detail required to process the variety and complexity of
situations encountered in production. This also resulted in essential functionality
being omitted from the System

 There was no design (solution blueprint) for the overall EFI+DMI System, either at
the start or since. Although some materials exist, these fall far short of what would
be expected to design a System of this complexity. Based on this lack of
documentation it is our opinion that the System level “SDLC” activities were largely
not performed. This resulted in problems integrating EFI and DMI, causing delays
and defects to the overall EFI Programme

 There was an assumption that the System would receive valid data from the internal
and external systems feeding EFI/DMI with claims, and from all users inputting data
manually. This assumption is identified because (a) the System does not do normal
levels of validation and (b) it was stated in requirements workshops that the EFI
Programme had no mandate to control incoming information. This does not appear
to be a reasonable assumption, based on our experience of other systems, and the
fact that non-valid data has been input to the System. This resulted in the System
failing to process correctly when presented with incorrect production data

 Assessments and reports by neutral external experts between 2012-13 prior to the
go-live date identified lack of design, testing and migration as risks. These risks

DATE: 24.09.2015

 9 | P a g e

were communicated to senior EFI Programme representatives.

Chronological Context for EFI Programme and Findings
The events analysed in this report are depicted on the timeline below. Events depicted
with grey are unconfirmed dates, where the EFI Programme has not confirmed the exact
dates. There are a number of key points with regard to the overall timeline.

 EFI and DMI were separate projects, performed by separate vendors, and managed
by SKAT.

 The most significant is that the design of EFI and DMI was not performed in a tightly
coordinated manner. Given the number and the complexity of the dependencies
between EFI and DMI, close coordination would have been required between the
Applications for the System to integrate correctly.

 Overall, there was poor stage containment (completing and closing phases of work,
before progressing to the next phase) both within the EFI and DMI Applications, and
overall for the combined EFI+DMI System.

In our opinion, the original project timeline was not feasible due to the technical
dependencies. The iterative nature of resolving the dependencies resulted in additional
work and suboptimal design.

Figure 1 Timeline

20072006 2008 2009 2010 2011 2012 2013 2014 2015

EFI DESIGN

EFI BUILD

EFI TEST

MAINTENANCE

MAINTENANCE

DMI DESIGN

DMI BUILD

DMI TEST

MAINTENANCE

MAINTENANCE

SKAT INTERFACE COORDINATION

SKAT SERVICE REPOSITORY

SKAT EFI + DMI TESTING

Planned
Live Date

Actual Live
Date

FASE 2

PROJECTS

(DMR, DMO and EFI)

ANALYSIS TIMEFRAME

EFI RQs

EFI UCs

DMI RQs

DMI UCs

DATE: 24.09.2015

 10 | P a g e

2 Scope

2.1 Scope of Analysis

Accenture has in accordance with the task defined by Skatteministeriet conducted a
technical analysis to review the EFI and DMI Applications, their integration with each other
and the rest of the SKAT IT estate.

This technical analysis is based on review of selected parts of the EFI and DMI
Applications as well as selected processes undertaken during the development of EFI and
DMI. The report is made on our experience and assumption that the conclusions in the
report are representative also for the part of the EFI and DMI Applications that have not
been reviewed.

The aspects of the report does not give a full picture with regards to the current state of
EFI and DMI, the reasons that have led to the current state of the Applications (EFI and
DMI), or if the current state of the Applications are consistent with the original contractual
requirements as described in the EFI and DMI contracts.

This analysis included the following:

 System Requirements Review

 Review of the EFI and DMI Applications

 Software Development Life Cycle (SDLC) review

 Automated and manual code review of EFI

 Semi-Automated code review and functional review of DMI

 Thorough analysis of a sample of core areas described below

As part of the analysis, we planned to trace requirements through the phases of
development, from analysis through design, build and test. Although there were Original
Requirements and use cases, the analysis team assessed that that these did not provide
sufficiently detailed documented requirements to provide the necessary input for design,
build and test. Therefore, in order to trace requirements through the Software
Development Life Cycle we had to run workshops with EFI Programme representatives to
gather and document detailed Needs for a sample of core areas. The analysis team
selected a number of core functional areas that are central to the collections function.
These are found in almost every collections system. The selected sample areas were as
follows:

Area Focus Area

Modtag Fordring
(Receive Claim)

Validation: legal rules applicable to claims

DATE: 24.09.2015

 11 | P a g e

Kundesaldi
(Client Account Balance)

Order of Coverage: distribution of payments across
claim(s), principal, interest, expiration interruption

Betalingsordning
(Payment Plans)

For CPR (personal customers), automatic initial creation
of a forced payment plan, adding of new claims to existing
mandatory payment plan

Lønindeholdelse
(Salary Deduction)

Main functionality for starting and stopping deduction,
notifications/decisions, and aging of claims during
deduction.

Table 1 Sample Areas

2.2 Limitations

This analysis is based on reviews of the documentation stated in the Appendix as well as
workshops and interviews. This analysis has only examined the Original Requirements
and use cases documents listed in the Appendix. The design, build and elements of the
test of EFI and DMI Applications are performed by separate project teams. The scope has
not included investigation of internal processes (e.g. unit testing) within these teams.

In many cases, the analysis has been performed on a sample basis (e.g. review of a
sample of source code or designs) or a time-boxed basis (e.g. limiting the number of
requirements gathering workshops). Where this has been necessary this is noted in the
detailed description of scope (Section 2) or in the relevant Assessment Details description.

2.3 Scope of Requirements Gather and Trace

As described in Section 2.1 above, it was identified early on that there was no detailed
documented definition of the Needs for EFI or DMI. Detailed, documented requirements
are a dependency for design, build and test of a software system. In order to resolve this
issue, the analysis team ran requirements workshops to gather and document in detail the
Needs for a sample of core areas.

The areas selected are core to collections functionality. Within these core areas, we
analysed the most common situations e.g. adult personal (CPR) customers. Less common
scenarios e.g. personally owned businesses (PEF) and children were not included in the
scope. The rationale for this approach was (a) to examine the System in areas where the
majority of claims were processed and where it was expected that the System would be
working and (b) it was expected that in these core areas the Needs would be well
understood.

The difference between our approach and the “simple path” approach described in Section
5.10 is that our requirements analysis strove to gather and document the full complexity of
Needs (all needed paths) within a small, commonly used area of the System, whereas in
the simple path approach, the full needed complexity is missed, because some needed
paths are not identified. Obviously, there is a risk that this could lead to a misleadingly
positive view of the System, as this core functionality is the functionality most likely to be
used and therefore working.

DATE: 24.09.2015

 12 | P a g e

Statement on thoroughness of requirements analysis:

 It was necessary to perform the requirements analysis within a limited timeframe.
Three (or four) workshops were allocated to perform the requirements gathering,
typically with 2-4 days between workshops for requirements owners to perform
additional research and analysis

 The approach taken was to analyse the Needs in limited, core areas in as much
detail as possible (ideally to full detail)

 In practice, it was necessary sometimes to limit the scope of the area, due to the
constrained timeframe lack of EFI Programme representative knowledge of the area
or lack of legal stakeholder knowledge of the area. To the extent possible, scope
limiting was done through exclusion of additional breadth (e.g. only considering
adult CPR customers, and excluding minors, PEF and CVR) while ensuring that the
full depth of Needs in the examined areas were identified

Kammeradvokaten’s Statement on Requirements Analysis:

 Kammeradvokaten did not have sufficient time to perform the factual research and
thereto related legal research necessary to provide fully validated opinions, and has
provided the following guidance about status of the legal requirements provided

 We have assisted the analysis team and SKAT during a series of workshops in
ascertaining a non-exhaustive list of legal needs/requirements concerning four
different parts of EFI, namely “Modtag fordring”, “Tvungne betalingsordninger”,
“Lønindeholdelse”, and “Kundesaldi”. During this process we have assisted in
explaining the legal framework (the main rules) of each of the areas, in as far as the
facts of the matter have been presented by SKAT etc., and in as far as the legal
framework was within the scope of the workshops. Our contributions have thus
been our best effort to describe and explain the (main) rules of the legal framework

o Our reviews have in turn been made on the basis of the facts, which we have
been presented by SKAT etc. We positively know that the facts we have been
presented have not been exhaustive. In consequence, our presentation of the
legal framework, needs and demand is also not exhaustive. There are several
exceptions, modifications and situations, which we have not taken into
consideration. Many of these due to the simple fact that we have not
contemplated or fully clarified their existence/relevance. This means that there
are many situations outside the main rules, which we have not discussed during
the workshop nor have we reviewed on them afterwards

o Our contributions and review have in no small extent been based on
assumptions on facts, which have not been tested. In no small extent has it
been impossible – within the timeframe – to ascertain the actual facts. An
example of this would be that it has until now not been possible to achieve clear
knowledge on (all) the claim types in EFI despite several requests and meetings
with SKAT. This seems to be due to the fact that no detailed overview and
knowledge concerning this issue is present within SKAT

DATE: 24.09.2015

 13 | P a g e

o During the process we have also not validated whether EFI’s application of
actions, which are described in legal conceptual terms, are executed according
to these legal terms. An example of this would be that we have not validated
whether EFI’s conceptual application of the terms pro rata liability or solidary
liability are made in (full) accordance with these concepts legal framework.
Throughout our review we have assumed that EFI’s application of these
terms/concepts is in (full) accordance with the legal framework for the
terms/concepts. Whether this is actually the case is only possible for us to
validate if we receive an exhaustive walkthrough of EFI’s handling of the
individual concept. We have assumed that such a walkthrough would be outside
the scope of this analysis of the chosen parts of EFI. We have also until now
been unable to ascertain such knowledge from SKAT. This also seems to be
due to the fact that no such clear knowledge is present within SKAT

2.4 Assumptions

The purpose of the report has not been to consider who is responsible for the decisions
taken during the project execution. The report does not include a legal review or an
assessment of the fulfilment of contractual obligations under the EFI and DMI contracts.
The report can thus not be used to conclude whether or to what extend any of the parties
involved in, the project execution can be held legally responsible for their involvement in
the project.

The report is based on the information and documentation provided to the analysis team
by the EFI Programme. The documents examined and meetings are listed in the
Appendix. In most cases, a sample based approach was applied. In these cases, the
approach was to select core, commonly used areas. The reason for selecting these areas
was to take a conservative approach – focusing on areas that would be expected to work.
Unfortunately, there is a risk that this shows a more positive view than in reality, as
peripheral areas, which in some cases are known to be more problematic, receive less
focus.

We have had parts of this analysis reviewed by EFI Programme representatives who have
reviewed and confirmed many, but not all, of the facts in this report. Specifically,
incomplete or no review feedback has been received on the following:

 The trace of Needs (definitive, documented requirements) through the Original
Requirements, use cases, designs, code and tests (Section 5.1). They were issued
for review on 30th June 2015, but no feedback at all has been received

 All non-contractual dates (e.g. start and end of interface coordination in Section 4)

Content in sections 5.2, 5.3, 5.4, 5.5, 5.8, 5.9, 5.10, 5.11, 5.12 are based on materials
supplied, but the detailed findings have not been reviewed by EFI Programme
representatives as of this version. If difference evidence is supplied, or missing
documentation identified, the findings may change.

DATE: 24.09.2015

 14 | P a g e

3 Approach & Methodology

3.1 Approach

A systematic and structured approach has been taken to perform this analysis

This has included the following phases:

 Initial orientation: During this phase, an initial assessment of the EFI+DMI System
was performed. This included meetings with stakeholders and an initial review of
documentation (Original Requirements, use cases, designs, tests…)

 Definition of analysis scope and approach: The term “Software Development
Life Cycle (SDLC)” is used to describe the process of creating a software system.
Based on the initial orientation it was determined that a number of analyses were
required to examine specific aspects of the SDLCs used to create the current EFI
and DMI Applications and the overall EFI+DMI System

 A central part of this analysis was establishing and tracing definitive
requirements (Needs) through each stage of the SDLC to examine where
problems and issues arose

 Other analyses examined other aspects including the end-to-end design and
testing processes, and the approaches and principles used to guide the creation
of the System

 Analysis execution: The analysis process was performed. This involved
workshops with stakeholders, review of documentation, code and other SDLC
artefacts

 Report creation and finalisation: The report has been drafted, reviewed with
relevant experts and finalised

3.2 Methodology: Establishing and Tracing Needs

The illustrative model below shows the major phases in a Software Development Life
Cycle (SDLC). Each phase should align, with each phase performed completely. In this
analysis, we took a number of sample areas, documented the Needs, and then traced the
alignment of these Needs through the following phases and artefacts.

The methodology for the analysis was based on tracing Needs through each phase of the
SDLC. The purpose of doing this is to establish whether the Needs were implemented
correctly by the System or Applications. For example, in order to implement a Need, it
would be expected that

a) The Need is documented in detail. A requirement should be clear, unambiguous and
provide sufficient detail for design and test. Frequently requirements are initially
created at high level, before being refined to a more detailed level.

b) The Need is included in designs, source code and tests in order to implement the
Need, and validate that the Need is in fact implemented.

DATE: 24.09.2015

 15 | P a g e

c) There is documented traceability to identify where and how the Need is implemented.
This could be a spreadsheet or specialist requirements tracking software. This
traceability is critical, to ensure that when Needs change that the impact of the
change to Needs can be identified on designs, code and tests accurately.

The diagram below illustrates this concept. Conceptually, there is an Original Need that is
“complete”, and all the other phases of work should be equally complete, and align to the
Original Need. This must be demonstrated through documentation for the Need in each
phase.

Figure 2 Tracing Needs

DATE: 24.09.2015

 16 | P a g e

 Activity Outcome

A A.1 Map EFI as-is processes, and
create a high level view of
current functions and status.
See functional report.

Understand what parts of the process
• EFI covers and is in use today

• EFI covers but is not in use

A.2 Take sample areas, gather
requirements, based on
Original Need
Section 5.1

Understand what parts of the process
• EFI does not cover and was not in

the Original Requirements and use

cases

B B.1 Traceability review (done by
reviewing documents and
code)
Section 5.1

Identification of breakpoints in the flow from
Original Requirements and use cases,
through design to code and test artefacts

B.1 End to end SDLC review:
coordination between EFI and
DMI
Sections 5.2, 5.3, 5.4,5.5

Assess approach for coordination between
EFI and DMI components of collections.

B.1 Design depth review (done by
comparing design and code
manually)
Section 5.1

Does the design document the functionality
of the System as it is implemented today?

B.2 Review test case quality
Section 5.1, 5.10

Do test cases cover the functionality
intended?

B.3 Automated code review
Sections 5.5.4, 5.7

Quality of code delivered (syntax, use of
comments in code, code complexity etc.)

B.3 Manual code review
Sections 5.5.4, 5.7

Verify structural aspects of code –
modularity, use of common services etc.

B.4 Structural review (collection of
observations throughout the
other work streams)
Section 5.9, 5.11, 5.12

Is the structure as it is implemented today
(both functional and technical) such that the
System can work?

Table 2 Activities and Outcomes

DATE: 24.09.2015

 17 | P a g e

3.3 Methodology: Software Development Life Cycle Assessment

The Accenture Delivery Methods (ADM) was used as the basis for elements of this
assessment. There are a number of different ADM packages each tailored to the specific
needs of different types of project. In performing this assessment, the ADM for SOA/BPM
(Version 1.1) and ADM for Custom Development (V5.5) were primarily used. On overview
of ADM is provided in Section 10.

In the context of our analysis, ADM has been used as a reference for processes, tasks and
deliverables which should be completed across the phases of the project. ADM checklists,
examples and templates have also been used as references for the deliverables that
should be in place and for the content of deliverables.

When using the ADM, we did apply a degree of flexibility especially in terms of the
references and framework, as we understand that the overall EFI Programme and
EFI+DMI Applications were not created by Accenture and therefore were not created using
the ADM. Therefore, we ensured that we applied a degree of flexibility when assessing the
existing documents and materials against the ADM. Where content equivalent to an ADM
document was available in other document(s) these were accepted and assessed against
our standards. For example, although ADM prescribes the documents below as required,
where documents supplied were substantially able to provide the content of a document
below, this content was used.

Figure 3 Documentation Requirements

DATE: 24.09.2015

 18 | P a g e

4 Chronology of Events

Context
Prior to the implementation of EFI and DMI, between 2005 – 2013 SKAT performed debt
collection using two distinct software systems. These systems had a very low level of
automation.

Following the centralization of debt collection, SKAT established the EFI Programme to
deliver a highly automated, unified debt collection System. The EFI and DMI Applications
were the core elements of the overall solution. As described in Section 5.2, this report
finds that EFI and DMI together should be considered a single System. This report covers
the implementation of the EFI and DMI Applications and the overall System, which this
report refers to as EFI+DMI.

There had been an earlier initiative to design DMI prior to 2008. The DMI project is shown
as starting design in 2008, when the work started on the current live implementation of
DMI.

Figure 4 DMI Timeline

The diagram below depicts the timeline for the implementation of EFI and DMI.

Figure 5 EFI and DMI Timeline

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Centralised Collections

on legacy IT systems

EFI Design

Starts

DMI Design

Starts

Planned Go

Live

Actual EFI+DMI

Go Live

20072006 2008 2009 2010 2011 2012 2013 2014 2015

EFI DESIGN

EFI BUILD

EFI TEST

MAINTENANCE

MAINTENANCE

DMI DESIGN

DMI BUILD

DMI TEST

MAINTENANCE

MAINTENANCE

SKAT INTERFACE COORDINATION

SKAT SERVICE REPOSITORY

SKAT EFI + DMI TESTING

Planned
Live Date

Actual Live
Date

FASE 2

PROJECTS

(DMR, DMO and EFI)

ANALYSIS TIMEFRAME

EFI RQs

EFI UCs

DMI RQs

DMI UCs

DATE: 24.09.2015

 19 | P a g e

Note: Dates above are definite where there is documentation to support this. Approximate
dates are depicted by shading and in the process of review and confirmation with the EFI
Programme. There are a number of key points with regard to the overall timeline:

 The most significant is that the design of EFI and DMI was not performed in a tightly
coordinated manner. Given the number and complexity of the dependencies
between EFI and DMI, it would normally be expected that the design phases would
be tightly aligned

 The EFI project started 70 weeks before DMI, even though the EFI project is heavily
dependent on DMI

 Integrations between EFI and DMI were not prescribed. Instead, EFI and DMI
projects worked to evolve an interface design, leading to extensive iterative
changes to interfaces

 It appears that design activities continued throughout the course of project
overlapping with the build and test phases. This introduces instability as a
constantly changing design requires rework of the build and test work

 Overall, there was poor stage containment (completing and closing phases of work,
before progressing to the next phase) both within the EFI and DMI Applications, and
overall for the combined EFI+DMI System

In our opinion, the original project timeline was not feasible due to the technical
dependencies. The iterative nature of resolving the dependencies resulted in additional
work and suboptimal design.

DATE: 24.09.2015

 20 | P a g e

5 Findings and Consequences

5.1 Requirements Trace

5.1.1 Purpose
IT systems are usually defined in terms of specific requirements that the system must
provide, in order for the system to function correctly. For example, a requirement could
state that every valid claim must have a “due date”. Based on an initial review of the EFI
Original Requirements and use cases, it appeared that these were at an unusually high
level. Additionally, a brief defect root cause analysis illustrated that a relatively high
proportion of defects and incidents had a root cause of being insufficiently defined in either
the design, use cases or Original Requirements.

The purpose of our analysis therefore, was to gather and document requirements in detail
(for selected areas) based on the Original Need and the intention for the EFI design during
2008-13, as expressed by the workshop participants. These Needs (detailed documented
requirements) were then traced through the Original Requirements, use cases, functional
and technical designs, source code and tests, to establish where the process for
developing the Needs into a working System failed. The Needs were also traced to the
Original Requirements, however, because the Original Requirements were very high level
and primarily non-functional requirements (as distinct from functional requirements), a
complete trace was not possible and we have documented this alongside the other traces
in the Requirement Traceability Matrices (RTMs).

5.1.2 Key Findings
The following are our key finding from the requirement trace:

 We have not been able to identify detailed documented requirements for the EFI or
DMI Applications or the combined EFI+DMI System despite a number of requests.
Based on this absence of evidence, we conclude that there is no detailed
documented definition of what EFI, DMI or EFI+DMI are required to do

 The Original Requirements and use cases for EFI and DMI did not contain sufficient
detail to enable the System to be designed, built or tested, based on the trace of
Needs through the identified documents. This is based on the results of the trace of
the Needs through the Original Requirements and use cases

 Frequently requirements are initially created at high level, before being refined to a
more detailed level, but we have been unable to identify any more detailed
requirements than the Original Requirements

 Although additional detail was identified during the design phase and incorporated
into the designs, this detail did not ensure that all of the Needs had been satisfied

o When this additional detail was identified or implemented, the appropriate
documentation was not always created and/or updated according using the
SDLC approach which is designed to ensure traceability

 There is little documented traceability of Original Requirements or use cases in the
designs, code or tests. The traceability that does exist is completely inadequate to
verify whether and where requirements and the use cases have been implemented,

DATE: 24.09.2015

 21 | P a g e

because tracing involves searching for names or use case numbers across the
entire document library, which is not reliable, rather than a structured requirements
traceability matrix

5.1.3 Assessment Details
The Needs (detailed documented requirements) gathering assessed a small proportion of
the functionality in EFI+DMI. Although a precise measure is not possible, we estimate that
the analysis has covered 5% of the total functionality within the System.

A total of 243 (Updated per 29.06.2015) Needs were documented across the analysis
areas, through 3-4 workshops per area. This would suggest a detailed set of Needs for the
entire System would comprise approximately 5,000 requirements, which based on our
experience is comparable to similar collection systems. However even though the EFI
Programme’s original aspirations for EFI were for a highly ambitious System which was
intended to do more than collections systems in other countries. The Original
Requirements for EFI comprise approximately 400 Original Requirements (EFI 02
Leverandørens kravopfyldelse FA v1_00, EFI 02 Leverandørens kravopfyldelse S v1_00),
with approximately 700 pages of use cases (EFI 01_02 Forr processer og akt beskrivelser
v1_00). In our opinion, this indicates that EFI+DMI was significantly under-specified by
these documents. Frequently requirements are initially created at high-level, before being
refined to a more detailed level, but we have been unable to identify any more detailed
requirements than the Original Requirements. These areas have been assessed through
requirements gathering workshop and review sessions, the list of which can be found in
Appendix 7.

In terms of our assessment, the scale used to assess trace completeness when tracing the
Needs into the use cases, designs, code and test was as follows:

Match
(out of
5)

Short
Description

Description

5 Complete Need is fully described

4 Substantially
described

Need is well described, but minor details are unclear. An
average designer / developer would require only minor
clarifications to get this functionality fully implemented and
working

3 Partially
described

Need is partially described, but essential details are unclear.
An average designer / developer would require significant
clarifications to get this functionality fully implemented and
working, but the unclear parts should fit within existing
components and modules

2 Slightly
described

There are references to the Need, but these are unclear. No
designer / developer could implement this Need without
major clarifications and/or structural modifications to the area

1 Absent Need is not described at all
Table 3 Completeness Scale

DATE: 24.09.2015

 22 | P a g e

The following table summarizes our findings from the requirements trace. The Needs
gathered and documented in workshops with EFI Programme representatives were
“traced” through the Original Requirements, use cases, designs, code and tests.

The average score core indicates the extent to which the Needs were identified as existing
within the relevant artefacts for each phase of the Software Development Life Cycle. The
Observations provides a brief interpretation of the score at each phase.
Any system that establishes and maintains requirements traceability, will consistently
score “5” on the scale below at each phase.

Appendix 8 shows some examples of missing and incomplete Needs across all areas.

Phase Modtag
Fordrin
g
(Receiv
e
Claim)

Kundesal
di (Client
Account
Balance)

Betaling
s-
ordning
(Paymen
t Plans)

Lønindeholdel
se
(Salary
Deduction)

Avg.
Scor
e

Observatio
ns

Needs
(Newly
gathered
detailed
requirement
s)

86 85 22 50 243
(total

)

There were
a total of 243
Needs
captured as
part of the
requirement
s workshops

Average
match V
Original
Requiremen
ts

No match with Original Requirements. Original
Requirements were primarily “non-functional” and

of ~400 requirements ~50 were functional. No
match was found.

 No Needs
were found
in the
Original
Requirement
s.

Average
match V
original Use
Cases

2.1 2.2 3.0 2.8 2.5 The Needs
were slightly
– partially
described in
original use
cases.

Change
Requests
affecting the
tracing

3 1 0 0 4
(total

)

The 4
change
requests
described a
total of 5 of
the Needs to
some extent.

Average
match V
Designs

3.2 4.5 4.1 2.9 3.7 The design
specification
s
substantially
describes

DATE: 24.09.2015

 23 | P a g e

the Needs.
However,
across all
areas,
Needs have
been
missed.

Average
match V
Code

3.1 N/A 4.8 4.5 4.1 The code
substantially
covers the
Needs.
However,
across all
areas,
Needs have
been
missed. This
score
indicates
that there is
some
evidence the
function has
been coded,
not that it is
working
correctly.

Average
match V
Tests

2.2 3.4 3.3 2.9 3.0 The score of
3 indicates
that on
average the
System has
been
partially
tested
successfully.
To score “5”
on testing,
there must
both be a
test case,
and the test
case must
be recorded
as passed.

Table 4 Scoring

DATE: 24.09.2015

 24 | P a g e

5.1.4 Accenture Assessment
During the EFI and DMI projects, no detailed set of testable Original Needs was created.
Without this definition, it is our opinion that the subsequent phases of activity including
design, build and test, which depend on these detailed documented requirements was
seriously compromised.

As seen in the areas assessed, sufficient clarity was reached in some core areas through
the design process to align needs and designs (see score of 4.5 for Client Account
Balances designs), but in most areas this did not happen. The substantial lack of clarity
about the Original Needs in the Original Requirements, use cases and specifications is the
primary root cause as to why EFI+DMI does not fully meet SKAT’s business needs.

As of July 2015, there is no detailed, documented and complete definition of what EFI,
DMI or EFI+DMI is required to do. It is therefore our opinion that any report of the System
being a certain percentage complete is unreliable, as there is no definition of what
complete is.

5.2 End to end Software Development Life Cycle Review

5.2.1 Purpose
EFI and DMI are software applications. The process used to create these types of
applications is termed a Software Development Life Cycle (SDLC). There are many
possible variations to a SDLC.

However, the purpose of this section is to assess key aspects of the SDLC used to create
the overall EFI + DMI System. Given the scale and complexity of what was required (as
previously outlined), both in the functionality within each Application and the overall
functionality of the combined System, certain disciplines are normally required for a
successful outcome.

From a technical perspective:

 EFI and DMI are separate Applications. They are developed and deployed as
completely separate technical components. They do not share source code, runtime
platform or database.

 Together EFI and DMI are a single System. Neither EFI nor DMI can perform any
useful Collections function without the other.

Creating a large system, composed of separate integrated applications is a viable
approach to system development. However, successful delivery of such a system requires
work to design, build and test the overall system, over and above the work required to
create each application.

DATE: 24.09.2015

 25 | P a g e

The following sections provide our findings and assessments in relation to important
elements of the System SDLC, specifically:

 5.3 Solution Blueprint Review

 5.4 Interface Specifications

 5.5 End to End Testing Approach

 5.8 Complexity of Design

 5.9 Solution Architecture Observations

5.2.2 Key Findings
Our key findings in relation to our review of the EFI + DMI SDLC are that

 EFI and DMI are separate applications, which are closely coupled and integrated,
with extensive dependencies on each other. For example, screens that display the
details of debts or interests require EFI and DMI to interact. It is our opinion they
should therefore be considered as a single software System that should have
requirements, processes, designs, and tests for the System.

 Although some System level design materials have been provided (see section 5.4
below) these fall far short of what would be expected to design a System of this
complexity. Based on this lack of documentation it is our opinion that the System
level “SDLC” activities were largely not performed.

5.2.3 Assessment Details
Following is the detailed assessment related to our findings, specifically our evidence view
on the functionality and architecture:

Evidence of an EFI + DMI Software Development Life Cycle
The assessment team requested from the EFI Programme management, both verbally and
in writing documents and materials related to the overall SDLC or the technical
coordination of EFI and DMI. Although some System level design materials have been
provided (see section 5.4 below) it is our experience these fall far short of what would be
expected to successfully design a system of any complexity.

Assessment that EFI and DMI Applications Together Comprise a Single System

A Single Functional System
In a collections system, the core collections functions are tightly linked together including
Claim Management, Auto Compliance Actions, Treatments, Payment Plans,
Correspondence, Reconciliation, Contact Management and Debtor Management.

The EFI Programme’s design for implementing these functions in most cases involves part
of the function being performed in EFI and part in DMI. At each point where there is a
transition from EFI to DMI and vice versa, interface(s) are required to enable the
Applications to integrate and to provide the overall “end-to-end” function. Terms such as
“cohesive functionality” and “tight coupling” are used to describe the fact that these

DATE: 24.09.2015

 26 | P a g e

functions are closely related. This can be seen in the following version of the functional
map, which highlights that most functionality is partly in EFI and partly in DMI or that it
does not exist in either Application. Where functionality is spread across EFI and DMI, the
functional area is shaded in both EFI and DMI colours to denote this. All other systems are
grouped under other. See Functional Report for additional information.

Figure 6 EFI+DMI Processes

A Single Technical System Composed of 2 Separate Applications
Our assessment has shown that technically EFI and DMI are completely separate
Applications, built with different technologies (Java and SAP ABAP respectively). EFI and
DMI have 297 web service interfaces in total; with 49 of these between EFI and DMI,
(many of the other interfaces are internal to sub-applications within EFI). With this level of
integration between the EFI and DMI Applications, in our opinion the overall EFI+DMI
must be considered to be a single system, which requires technical coordination and end-
to-end testing as a system. EFI screens and processes depend on, and cannot operate
without, DMI data or logic, accessed via interfaces.

During our investigation, we found a diagram that was created by the EFI Programme test
team that provides the only complete view of EFI+DMI interaction with other systems.
Even though EFI+DMI are viewed as a system, it can be seen from this diagram that they
have multiple links between them and numerous other systems, which they are dependent
upon to operate.

Claim Management

Payment Plan

Asset Repossession

Collections Management

C
o

re
 F

u
n

c
ti

o
n

s

Disbursement Management

Work Management
(Resource Manager)

Document Management

Service Channels

Operational Reporting

Governmental Reporting

Dispute Management

Debtor Analytics
(Risk Rating)

S
u

p
p

o
rt

F

u
n

c
ti

o
n

s

Business Reconstruction

Insolvency & Litigation

Forced Dissolution

O
th

e
r

F
u

n
c
ti

o
n

s

Case Management

Claimant Management

Correspondence

Contact Management

Debtor Management

C
u

s
to

m
e
r

F
u

n
c
ti

o
n

s

Account Management

Reporting & Registrations

Penalties, Interests Fines

Payment Processing

Court Interactions

Reconciliation Business Rule Management

Salary Deduction

Compliance & Treatments

Client Meetings

Debt Relief/Subsidy

Offsetting

• Functional overview of core

and supporting functionality,

including the high priority

areas across all processes.

• Diagram outlines the system

distribution of the functionality.

Audit and Discovery

Acknowledgement of Debt

Bank Garnishee

Operational Effectiveness

Write-off`s

DMI

EFI

Other

• EFI Data Warehouse is

grouped within other.

DATE: 24.09.2015

 27 | P a g e

Figure 7 EFI+DMI Integrations

5.2.4 Accenture Assessment
Standard architectural advice is to implement cohesive functionality within a single
application. If this approach is not taken and there is a tight coupling between the
applications implementing the overall functionality, it is often not possible to make
significant changes to any of the applications without impacting others. It is our finding that
this is the case with EFI and DMI. We also found that it is currently not possible for the EFI
Programme to test EFI or DMI without the other.

Our experience is that choosing to not implement functions in one system but to split them
into separate applications has a number of consequences including the following:

 Within a single application, relational Integrity and ACID (Atomic, Consistent,
Isolated and Durable) transactions can be used to enforce application wide data
integrity with minimal cost, as the technical functionality to enforce this integrity is
part of the database and application server platform. By comparison, with SOA style
interfaces between applications, designers and developers must design, build, and
test reliability and integrity for each interface. Additionally, there can be functional
impacts from non-transactional interfaces requiring “compensating transactions”
and other overheads to ensure end-to-end reliability and integrity. It is more
complex to ensure reliability and consistency in a SOA than in a single application

DATE: 24.09.2015

 28 | P a g e

 Within a single application, there is normally a single consistent data model. There
is no requirement to interface or duplicate data from other systems, to meet the
processing requirements of the application. Interfacing data, particularly in a fine-
grained way as often happens with tightly coupled systems can introduce
performance problems. Duplicating data introduces data synchronization problems
(master data management) and other overheads.

 Project management of a single new IT application is complex. Project
management of multiple, integrated IT applications is more complex. When IT
applications are tightly coupled this becomes even more complex as
correspondingly rigorous technical project management of the application
developments is required. It is our opinion that the technical management and
coordination of EFI and DMI projects was insufficient to deliver this rigorous
coordination quickly, resulting in extensive ongoing change to align both
Applications.

5.3 Solution Blueprint Review

5.3.1 Purpose
The purpose of the solution blueprint within an IT system is analogous to an architect’s
drawings for a complex building (e.g. a skyscraper). It provides specifications and
guidance for each team on how their components integrate with the overall solution.
Without this guidance, components will not integrate correctly and changes may be
required. Following the analogy, it is cheaper to change the position of a window when it is
on an architect’s drawing than after the concrete has been poured and also there is less
impact to the overall structure of the solution.

The purpose of the review was to assess the overall structure of the System as it existed
in early 2015.

5.3.2 Key Findings
Following is our key finding of the solution blueprint review:

 There was no solution blueprint for EFI+DMI.

 During the design of EFI and DMI there was no documented end-to-end process
description of how the overall solution should work to process claims from start to
finish.

 The high-level designs that did exist (use cases) were separate for EFI and DMI.
These were not integrated and they were also not used to validate that the end-to-
end solution worked.

 Assessments and reports by neutral external experts between 2012-13 prior to the
go-live date identified the lack of design as a concern. These concerns were
communicated to senior EFI Programme representatives.

5.3.3 Assessment Details
As part of our analysis, we requested a solution blueprint or any other related high level
descriptions of the system (e.g. Application Description, Technical Architecture

DATE: 24.09.2015

 29 | P a g e

Description, Business Process Description) from the EFI Programme manager both in a
workshop on 18th May 2015 and in subsequent emails. However, we were informed that
no solution blueprint had been created. In fact, the EFI Programme manager questioned
the need for a solution blueprint. This is documented in the “End to end design and
coordination” meeting of 18th May 2015.

5.3.4 Accenture Assessment
As a result of a lack of an overall design, the integration of EFI and DMI, which was
essential for either to function, was worked out during detailed design, build and test,
requiring extensive change to both Applications, after design should have completed. The
extensive change can be seen from the “change log” for the web services used for
integration between EFI and DMI.

Without an overall design, extensive change and rework was required to many areas,
particularly related to the integration of EFI and DMI, impacting the schedule and overall
structure of the system.

The overall design is currently not documented adequately, impacting maintenance and
change efforts.

5.4 Interface Specifications

5.4.1 Purpose
In an IT system, interfaces are used to connect different applications together. For
example, EFI might require details from the CPR system and these details would be
retrieved via an interface. Interfaces are known to be somewhat difficult areas within
integrated systems and some of this difficulty is due to the precise agreement on
technology and functionality that is required for between the systems for correct operation.
Our experience has also shown us that changes to interfaces can be extremely disruptive
and they have the potential to impact the Applications on both sides of the interface.

The main purpose of our review was to examine the interface specifications and to
establish whether the level of detail and structure was sufficient to ensure a successful
interactions between EFI+DMI and the systems they interact with.

5.4.2 Key Findings
Following are our key findings from this analysis:

 The interfaces between EFI and DMI and the systems they interact with including
the ones within the rest of the SKAT were insufficiently designed. This led to a
number of problems such as:

o Extensive, ongoing change being required over a long period to fully evolve the
interfaces

o EFI and DMI Applications taking more time and effort to finalise

o Making the testing of realistic paths through the code difficult due to being
unable to create accurate program stubs. Stubs are normally used in large
system implementations to test components or applications well before end-to-

DATE: 24.09.2015

 30 | P a g e

end (complete system) testing is performed. Realistic stubs, that enable testing
of more than the simple path depend on detailed designs

 There is evidence that some of the interfaces do not work reliably and/or deliver
integrity. For example claims where data for the claim exists in EFI but not in DMI
indicates a lack of reliability on an interface between the Applications. This was also
confirmed by the EFI Programme manager in an interview. There is a lack of
reconciliation reports across the System so the extent of this issue is unclear

 For most of these interfaces, there is little or no prospect of reusing the actual
interface, or the interface design outside of EFI+DMI.

 When EFI or DMI requires replacement, there is a very large body of work required
to re-implement the same (or new) interfaces again and build new components.

5.4.3 Assessment Details

Interface Specification
EFI and DMI have 297 web service interfaces in total, with 49 of these between EFI and
DMI (many of the other interfaces are internal to sub-applications within EFI). Based on
discussions with the EFI Programme manager on 23rd Feb 2015, it was understood that
these interfaces (mostly web services) should create a “service oriented architecture”
within SKAT, presumably to support future flexibility in collections. Based on our
assessment of a sample of interfaces, we found that the documentation for each interface
comprises:

 A brief description of the purpose of the interface. This is typically 3-4 lines of
description

 Technical description of the interface (e.g. WSDL)

 Request and response data structures and attribute to value mappings

 In some cases (approximately 25% of a random sample) a list of the use cases in
which the interface is used

In addition to this, we also found that the individual descriptions in System Architect and
the services for each main area of EFI are briefly in the technical design (DDSB’s) and that
the general approach to using services and technical implementation details was to
provide this information in the document Detaljeret delsystembeskrivelse for Teknisk
Arkitektur i EFI-projektet. However, we could find no other DMI service documentation.

Therefore, it is our opinion that the interface specifications did not provide the detail
necessary for rigorous testing of interfaces or services, and that therefore they were
insufficiently specified.

The Services which have been spot checked in System Architect Viewer are the following:

Servicenames Version

DOForventetIndbetalingOpret 1.3

DPDokumentHent 1.10

DATE: 24.09.2015

 31 | P a g e

DWHæftelsesforholdTilAfskrivningMultiModtag 1.1

EFIBetalingEvneBFYModtag 1.3

EFIBetalingEvneKøretøjModtag 1.2

EFIETILBilHæftelserHent 1.0

EFIMatriceOpslag 1.0

EFINettoIndkomstÆndringHændelseModtag 1.4

EFIVirksomhedÆndringHændelseModtag 1.3

IAIndsatsBobehandlingHent 1.2

IASporOverblikHent 1.4

IMSporSkabelonGem 1.3

KFIAktivSlet 1.0

KFIFordringHent 2.19

KFIIndsatsAktivTilføj 1.0

KFIKundeStamoplysningerHent 1.4

MFFordringAfskrivUnderret 1.12

MFFordringReturner 1.3

MFFordringOpret 1.22

RSFindAftalerTilOmbooking 1.1

RSMedarbejderOrgEnhedArbejdsstedList 1.0

RSOpgaveHent 1.3

RSOpgavekøSøg 1.1

RSOrganisatoriskEnhedOpret 1.0

RSRessourceSlet 1.0

DMIBetalingOrdningList 1.7

DMICheckUdbetalingStatusListeModtag 1.2

DMIFordringForespørgBesvar 1.9

DMIFordringÆndr 1.14

DMIHæftelseForældelseList 1.11
Table 5 Services

We performed a spot check of 30 services in System Architect on the SKAT Sharepoint.
The highest number of changes we found was 23, then we found 20, 15 and 13
respectively (refer to table above). Based our experience, we have found that a high rate
of change such as this indicates an unstable and rapidly evolving design.

Given that each interface is the point at which two or more applications integrate, any
interface change can impact both Applications which takes time and effort to do correctly.
We have also found that without rigorous regression testing, interface change is risky and
it is hard to predict the actual impact on the changes to both Applications. We also know
from test analysis within PPSM that the EFI Programme did not and does not perform
structured regression testing.

DATE: 24.09.2015

 32 | P a g e

Service Interfaces in a Service Oriented Architecture (SOA)
Normally when we are developing a SOA system of similar scale, our service interface
specifications typically describe the functionality available within the interface, the
functionally valid combinations of data, details of the business errors that are possible (e.g.
customer not found, insufficient funds) and details of technical errors that are possible (e.g.
service timed out).

Additionally, a SOA is intended to provide flexibility through the reuse of functionality
provided as services. For this reuse to occur, services must provide a function that is of
use to multiple service consumers. The service interface needs to also be well designed
and future proofed to avoid changes to the interface technical contracts. In our opinion,
although the System uses technologies associated with SOA, EFI+DMI is not service
oriented.

In a typical SOA, standardised approaches are defined and used for reliability, audit and
other non-functional aspects of service interface behaviour. Although we did find standards
for many of these in EFI/DMI, these cannot have been enforced in design, build and test
because if they had been enforced, problems that currently exist in the System such as a
lack of reliable behaviour across interfaces could not exist.

5.4.4 Accenture Assessment
Interface specifications need to provide sufficient detail to enable both sides of the
interface contract build and test matching client and server components. This requires the
detail and clarity to define the typical successful path and also all the failure paths. Using
the specification, it should be possible to create stubs (software to simulate the other side
of an interface for testing) to exercise all necessary paths through the code. The
specifications in EFI+DMI did not include this detail.

It is our opinion that this lack of detail was a substantial root cause for the interfaces
evolving over a long period (2010 – 2013). Changing interfaces are usually disruptive to a
project, as they require changes to client, server and the test stubs and test cases for both.
Typically our experience is that in comparable system development, there is an intensive
effort to identify and specify interfaces at the beginning of a project (e.g. between months
3-12 of a 3 year project) with minimal changes required thereafter.

There are web service calls from EFI to DMI and DMI to EFI. In our opinion, calls in an
SOA should be hierarchical, not circular. Given the number of changes to many “services”
within the System, the low level of service reuse and the lack of a clear SOA structure it is
our opinion that EFI+DMI does not provide an SOA.

DATE: 24.09.2015

 33 | P a g e

5.5 End to End Testing Approach

5.5.1 Purpose
The purpose of this section is to;

 Describe the normal testing process in a SOA and/or distributed systems

 Compare how the EFI+DMI testing process against this

As noted in the findings in Section 5.2.2, this assessment considers EFI+DMI to be a
single System composed of two integrated Applications, EFI and DMI.

Normally we refer to “End-to-end testing” as the process of testing an entire system from
beginning to end. Whereas “Application” testing is the process of testing one element of
the overall System in detail. The following examples from a supermarket illustrates the
type of testing that is normally performed in each type of testing.

End-to-End Tests

This scenario tests a simple end-to-end
scenario of a customer purchasing goods
from a supermarket:

1. Customer enters supermarket

2. Customer selects items from
shelves

3. Customer goes to checkout

4. Customer pays for goods

5. Customer leaves supermarket

Application Tests

This scenario tests the simple path and
exception flows for the card payment
application:

Simple path

1. Customer pays with card

2. Payment is received

Exception flows

1. Connection to bank is “down”

2. Card is declined

3. Card is stolen

4. PIN is entered incorrectly

5. PIN is entered incorrectly a third
time

The Application tests can, and should, be performed with the application under test
isolated from the overall System. It would be highly inefficient to perform all the
“application tests” only as part of the “end-to-end tests”. Taking this approach, each card
payment application test would only be tested as part of the end-to-end tests.

DATE: 24.09.2015

 34 | P a g e

5.5.2 Key Findings
Our key findings in relation to testing are:

 Analysis of the testing records confirmed with the EFI Programme test manager
shows that 53.8% of the originally planned tests were executed. 52.3% of the
original tests (80.5% of non-descoped tests at go-live) were recorded as passing
testing. This resulted in a substantially untested System being put into production
use

 There are missing isolated testing stages. For example: User Acceptance Test
should be testing a system that has already passed UAT of the component
applications. Instead, the EFI+DMI UAT attempts to test in a single phase of testing

o The design of EFI (ODSB output)

o The design of DMI (FGD output)

o The System integration test of EFI + DMI Applications

o The User Acceptance Test of the combined System

 The EFI Programme is unable to test either EFI or DMI in isolation. This introduces
complexity in managing EFI and DMI as discrete projects or applications

 Assessments and reports by neutral external experts between 2012-13 prior to the
go-live date identified the lack of a testing strategy to address key risks as a key
concern. These concerns were communicated to senior EFI Programme
representatives. It is not known what action, if any, was planned or completed
based on these reports.

5.5.3 Assessment Details

Testing Status at go-live
The testing process analysis performed as part of the PPSM analysis identified that circa
60% of the original test cases had been executed. As part of the analysis for this report,
some further analysis was performed on the same data from the EFI Programme QC
system, provided by the EFI Programme Test Manager. The following tables summarise
this analysis.

Table 6 Amount of planned tests executed in any phase

Amount of planned tests executed in any phase

Originally planned tests 22,519

Executed test cases:

V1.00 3,024

1.05 SKAT Fokuseret FKT 6,541

1.06 Dialog FKT 2,127

1.07 Fokuseret Bobehandling 421

Total tests executed in any phase 12,113

Percentage executed tests in any phase 53.8%

DATE: 24.09.2015

 35 | P a g e

Table 7 Orignial tests passing testing

Table 8 Non-descoped tests at go-live

Notes

 The figures above have been reviewed with the EFI Programme test manager. No
corrections were identified as necessary.

 Normally regression tests are performed to validate that tests that previously passed
continue to pass. This practice was not performed by the EFI Programme. As a result,
the figures above may overstate the percentages passing testing, because without
regression test it is not a safe assumption that tests passing in an earlier phase
continue to pass testing.

Description of Normal End to End Testing Process
The “V Model” is a widely used model for defining the verification and validation processes
for an IT system. The model is based on the fact that:

 The functional and technical requirements are the foundation for all design, build
and testing activities.

 The requirements flow through successive phases (the “V” shape in black lines in
the following diagrams).

Original tests passing testing

Originally planned tests 22,519

Tests passing

V1.00 2,857

1.05 SKAT Fokuseret FKT 6,438

1.06 Dialog FKT 2,078

1.07 Fokuseret Bobehandling 394

Total passing testing in any phase 11,767

Percentage passing testing in any phase 52.3%

Non-descoped tests at go-live

Test cases in scope at go-live 11,073

Tests passing

1.05 SKAT Fokuseret FKT 6,438

1.06 Dialog FKT 2,078

1.07 Fokuseret Bobehandling 394

In scope tests passing testing 8,910

% tests passed in go-live scope 80.5%

DATE: 24.09.2015

 36 | P a g e

 The flow is complete and correct and that there are verification and validation
activities which ensure requirements have passed before they are move to another
phase. This validation and verifications is normally achieved through;

o The audit of requirements using a Requirements Traceability Matrix (RTM) or
equivalent tool.

o Testing against the specification of what should have been created. E.g.
Assembly Test would test some or all of the Application against a corresponding
design.

Figure 8 The V Model

In an SOA, or any highly distributed system, the “V Model” is also used. However, multiple
“Vs” are required. This variant model is sometimes called a “W model”, “Dual Vee” model
or “Many Vs” model.

Figure 9 Many Vs Model

DATE: 24.09.2015

 37 | P a g e

Comparison with Approach Used by the EFI Programme to Test EFI+DMI
The purpose of this model is to describe that each Service within the SOA should be
designed, built and tested on its own (one V) before being tested “end-to-end” (another V).
In the case of EFI and DMI, there should have been a thorough test of the individual
Applications against documented requirements, before they were tested together, as
experience has shown that testing Applications individually, prior to integration, is more
effective. The reason it is important to perform testing of individual services or Applications
before testing the complete System is that it is better to find errors earlier than later, where
the costs of repairing these error is larger due to the time taken to find them.

Our assessment found that the EFI Programme is presently unable to test EFI or DMI in
isolation and that this limitation is caused by the following main reasons:

 There is insufficient documentation to describe what each interface should do to
enable it to be tested standalone.

 The EFI Programme testing team does not perform standalone testing of EFI or
DMI. The analysis has not definitively determined why, although this approach was
considered but not actioned.

 As the overall System is excessively coupled, there are a far larger than normal
number of interfaces between EFI and DMI

As a consequence of the above, the EFI Programme performs all testing of EFI on the
combined EFI+DMI System. This has the following consequences:

 All EFI Programme testing requires a more complex environment. As of April 2015,
there is only a single usable environment for testing and this environment cannot be
used for testing the most complex cases. The EFI Programme has estimated a cost
of DKK 30-40M to create a Pre-Production environment for testing.

 It is more difficult to state whether EFI or DMI, as a singular Application on its own,
is working. This is because there is no way for the EFI Programme to test either
Application on its own. When an error is detected, it may be unclear whether this is
caused by EFI, DMI, an interface between them, or some other cause.

Note: the testing in the above refers to EFI Programme (System) level testing. It is
understood that the development teams for EFI and DMI do test the Applications
standalone using stubs, however, as noted in section 5.4, as the interfaces are not
specified in sufficient detail, this testing frequently fails to detect issues that surface later in
integrated testing. Although test reports were requested from the EFI Application project
team, no evidence of the outcome of unit tests was provided (although these clearly exist).
No evidence (test approaches, acceptance criteria or test completion reports) was
provided of the standalone Application testing.

The following diagram illustrates at a summary level the points above. It depicts:

 The overall “System V”, with the “end-to-end” requirements, processes and overall
design not documented

 Separate “EFI V” and “DMI V”, showing the activities performed.

DATE: 24.09.2015

 38 | P a g e

 The only User Acceptance Test is performed on the overall integrated System.
There is no UAT of EFI or DMI alone.

 The EFI and DMI Original Requirements and use-cases were not tested. They were
not used systematically as the basis of test conditions for UAT.

 The most structured attempt to test the System was based on using the EFI and
DMI functional designs (ODSBs and FGDs) as the basis for creating test conditions.
These did not provide an end-to-end specification of required behaviour as would
be required for a successful UAT.

Figure 10 EFI+DMI V Model

5.5.4 Accenture Assessment

 Because the EFI Programme does not test the Application before testing the
System the EFI Programme is unable to adequately perform stage containment, or
to determine whether the Application is working before combining it into the overall
System. This reduces test efficiency and increases the duration of testing, as well
as making attribution of responsibility for defects more difficult.

 Because there are no testing phases between the tests performed by the
development teams and the UAT, the UAT scope has to cover the entire breadth of
the EFI+DMI System to a very detailed level (i.e. all the tests above). This is highly
inefficient, taking more duration and resulting in lower quality than a phased testing
approach.

EFI + DMI System “V”

DMI Application “V”EFI Application “V”

EFI
Requirements

EFI Use Cases

OSBs HL Spec

ODSB Spec

DDSB Spec

EFI Build + Unit Test

Component
Test

EFI System Test

EFI System
Integration Test

EFI UAT
DMI

Requirements

DMI Use Cases

FGD Spec

DMI Build + Unit Test

DMI System
Test

DMI System
Integration Test

DMI UAT

End To End
System Test

e2e User Acce-
ptance Test

End to End
Process

End to End
Requirements

Key

Activity performed

Activity Not Performed

Flow of Requirements

Flow of Verification

Activity reported as
performed (no evidence)

Missing Verification

Activity partially
performed

DATE: 24.09.2015

 39 | P a g e

 Remediating the EFI and DMI testing to a more normal approach would require

o System (end-to-end) requirements and designs, and matching test conditions

o Application requirements and designs that are sufficiently detailed to test
against, with matching test conditions.

o Multiple additional test environments, some of which would be integrated end-to-
end

o Additional stubs implementing the functional complexity to allow thorough testing

o Executing all the tests until all required tests pass successfully

Performing the tasks above is equivalent to a rebuild.

5.6 EFI Code Review

5.6.1 Purpose
The purpose of a code review is to examine a body of source code and check it for good
coding practices. The assessment included an automated code review of the entire EFI
code base and a manual code review of a sample of areas.

An automated code review will reliably detect many problems at a source code level. This
can provide useful insight to the maintainability of the source code, to the consistency of
internal documentation (comments) and the complexity and to some extent the structure of
the code. Most organisations now incorporate automated code reviews into their SDLC.
The manual code review provides additional review and insight.

However, any code review cannot determine whether the source code performs the
correct business function. Verification that the code performs the required tasks depends
on a definition of what is required and testing against that definition.

5.6.2 Key Findings
Our key findings in relation to the EFI code review are:

Automated Code Review

 Overall quality of the EFI (Java) code is average to good. There is no evidence that
technical code quality, on its own, is a significant cause of EFI issues.

 There are commenting and cohesion issues that will impact maintainability. More
maintainable code is easier, safer and less costly to modify and test over the
lifetime of the System.

Manual Code Review

 Overall, the manual code review supports the automated review findings that the
code is of average quality. Although there are issues in the code, these alone are
not a major cause of problems with EFI.

 The maintainability of the code base is somewhat below average for a code base of
this scale. This will increase the lifetime cost of changes, and increase the time
taken to make changes.

DATE: 24.09.2015

 40 | P a g e

5.6.3 Assessment Details

Automated Code Review Assessment Details
The automated code review analysed the entire EFI V2.80 code base (March 2015), and
dependencies. This analysis evaluated 1,403,693 lines of code (964,076 effective lines)
across 11,667 source code files and 1,643 packages.

It assesses the EFI code against a number of technical focus areas. In each focus area,
better code will be more maintainable. More maintainable code is easier, safer, and less
costly to modify and test over the lifetime of the System. The assessment also provides a
comparison of the EFI code base against similarly sized code bases from similar
organisations.

The automated code review also provides input to the second half of the code review,
which is performed manually, where the high-level structure and architecture of the code is
examined.

Area Fact Evidence

Overall EFI
Technical Code
Quality

In summary, on most
measures, by comparison to
similar code bases, the code
is either of good or average
quality.

The proportion of issues in the code,
checked with a number of separate
tools all indicate that while the code
base has many issues that could be
improved, the density of these issues
in the code base is similar to or better
than average code bases of this size.

EFI Code
Complexity

The EFI source code is large
in code quantity but the level
of complexity is unusually
low for a system of this
magnitude.

The automated code analysis shows
that a mere 0.17% of all the files,
have a high level of complexity. This
is at least an order of magnitude less
than comparable solutions, and is
surprising given the complexity of the
Needs.

This could mean a number of things
including:

a) The EFI project has been very
careful to avoid writing complex code,
and to separate logic out into
separate classes and methods –
although the cohesion level could
indicate otherwise (see next)
b) There is less complexity in the
business logic for EFI than in
comparable systems
c) Where many systems have
complex functionality due to large
volumes of validation or business

DATE: 24.09.2015

 41 | P a g e

Area Fact Evidence

rules, which adds to the average
complexity, a similar volume of logic
is not present in EFI

One hypothesis would be that only a
portion of the business logic actually
required for a fully working EFI
solution is actually written and in the
code base, thereby reducing the
average complexity.

EFI Code
Maintainability

Systems such as EFI, which
have an expected life span
of 15-20 years, must be
maintainable in order to
support the evolution of the
system.
There are a number of
issues within the code base
that will impact this
maintainability and make it
more difficult to make
required changes to the
code and familiarise new
developers with the code.

This analysis has identified
initiatives which can be
taken in order to improve the
maintainability of the EFI
code.

Commenting:
Commenting within code makes it
much easier to understand and
maintain - especially for developers
new to the application or part of the
application. In EFI the comment ratio
is low - only 30% of files have a good
level of commenting, which is
contrary to best practices.

Commenting should also be used to
link requirements, specifications and
code, making maintenance easier by
enabling clear traceability from
requirement to code.

Unused code:
Unused code within an application is
source code that is never executed
by the application. Unused code can
be confusing and time consuming to
understand thereby wasting
developer time in understanding the
code. Our analysis shows that
approximately 20% of methods
(which represent functionality / what
the code does) are not used and
should be removed.

This measure is approximate as there
are some circumstances in which
code may be assessed as unused
incorrectly (e.g. sections of
dependencies or frameworks that are
not used).

Cohesion:

DATE: 24.09.2015

 42 | P a g e

Area Fact Evidence

Cohesion is a measure of how well
functionality is split up in an
application. Ideally developers
separate different core functionalities
into different packages and files,
making it easier to update or replace
functionality without affecting other
functionality. It also makes the code
easier to understand. Our analysis
identified a lack of cohesion which
could be problematic with regards to
maintainability. Consequences of
changes to parts of EFI can be
difficult to predict where cohesion is
low, increasing the likelihood of
adverse effects.

Table 9 Code Review Areas

Manual Code Review Assessment Details
The manual code review examined a number of areas, including the code corresponding
to the sample areas investigated in Section 5, and some areas highlighted by the
automated code review.

The review approach was to manually inspect the code, and review the code considering a
number of focus areas including overall structure, control flow, traceability to requirements
and designs, error handling, reliability, interfaces, and some other technical aspects.
The manual assessment examined the files and classes itemized in 0.

Structure and Traceability
The code base has a modular structure, and as noted in the automated review, in most
cases, the level of complexity is low.

Typically, with a large and complex system, there is a high level of traceability from
functional designs to code with the traceability demonstrated by including notes in the
specifications and comments in the code to cross-reference each. There is a limited level
of such traceability within the EFI design (ODSBs, DDSBs) and code base. This does not
provide a complete and reliable linkage such that it is always clear where a design was
implemented in code and vice versa,

Normally, in the construction of similar scale systems, the validation that each requirement
is implemented in code is performed by completing the requirements traceability matrix to
ensure all requirements are implemented. This was not performed for the EFI code base.

There is some traceability for defect fixes and changes to the code. In some modules,
there is a high proportion of the code that is commented as “EFIDEFECT” indicating that a
change was made to the source code at this point to correct a defect or make a change. In
portions of the code, it appears that almost half the code has been changed as a result of
defects.

DATE: 24.09.2015

 43 | P a g e

Although it is usually possible to trace the structure of the code, and identify that a
requirement has been at least partially implemented in a location, without the traceability, it
is not possible to do the reverse. That is, it is not possible to be confident that all the logic
to do with some functionality has been located.

Control Flow
The flow of control is the process by which the overall execution of the system is
controlled. In the majority of the system, it is straightforward to understand the control flow.
However, there are locations in which this is not the case. For example, the orchestration
of treatments is controlled by CSV files, in effect, creating a simple process definition
language. Many complex systems include some level of unique customisation like this.
Although this is usual, without detailed documentation on the detailed approach used, this
can make it more complex to maintain, as new development staff face a learning curve to
understand system specific approaches.

Error Handling and Logging
Error handling refers to the way that unexpected events are managed within the code.
Unexpected events include incorrect data being encountered, non-availability of interfaces
and functional errors such as a logical error resulting from an unexpected condition.

The error handling strategy varies between classes, and also between the main
components of EFI. In some parts, the error handling is rigorous, in others less so.

The logging strategy also varies. There is less logging than be expected in critical areas of
the code, e.g. in persistence attempts and Web service calls. Finding the root cause of
erroneous behaviour may be difficult in parts of EFI.

There are places in the code (e.g. for Treatments) where method calls will fail silently –
with regards to exception handling, logging and method return value. This will also make it
difficult to identify erroneous application behaviour. In the spot checks there is a clear
tendency to neglect code commenting – even on the class level. This makes it much more
time consuming than necessary to understand the structure of the application, and more
difficult to maintain.

Interfaces and Reliability
EFI makes extensive use of web services to integrate discrete components of EFI into the
overall application. Web services technologies (SOAP, WSDL) alone do not enable
reliable behaviour and coordination of work between components. The designer and
developer must design the solution to ensure reliable operation in all circumstances.

A number of standard approaches have been defined, based on the standard approach of
idempotence. It is necessary for the designer and developer to ensure that in each case
the business logic is fitted to the correct approach to ensure reliable operation. There are
cases in the code where it is noted a non-reliable approach is taken. There are also
production incidents reported related to lack of reliability across interfaces.

DATE: 24.09.2015

 44 | P a g e

5.6.4 Accenture Assessment
It is our opinion that the manual and automated code reviews supports the hypothesis that
essential business logic is missing from the actual live code base. Code is missing in the
areas of exception processing, validation, logging and other areas. In some cases, this is
due to errors in coding process. However, in many cases, it is our opinion that the focus by
the EFI Programme during design and testing on focussing on the “simple path” will have
allowed this missing code (and therefore functionality) to have remained undetected until
the code encountered real world data in production, triggering a failure.

5.7 DMI Code Review

5.7.1 Purpose
The purpose of the DMI Code Review is the same as the EFI Code Review, namely to
provide insight to the code quality and the structure of the Application.

5.7.2 Key Findings
Our key findings in relation to the DMI code review are:

 The DMI custom code with an 8.8 findings in every 100 lines of code is rated as:
Slightly Below Average.

 DMI uses a low proportion of SAP package functionality.

o Core SAP concepts have been re-implemented in custom code. This prevents
DMI from using large sections of SAP functionality now or in the future without a
complete restructure and rewrite of DMI.

o Core SAP product functionality has not been used, and instead has been
custom coded in DMI ABAP code, EFI Java code or elsewhere. In many cases
(e.g. Mass processing, Locks, CRM) this has delivered far less functionality, at
higher cost with reduced maintainability.

 DMI is the financial engine at the core of the System. Unusually for a financial
application it does not enforce Referential Integrity. This has allowed DMI to store
invalid records. This reduces the data quality in DMI and the overall integrity of
financial processing in SKAT Collections.

5.7.3 Assessment Details

Approach: Functional Review
The assessment consisted of an overarching functional review alongside a technical ABAP
Code Review. The assessment was completed with information from workshops with
project and EFI Programme resources, documentation review and access to a DMI
Sandbox environment. The assessment was completed in the current DMI landscape with
the following
characteristics:

 SAP ECC 6.0 - Enhancement Package 4

o Support Pack (FI-CA and IS-PS-CA) – level 8

DATE: 24.09.2015

 45 | P a g e

 SAP PI 7.1

Low Usage of SAP Package Functionality
DMI represents an unusual approach to an SAP Revenue implementation. There is a low
usage of SAP package functionality (standard objects, programs and mass processes)
combined with an unusually high percentage of custom objects (Programs and Tables).

The consequences of this are that the licensed SAP product functionality is relatively
lightly used and the Application is generally harder to understand for SAP professionals,
as DMI is in fact, mostly a custom Application, rather than an SAP application.

Because DMI makes light use of SAP product functionality, SKAT will benefit little from
future upgrades of the SAP product as DMI makes little use of this functionality. For
example, although SAP has screens, reports and other functionality, the SKAT users do
not actually use this.

Because DMI is essentially a custom coded Application in ABAP, it cannot be maintained
by an SAP professional, without them having to learn the internal structure of DMI (not
SAP PSCD). As the level of documentation that would be required to understand this
structure does not exist (or has not been revealed to the analysis team), this means that
currently DMI can only be maintained or altered by the original DMI team.

The following are the major conceptual differences between DMI and typical
implementations of SAP PSCD.

 Business Partner

o The concept of unique taxpayer is housed outside of SAP. This renders
address, bank details and other standard SAP Business Partner objects
useless.

 Contract Object (CO)

o This essential object within the SAP Tax and Revenue Management (TRM)
master data model is missing in the DMI Application. This is commonly used for
revenue clients while the CO concept is rarely used in FI-CA implementations
for other industries (e.g. utilities).

o The Contract Object concept allows another layer of data segregation, it also
allows the usage of Inbound Correspondence and FACTs functionality.

DMI is unusual compared to other implementations mainly because the lack of usage of
SAP standard functionality and mass processing.

 Use of custom code - Documentation states that DMI is utilizing at least 90%
custom code, based on our experience this is a rare occurrence within SAP
implementations.

 Standard functionality & objects – DMI does not utilize standard tables or programs
to manage certain core processes, for example: Locks, Clearing, Dunning, Bank

DATE: 24.09.2015

 46 | P a g e

Returns, Instalment Plans, and Promise to Pays. This not only excludes the usage
of tables, but also the delivered function modules that can be used for: extraction,
history and checks. DMI also opted out of utilizing information containers like
Correspondence History to store interactions with the taxpayer. The net result of
this is that DMI has custom coded entire functionality instead of extending or
aligning to what already exists in the product, and taken architectural decisions that
prevent use of this product functionality without a migration process.

 Mass processing – SAP PSCD is built around the concept of Batch Mass
Processing. This allows the application to process the large amount of information
in a parallel and organized fashion. The DMI Application is only using two mass
processes: Payment Run and Simple Revenue Distribution. The following are
examples of mass processes that are commonly used, on a daily basis, across
other TRM implementations: Clearing, Billing and Invoicing (Object and Return),
Dunning, Write-off, Interest run, External Collection Agency Processing,
Correspondence print.

 End user access to SAP Screens – End users are not allowed to access SAP
screens. End-users access to SAP is via a layer of custom objects that could have
been avoided by adapting to standard screens where possible.

 It is outside the scope of this review to consider all the requirements and design
decisions in DMI, and their fit within SAP Product. Based on the sample subset of
Needs reviewed, there was potential to use more of the SAP functionality than was
actually used.

The following processes normally fall outside the SAP PSCD standard functionality. It is
our experience that custom extensions are required to fulfil common requirements in these
areas and as such it was inevitable for DMI to add custom code. Nevertheless extensions
in these areas should be limited in scope to avoid usage decline on SAP processes. For
example in the case of Contingent Liabilities, the extensions contributed to an increased
usage of custom code in other areas.

 External offsets – SAP was not built around the concept of temporary liabilities
which is required to fulfil the requirements of external offsets. Solutions normally
entitle custom table(s) to store the temporary liabilities and history information,
along with custom program(s) that enable the matching logic. Once the match is
identified SAP Standard functionality can potentially be used to continue the
process.

 Contingent liabilities – While the concept of additional payee(s) is part of SAP, it
normally does not comply with the complex processing rules within Revenue
agencies. Based on our experience shared liability models normally require custom
objects to track and operationalize the process. Similar to external offsets, the
custom objects can be used to help SAP standard functionality to take over the
transactions.

 Interest calculation – Monthly (or regular) calculation of interest in SAP can create
an overwhelming number of postings for Revenue agencies, while the standard
functionality (calculation and history) should be used, the triggering of interest is

DATE: 24.09.2015

 47 | P a g e

normally adjusted to only calculate at certain times requiring some level of custom
code (e.g. only calculate interest on payment receipt or forecast).

Detail of Documentation

 The existing documentation does not provide information on individual custom
objects. Instead, the documentation was built around packages and broadly defines
objectives, which complicates the understanding and the integration between the
programs, function modules and tables.

 The web service (a series of objects which serve as the communication method
between DMI and EFI) definition relays only on short descriptions to explain the
functionality. The lack of detail creates scope definition problems and testing
challenges.

Requirements Reassessment – Mapping to SAP PSCD
The purpose of this exercise was to examine actual DMI Needs, and examine the extent to
which implementation of these Needs should fit within the SAP PSCD product. This was to
compare with the actual implementation of DMI, which is 80-90% custom ABAP (i.e.
outside the SAP PSCD product).

The 96 Needs that were available as of May 18th 2015 (independently of the completion
status) were reviewed and compared against SAP PSCD functionality. The Needs are the
same Needs used in section 5.1, and are a sample of Needs in the core areas of the
System. These come from 3 categories:

 Receiving Claims

 Calculating Account Balance

 Setting up Payment Plans

Requirement Category Custom Object Event Standard

Receiving Claims 8 20 7

Account Balance 15 5 31

Payment Plans 3 5 2

Total 26 (27%) 30 (31%) 40 (41%)
Table 10 Requirement Categories

An event is used to enhance standard SAP functionality beyond configuration. It enables
customers to use core processes while adding specific business rules. A custom object
refers to a customer specific item that is needed to complete a business process. For
example an interface, report, correspondence or extension.

The analysis above shows that approximately 70% of Needs could be covered by standard
SAP processes (including configuration and events). As implemented, DMI implements

DATE: 24.09.2015

 48 | P a g e

approximately 10% of Needs using standard functionality. This review strongly suggests
that standard SAP TRM functionality could have been used more extensively within DMI.

Caveat: Complexity of implementation is increased when requirements are reviewed
jointly, as this exercise only analysed a limited amount of requirements, these percentages
should be only indicative for DMI. A reasonable expectation is that the Custom Object
percentage could rise by up to 10%.

Maintainability of DMI
Based on the analysis of the SAP structure, documentation and functionality the following
are reasonable expectations for maintaining DMI:

 Functional upgrades (mainly delivered by enhancement packages):

o The effort to perform upgrades should be lower than a traditional SAP
implementation, as most of the objects will be untouched by SAP’s
enhancements, as a consequence testing scope should be reduced.

o Based on the small amount of standard SAP code that is being used, functional
upgrades and additional SAP functionality will have little or no advantages for
the EFI Programme going forward, as standard SAP product functionality mostly
isn’t used.

 Support packages (SP)

o The EFI Programme should continue to keep the SP level in the recommended
latest -1 (minus one) version. This will allow prompt support from SAP. SP levels
on DMI have not been updated in 3 years. The latest SAP SP level is 15, leaving
DMI at least 6 levels behind, which is atypical for SAP customers.

 General maintenance

o Updates or fixes to DMI will most likely need to be performed by a third party
who understands the complex integration of custom objects.

o Lack of functional documentation means that maintenance of the Application will
need to start at the code-level and move up, increasing the cost of ownership.

o Within DMI there is an added layer of services to transform XML that will need to
be maintained, given the documentation status, this will probably open the door
to ongoing scope discussions.

Lack of Referential Integrity
Referential Integrity is a database level technology that can be used to strictly enforce
relationships between data, and ensure data complies with business rules. This helps
ensure the integrity of business records. For example, a rule can be created to require a
Liability to be related to a Claim, and the database will prevent the creation of a Liability
that does not belong to a Claim. It will simply not be possible to create records that break
the relational integrity rules. Referential Integrity provides a second line of defence, above
application validation logic, to prevent Application errors resulting in corrupt data.
Referential Integrity is almost invariably used within enterprise systems to enforce data
integrity rules and maintain the quality of data in enterprise systems.

DATE: 24.09.2015

 49 | P a g e

The assessment has not had technical administrative access to the production DMI
Application. However, based both on interviews with DMI technical staff and analysis of
the DMI data transfers to the SKAT Data Warehouse, it has been identified that DMI does
not have referential integrity enabled on key data relationships. This is highly unusual, as
the net effect of this is to allow the Application to store records that break business rules
(i.e. demonstrably incorrect business records). There are rare situations where RI may be
partially disabled, to add a modest increment in performance, but there is no indication that
this was required in this case.

There are documented data integrity issues within DMI data in the SKAT Data Warehouse.

Approach: DMI Semi-Automated Code Review
The review was performed using a proven Code Review tool for SAP (ABAP) code. A
random sample of programs was selected. In total, the 78 selected programs comprised
11.5% of the 675 custom programs in the environment. The sample include 54 main
programs and 24 include programs. These are listed in Section 9.2.8.

The automated tool was executed on the sample, and the findings were reviewed by an
experienced ABAP developer. The findings were categorised by fix priority and change
complexity to enable the impact of these issues to be properly understood.

Findings
The tool logged 1,624 findings in the 21,209 lines of code reviewed, or 8.8 findings in
every 100 lines of code.

The following table shows the count and percentage of findings distributed by type,
showing the main concentration of findings within hardcoding and Incorrect Logic
categories.

Table 11 DMI Code Review Findings by Category

The following table shows the distribution of findings based on priority and complexity. Fix
priority describes the importance of addressing the findings, while Change complexity
describes the effort that will take to address them.

Table 12 Distribution of Findings Based on Priority

Hard

coding

Incorrect

Logic

Performa

nce Issue
Security

Code

Inspector

Maintain

ability

Modulariz

ation

Related

Object
Total

Count 547 471 258 170 138 25 14 1 1,624

% 34% 29% 16% 10% 9% 2% 1% 0% 100%

High Medium Low Total High Medium Low Total

Count 225 1,136 263 1,624 16 250 1,358 1,624

% 14% 70% 16% 100% 1% 15% 84% 100%

Fix Priority Change Complexity

DATE: 24.09.2015

 50 | P a g e

The results suggests a priority to review the code with 84% of findings in the High/Medium
category, but it also suggests that the risk could be addressed with minor effort as 84% of
the findings can be addressed quickly.

The results were then compared to other applications utilizing the same tool in order to
provide a comparative assessment to the EFI Programme. The DMI custom code with an
8.8 findings in every 100 lines of code is rated as slightly below average.

5.7.4 Accenture Assessment

 The design of DMI and the lack of detailed current documentation means that DMI
can only be maintained by the current development team. Because DMI does not
use standard SAP approaches, it is not maintainable by SAP professionals without
DMI experience or an extensive knowledge transfer

 DMI will benefit relatively little from future SAP upgrades, as it makes relatively little
use of SAP functionality

 Without referential integrity, DMI is able to store logically incorrect business records.
Data analysis (see Section 5.12) confirms that incorrect business records exist in
DMI

 The analysis shows that approximately 70% of Needs could be covered by standard
SAP processes (including configuration and events). As implemented, DMI
implements approximately 10% of Needs using standard functionality. This review
strongly suggests that standard SAP TRM functionality could have been used more
extensively within DMI

5.8 Complexity of Design

5.8.1 Purpose
The purpose of the design complexity assessment was to understand the original
aspirations for EFI+DMI, and compare it to similar systems. The analysis team has
experience of state level collections systems serving similar and larger numbers of
citizens. It is useful to compare EFI+DMI System to these other systems to:

 See if there are differences between the EFI+DMI System and other systems that
are successfully in operation

 Form a rough assessment of the comparative complexity of the System. This can
provide insights into the indicative effort required to create the System

5.8.2 Key Findings
Our key findings in relation to the overall design complexity are:

 It is our opinion that the EFI Programme’s ambition for the EFI + DMI collections
System was higher than comparable systems across many aspects, as assessed
below.

 The scope of the System was not well defined. The complexity of the needs was not
well described in the Original Requirements and use cases, or at any subsequent

DATE: 24.09.2015

 51 | P a g e

phase. It is our opinion that the complexity of implementing the variety of debts and
legal persons, combined with the extent of automation was never fully understood.
This resulted in essential functionality being omitted from the System.

 IT requirements are usually the first time that new policy has to be worked through
to its logical conclusions in black and white instruction and this often generates
legislative requirements. In our experience with major public sector IT system
development in many European countries, a track of legal change frequently
accompanies the IT change, to limit /simplify the complexity of requirements by
changing the legislation.

5.8.3 Assessment Details

Aspect EFI Programme Approach Typical Approach

Range of
debts
collected

A single System for collecting
all debts across the public
sector.

However, it is clear that there
many dimensions of complexity
which must be handled

 490 claim types (280 in use)

 697 claimants

 12 types of legal person

Most countries currently operate
separate public debt collection
systems at an agency level.

Within Revenue Agencies, there
are frequently 2-3 separate debt
collection systems for different
classes of debts.

EFI attempted to collect a wider
range of debts, and from a larger
number of claim owners than
comparable organisations.

The Norwegian National Collection
Agency (NCA) performs only part of
the function that EFI was intended
to perform and is a dedicated
agency created for this function. It
collects on 188 claim types (less
than EFI) and has 35 claimants
(much less than EFI). NCA does
not collect the claims for the largest
and most complex government
organizations. The functional
complexity and the volume that
NCA handles cannot be compared
to the EFI/DMI scope.

DATE: 24.09.2015

 52 | P a g e

Aspect EFI Programme Approach Typical Approach

Level of
Automation

The EFI Programme attempted
to automate a wide range of
activities in the initial scope of
the System.

This included low frequency,
high value, high complexity debt
collection tasks (e.g.
insolvency).

It also included complex
automated solutions, where a
less sophisticated semi-
automated solution would be
adequate. E.g. EFI attempted to
automate booking the time of
the debt collector, room
bookings and resource (e.g.
vehicle bookings). However, the
result of the automation does
not work – e.g. appointments
are scheduled too close
together in time, without an
understanding of locations and
travel time. This is likely
because the needs complexity
of full automation was too high,
and the actual implementation
too simple.

Note: the completion status of
the resource management
module is currently in dispute.

Similar systems typically balance
the level of automation and
frequency and value of the tasks
being automated.

Automation is usually focused on
high frequency, low value tasks,
low-medium complexity tasks.

Other solutions typically include
mechanisms to (a) take work aside
for manual processing where
required AND (b) to re-introduce the
work into the automated flow when
the manual exception has been
resolved.

Most organisations (public and
private sector) do not attempt the
comprehensive level of automated
resource management that EFI
attempts. Instead, simpler
mechanisms (e.g. push and pull
queues, with some matching of
work complexity against worker
skills) are frequently used. Where a
complex resource management
system is required, this is typically
implemented as a package solution.

DATE: 24.09.2015

 53 | P a g e

Aspect EFI Programme Approach Typical Approach

Legal
Complexity

An assessment of the legal
requirements for SKAT
Collections is outside the scope
of this report.

However, it is clear that there
many dimensions of complexity
which must be handled

 490 claim types (280 in use)

 697 claimants

 12 types of legal person

To some extent, the EFI
Programme has been able to
abstract these into groups of
Claims that can be handled in
the same way, although it is not
clear this analysis is fully
correct.

Although it was an intention at
the inception of EFI that the
legal requirements for debt
collection should be simplified,
in fact this never happened.

As a result, the EFI Programme
has attempted to code and
automate an enormous variety
of Original Needs, without
simplification.

The normal approach is a
combination of
A) Simplification of the legal

requirements in parallel with the
system implementation.

B) Reducing the scope of the
automated IT solution to
address the high volume, low –
medium value work where IT is
of greatest value.

This assessment has not examined
the relative legal complexity of
SKAT Collections compared to
NCA Collections.

DATE: 24.09.2015

 54 | P a g e

Aspect EFI Programme Approach Typical Approach

Costs,
benefits,
scope and
requirements

EFI was described by 389
Original Requirements in total,
and approx. 700 pages of use
cases.

In many cases, the Original
Requirements were vaguely
described e.g. as “Der må ikke
foretages fysiske sletninger af
data med mindre andet er
specifikt angivet for et givet
begreb” (“Physical deletion of
data must not be performed
unless otherwise specified”).

Typical enterprise systems are
described by detailed requirements.
E.g. for a large custom built
solution, 3,000 – 5,000
requirements is typical. For a
comparable package solution,
2,000 – 4,000 requirements is
typical.

In the creation of almost all IT
systems, there is a cost/benefit
analysis performed at an early
stage, where requirements are
examined and included or excluded
based on the cost to implement and
the benefits provided. This is
usually informal initially, followed by
increasing formality and structure
as documented estimates are
created for the entire solution.

In most organisations, a budget is
defined for a solution, and the
scope is managed to fit within the
allocated budget. Before the budget
is fixed, detailed requirements are
documented and analysed to
confirm the budget and scope
match.

Table 13 Assessment Details

5.8.4 Accenture Assessment
In our opinion, the EFI Programme attempted to build an extremely sophisticated and
complex debt collection System. In a number of major aspects, it is more complex than
systems in other countries.

The System is currently incomplete (see Section 5.1 and the separate functional report)
and there is no clear definition of the scope of the System.

The implications of this assessment in our opinion are:

 That the scope of the System, as originally envisioned without simplification, would
probably have required building one of the world’s most complex public sector
collections systems.

 That SKAT’s needs for collections should be simplified significantly, thereby
reducing the overall scope. This will reduce the complexity and cost of any rebuild
or replacement.

DATE: 24.09.2015

 55 | P a g e

5.9 Solution Architecture Observations

5.9.1 Purpose
The purpose of this section is to document findings related to the overall architecture and
principles of the System and EFI Programme.

5.9.2 Key Findings
Our key findings in relation to the overall Solution Architecture are:

 The split of functionality across EFI and DMI was defined at a high level by the
Original Requirements and use cases for EFI and DMI. The details of the
integration were established through the integration design (see Section 5.4). In our
experience, this is an unusual approach to implementing a System for debt
collection, as these systems are typically implemented as a single application,
providing simplicity, improved performance, reduced maintenance costs and more
integrated functionality (360 degree view). The analysis team are not aware of
another debt collection system that has functionality split in a similar way to
EFI/DMI.

 The EFI Programme adopted a principle of flexibility in designing EFI+DMI. In our
experience, flexibility is not normally considered an architecture principle. As used
in the EFI Programme, this “principle” contradicts several established architecture
principles such as KISS (Keep It Short and Simple) and YAGNI (You Aren’t Going
to Need It).

 EFI and DMI has been designed with the aspiration of providing future flexibility.
Some flexibility has been provided, however

o It is not clear this level of flexibility was required. Most of the flexibility has not in
fact been used to date. The System is intended to be more flexible than
comparable systems in other countries that are working satisfactorily in
production.

o It is not clear all the functionality controlled by the flexibility works, as the level of
testing this has received is not exhaustive. It is therefore likely that if functionality
or combinations of functionality that have not been used to date are configured
into use that new defects will emerge, and there will be data corruption resulting
in the inability to provide an unequivocal account of what actions have been
done and why.

5.9.3 Assessment Details

Overall Structure
The essential difference between the EFI Programme approach and the approach taken
by other agencies the assessment team have experience of, is that the EFI Programme
separated core Collections functions across multiple Applications. For example, to create a
payment plan, calculate payment ability, or create a salary deduction plan and many other
situations, EFI must retrieve detailed financial data from DMI, perform logic in EFI and
DMI, and update both Applications in a consistent way. This is highly inefficient in many
ways, for example:

DATE: 24.09.2015

 56 | P a g e

 It will take more effort to develop the required functionality as additional to the
required business logic, there are numerous web service interfaces interposed
between the components performing the logic.

 At runtime, the logic will perform at a fraction of the speed of a single integrated
system.

This split of functionality across EFI and DMI was defined at a high level by the Original
Requirements and use cases for EFI and DMI. The details of the integration were
established through the integration design (see Section 5.4).

The assessment of the EFI+DMI SOA in Section 5.4 also relates to the overall
architecture.

Flexibility as a Principle
During the analysis to prepare this report, it was repeatedly stated in meetings with EFI
Programme management that a key principle for the design of EFI+DMI was flexibility, e.g.
in the meeting of 29th June 2015 with the EFI Programme manager.

Many well-respected lists of software architecture principles do not specifically list flexibility
as a principle. Instead, they list other principles, which are intended to deliver a minimal
but well-structured application that can be maintained, extended, and scaled in the future.
This delivers the goal of a flexible and maintainable system.

A particular problem with designing a system to be flexible, is that unless there are specific
requirements defining the type of flexibility required, then the designers are attempting to
predict the future. This can result in over-engineering a system or building flexibility that is
never required in practice.

Including additional functionality to anticipate possible (but unconfirmed) future
requirements is directly against widely accepted architecture principles such as YAGNI
and KISS.

Architecture and Flexibility
As noted above in the comments on SOA within 5.4, and as stated by the EFI Programme
manager, it was intended that EFI and DMI would offer great flexibility as a platform for
SKAT Collections. The System incorporates mechanisms to enable extensive
configuration of the functionality to support possible future scenarios.

All non-trivial applications include some level of flexibility. At the simplest level, this may be
e.g. the ability to change a VAT percentage rate without requiring to change source code,
rebuild and redeploy the system. However, in our experience, it is necessary to balance a
number of factors including:

 What parameters must be configurable

 The level of testing required when parameters are changed

DATE: 24.09.2015

 57 | P a g e

 The complexity of the configuration mechanisms

Our experience is that other organizations with high value, high complexity systems decide
that the more complex changes to configurations require a formal test within a testing
environment before use in production. This decision may reduce the benefits from a
customization module (of whatever technology), as changes are, in effect, treated as
similar to software code changes requiring a test and release cycle.

There is no evidence the EFI Programme tested every configuration change thoroughly in
a test environment before use in production. There is therefore a risk that production
operation has been incorrect as a result of this execution of untested configurations in live
use.

EFI/DMI and Configuration Design
In designing EFI, the EFI Programme maximized configurability, and much of this
configuration could be performed by administrative users. This configuration has the
potential to completely change the behavior and processing of EFI, including introducing
legally incorrect behavior. This configuration is not tested rigorously in SIT02 (environment
for System Integration Test), which introduces additional risks of unexpected and incorrect
behavior.

When designing an application or system to be future proof, there are complex cost/benefit
decisions to be made to balance designing the system to build in anticipated but unknown
flexibility now and implementing the minimum functionality with no thought to the future.
Most organizations strive to:

 Implement a system that implements the current known requirements, with a
structure and architecture that enables, but does not implement, future expansion.
A term sometimes used for this approach is “minimum viable product”. This
approach is based on implementing a working “Version 1.0” into production,
learning from this, and then extend and upgrade from Version 1.0 through
successive versions and releases (1.1, 1.2, 2.0, etc.).

 Simplify requirements to reduce the complexity and therefore the cost of
implementing the system. In the public sector, this frequently involves parallel
programmes of legal and system changes

Where a configuration mechanism is implemented, this is in many cases far more complex
to design, build, and test than a hard coded mechanism, or a less sophisticated
mechanism with some manual steps. As examples:

 The configurable and general purpose treatment tracks engine at the core of EFI
enables EFI administrators to dynamically configure infinite combinations of
treatments for cases, based on a variety of parameters. In practice, comparable
collections systems in other countries are based around a small number, typically 5-
10, treatment tracks.

DATE: 24.09.2015

 58 | P a g e

 The design of the treatment services does not enable the flexibility the business
requires in practice and is not able to provide fundamental functionalities such as
adding of new claims to an existing treatment.

 Although the System was intended to be flexible to suit a wide variety of future
scenarios with little or no code changes, in fact, this is not proving to be the case.
Real world changing needs are in fact requiring extensive and complex changes to
the EFI and/or DMI code. Examples of these changing needs includes changes to
the “PEF” customer processing and changes to process claims for a customer
singly, rather than in a group).

Flexibility of EFI+DMI Treatments, Compared to Similar Collections Systems
The EFI Programme designed a System which allowed administrative users to create
almost any combination of highly automated treatments.

By comparison, a recent state level collections system, serving over 10M citizens
implemented three treatment tracks, which include some configuration (business rules)
regarding the delays at each step depending on the claim type. This provided standard
processing paths, with flexibility to rapidly and safely adjust the key drivers of treatment
success.

Many collections systems provides flexibility to adjust the treatments, which enables the
rapid adjustments of existing treatments to apply slight variations and thus enable new
treatments. By comparison, EFI has separate services for each treatment track with little to
no re-usability. This means that the implementation of a new treatment results in the
development of a new service as there is no way to just add another “type” and then
configure the business rules.

With EFI, often the addition of new customer types results in the need to create new paths
and create separate modules in the system for the processing of these customers, which
has an impact on system complexity and makes it more difficult to maintain in the long
term. Other agencies have systems that enable the addition of new tax payer/debtor types
and the catering of the flows within minimal code changes.

The DMI SAP Application backbone provides a narrow set of flexibility and workflows.
Normally, agencies adjust their processes and requirements to fit within the available
flexibility. This is critical to success with COTS software. However, DMI has instead
custom-built extensive structures within SAP to give the illusion of a fully
flexible/customizable Application. In practice, this means that key SAP functionality is
simply not in use.

5.9.4 Accenture Assessment

 Although the intention was to create a highly flexible System, which could
accommodate future changes easily, changes currently being planned for
implementation will most likely require modifications in multiple places throughout
EFI and DMI.

 In our opinion, the lifetime maintenance costs of EFI and DMI will be higher than
those of comparable systems with less flexibility and functionality because EFI+DMI

DATE: 24.09.2015

 59 | P a g e

includes two platforms rather than one and is intrinsically more larger and more
complex.

 A less flexible System, thus less complex, would have been cheaper to build and
easier to test, both to date and into the future, because construction and testing
effort is driven by complexity.

 There is a significant risk that changes to the “configuration matrices” controlling
elements of the functionality have errors, as these changes are not tested. There
should be testing to verify that the configuration works as expected. Complex
configuration should be treated like code changes.

5.10 Focus on Simple Path

5.10.1 Purpose
The purpose of this assessment was to identify whether the EFI Programme had
systematically focused on the “simple path” through the System, and failed to implement
other paths required for correct operation.

5.10.2 Key Findings
Our key findings in relation to the simple path are:

 The design and implementation of EFI/DMI System, in design, build and test, has
focused on the “simple path”. Although the simple path may often work, real inputs
and real cases require exception paths, which are inadequately handled and may
fail to operate correctly.

5.10.3 Assessment Details
In a software system, the simple path is the default path through the system, with no
exceptions.

As examples:

 The default path for a Claim entering EFI+DMI is for the Claim to arrive
electronically, be accepted and be stored in EFI and DMI.

 The default path for a Payment Plan is for the plan to start, for the debtor to pay
every instalment on time and for the plan to complete.

It is possible for design, build and test to focus on the simple path. When projects take this
approach, they focus on trying to show that the System can work. When the System is
eventually faced with real world conditions, the System is unable to process correctly.

In the examples above

 EFI does not enforce validations to ensure that only valid claims can enter the
System. On the simple path, a correct claim can enter the System and be received
correctly. However, when presented with invalid claims, EFI also accepts these,
causing problems later on. The approach normally taken by systems is to

DATE: 24.09.2015

 60 | P a g e

implement strong validation on interfaces, especially external interfaces, to prevent
invalid data ever entering the system.

 EFI is able to process a payment plan correctly if every payment is made on time.
However, in reality, frequently debtors will miss a payment, incur additional debts
during the course of the plan etc. In these scenarios EFI may not operate correctly.

The basis of this assessment are the following observations

 EFI was designed to permit entry to incorrect data - e.g. claims without a due date –
that were legally incorrect and could not be processed. The analysis team was told
by the EFI Programme management that it was assumed that the public agencies
sending claims to EFI would never send incorrect data, and SKAT users would not
make errors on input fields – e.g. entering a CPR number in the claim value field.
Both of these errors have occurred in practice. In our experience, it is highly
unusual in systems of comparable size to have validation this lax on any interface,
let alone an external interface. There is no evidence there was any plan in place to
ensure this assumption remained true.

 In many use cases and designs, the description or alternate paths were missing
detail necessary to handle scenarios that occurred during production operation.

 It is clear from our requirements trace analysis that the test cases have focused on
testing the simple path.

 Both from the automated code analysis (complexity measures) and also from the
manual inspection of the code, it is clear that the code is relatively simple. Part of
the explanation for this is that the logic that should be present to process the
alternate paths is not present, resulting in more simple code than usual.

 EFI was designed without the possibility of ever having “expired claims” within the
System, and was not designed to process correctly if a claim happened to expire
while in the System. There are currently many expired claims within the System.
There is no evidence there was a robust approach planned to ensure this could not
happen.

5.10.4 Accenture Assessment

 In most areas analysed across EFI+DMI, the System works to some extent for
simple cases and simple inputs. However, the System fails to operate correctly in
many cases when presented with real world inputs.

 As designing and implementing the exception paths typically comprises 80% of the
effort in an IT system in our experience and as these are substantially incomplete in
EFI, there is a large effort required to remediate these if EFI/DMI is to work.

 Given the lack of detailed documented Original Needs there can be no accurate
assessment of the completeness. The Original Requirements and use cases do not
give a detailed and complete view on how the System should work, and therefore
do not describe a finished System.

DATE: 24.09.2015

 61 | P a g e

 As the cause was systematic, the reasonable conclusion is that if examined, gaps
will be discovered in all areas.

5.11 Event based processing

5.11.1 Purpose
The purpose of this assessment is to examine whether the event based architecture of EFI
was ever likely to work in practice. This is primarily based on the explanations of how the
System worked provided in the requirements gathering workshops and the meetings listed
in Section 7.1.1, together with some source code review.

5.11.2 Key Findings
Our key findings in relation to the event based processing are:

 The event based processing approach, used for “monitoring” results in excessive
numbers of events and changes from a customer perspective. In practice, this
means that if the automation were enabled as originally designed and implemented
customers would receive excessive numbers of communications and events from
EFI+DMI.

 Although no detailed analysis has been performed by the analysis team of the effort
to change this processing, it is probable that resolving this issue would require
major changes as it would be a fundamental change to EFI+DMI.

5.11.3 Assessment Details
EFI is architected to take an event based approach to monitoring collections. The System
is intended to detect debtor’s events, and react accordingly. E.g., the System is intended
to monitor payment ability. When a debtor is able to pay, the System should automatically
enable salary deduction, and vice versa.

As designed, the system would send a single customer multiple letters during many
common scenarios. No batch approach was chosen to group changes on a customer’s
case. E.g., a debtor with salary deduction will receive a letter each time the deduction
percentage changes, which can occur often for customers with frequent changes in
payment ability.

This is based on our analysis of the following documents:

1) Modtag Fordring ODSB 1 External system interface and MF Component
2) Overordnet Delsystembeskrivelse for Inddrivelsesmotor
3) ODSB_for_Hændelsesfabrikken_v_3 5 2
4) Overordnet Delsystembeskrivelse for indsatsen Lønindeholdelse EFI_OP_00
5) Overordnet Delsystembeskrivelse for indsatsen betalingsordning EFI_OP_00
6) Overordnet Delsystembeskrivelse for indsatsen Bobehandling EFI_OP_00
7) Overordnet Delsystembeskrivelse for EFI ESDH og AandD Integration
8) Overordnet Delsystembeskrivelse for Betalingevneberegning og Budget
9) SAD - Software Architecture Document for EFI-IPO
10) EFI – Source code

DATE: 24.09.2015

 62 | P a g e

A more typical approach in an event based system such as this is to aggregate outputs to
customers in some way (e.g. daily, monthly). Additionally, in many scenarios, some level
of smoothing is required on input data to ensure a suitable outcome is delivered at a
business level – e.g. averaging payment ability over a period of time.

5.11.4 Accenture Assessment
The approach of event based processing and creation of outputs and the lack of selective
controls on processing would likely be a block on fully automated processing until this
entire approach is restructured.

5.12 Data Quality Impacts on Application

5.12.1 Purpose
The technical analysis has primarily focussed on the technical and functional architecture
of the System and Applications. However, the System and data have impacts on each
other.

The purpose of this section is to describe the implications of some findings from the data
analysis on the System, and vice versa.

5.12.2 Key Findings
Our key findings in relation to the data and application are:

 There was an assumption that the System would receive valid data from the internal
and external systems feeding EFI+DMI with claims, and also from all users inputting
data manually. This assumption is identified because (a) the System does not do
normal levels of validation and (b) it was stated in requirements workshops that the
EFI Programme had no mandate to control incoming information. This does not
appear to be a reasonable assumption, based on our experience of other systems,
and the fact that non-valid data has been input to the System. This resulted in the
System failing to process correctly when presented with incorrect production data.

 EFI does not implement rigorous external validation on input data. This is a highly
unusual approach in our experience and is in violation of SOA and normal
application principles.

 EFI+DMI is partially or completely unable to process records that are missing key
fields.

DATE: 24.09.2015

 63 | P a g e

The following table describes the Key Findings related to the data within the System,
categorized against a number of areas.

Area Definition Observation Source Consequences for Data

Analysis / EFI System

Consistency To what
extent is the
data stored
in a well-
defined and
described
format

DMI has a well-structured
description of the data
model and the individual
tables are described in the
document. For EFI, we
were not able to establish if
a data model description
document exists.

The list of data description
documents we received for both
EFI and DMI is documented in the
Appendix of the Data Analysis
report. The set of documents we
received does not include an EFI
data model description document.
We received a set of SQL and DDL
files for the tables in EFI.

This does not impact the
findings of the data analysis.
Its impact is in the additional
effort that was required to
perform analysis because it
was necessary to reverse
engineered a Data Dictionary
and ER Diagrams from these
SQL and DDL files using
Oracle SQL Developer Data
Modeler as a pre-condition to
starting analysis.

Integrity To what
extent are
data
relationships
defined and
adhered to

We have identified
inconsistencies between
the central DMI tables in
the Data Warehouse.
These inconsistencies
would suggest that
Referential integrity is
turned off at database level
in DMI.

We identified 8.658 claim rows on
the “DMI Fordring” table in the Data
Warehouse that do not match any
claim rows on “DMI Inddrivelse”.
(this figure is less than 1% of the
total number claims in this table)

We identified 2,943 claims rows on
the “DMI Inddrivelse” table in the
Data Warehouse that do not match
any claim rows on the “DMI
Haeftelse” table. (this figure is less
than 1% of the total number claims
in this table)

The consequences of this
inconsistency is that key
dates governing collection
will be missing for these
claims.

The consequences of this
inconsistency is that
Collections will not be carried
out on these claim.

These rows were excluded
from data analysis.

Uniqueness To what
extent is
data unique
(or is data
duplicated)

In general, data is not
duplicated between EFI
and DMI beyond what is
necessary to ensure that
the two Applications must
be able to function.
However we understand
through interviews with EFI
Programme
Representatives that a
record is registered in both
EFI and DMI databases
when the claim is first
received, and understand
that inconsistencies have
been observed.

During interviews with Programme
Representatives we understand
that reconciliation activities have
been carried out between claims
sent from the KOBRA application (a
SKAT application and claimant) and
the claim stored in DMI, which
identified inconsistencies. In
addition a deeper dive as part of
the same reconciliation suggested
that the claim was also stored in
EFI when first received and that
there were also inconsistencies
between this data and the claim
stored in DMI.

The received claim data
stored in DMI was used as-is
for data analysis.

We did not have access to
the relevant tables in
KOBRA, EFI or DMI so were
unable to perform a separate
validation or quantification of
the number of instances
where this occurred, or
therefore establish the
consequences of this on data
analysis or on the EFI
System.

Completeness To what
extent is the
data set
complete (or
is there
missing
data)

We have identified
instances in
incompleteness in the data
relating to expiration date.

We queried the DMI extract tables
haeftelse_attribut and
haeftelse_forældelse in the Data
Warehouse extract from August 6th
2015 and identified 17,368,847
instances where both tables had a
missing expiration date for the
same liability. This is 17% of the
total liabilities and all records are
interest liabilities. In subsequent
interviews with EFI Programme
Representatives to understand the
nature of this issue, we learned that
the date is calculated ‘on-the-fly’ by
the EFI System (EFI/DMI

A workaround was used to
reduce the impact on data
analysis. The logic for this
workaround was provided by
Programme Representatives
- if the date was missing from
the attribute table and it is a
subclaim then the expiration
date of its main claim is used
instead for the purpose of
analysis.

We did not assess if the EFI
System uses this logic.

DATE: 24.09.2015

 64 | P a g e

Area Definition Observation Source Consequences for Data

Analysis / EFI System

Applications) when this data is
retrieved from the DMI database.

Uniqueness To what
extent is
data unique
(or is data
duplicated)

The expiration date is
stored in two places in DMI
– the current expiration
date is stored both in the
expiration date transaction
table is also stored in the
liability table. The current
expiration date can be
derived from the
transaction table using a
rule set.

We compared the DMI tables
haeftelse_attribut and
haeftelse_forældelse in the Data
Warehouse extract from August 6th
2015 and identified 15,816,632
instances where a liability
expiration date was present on both
tables but the values did not match
for the same record. This is 15% of
the total liabilities.

This impacted the selection
of the ‘correct’ expiration
date. Following interviews
with Programme
Representatives we
understand that
haeftelse_attribut table is
more reliable, therefore we
used this date value during
data analysis instead of the
haeftelse_forældelse date
value.

Completeness To what
extent is the
data set
complete (or
is there
missing
data)

We have not been able to
establish if all the
information needed to trace
the source of an update to
the expiration date
registered in DMI.
Although, for some
payment allocations it will
be possible to reverse
engineer the probable
expiration date update in
order to trace the likely
update as it is registered in
DMI, it is unlikely that this
will apply to all updates.

We have identified the location of
the record stored in DMI of the
expiration date updates, and of the
reason codes related to the
updates, however we have not
been able to identify the location of
a record indicating the treatment,
treatment step or payment that
resulted in the expiration date
update in DMI or in EFI.

This had an impact on
Retracer analysis of claims
where the expiration date
had been updated as a result
of a treatment or treatment
step. The Retracer
application was unable to
establish if the data had
broken rules in this
scenario. The consequence
is that these claims were
marked in the grey category

Consistency To what
extent is the
data stored
in a well-
defined and
described
format

The expiration date data
field in DMI is used to
capture information other
than the date when the
claim will expire.

The expiration date is set to 31-12-
9999 or 31-12-8888 in DMI to
indicate special cases like
bankruptcy proceedings, where the
expiration of the claim is
suspended. Although this use of a
date which is far into the future will
give the effect of preventing the
claim from expiring, we have not
been able to identify the logic for
determining what will happen to the
actual expiration date of the claim
when the suspension is released in
the future.

This had an impact on
Retracer analysis of claims
where a suspension has
been lifted. The Retracer
application was unable to
establish if the data had
broken rules in this
scenario. The consequence
is that these claims were
marked in the grey category.

Table 14 Key Findings Related to Data in the System

DATE: 24.09.2015

65 | P a g e

5.12.3 Assessment Details
A limited investigation of specific data quality aspects was carried out by the data analysis
team with the specific purpose of evaluating the consequences of data quality issues that
have a direct impact on the analysis findings.

The consequences of these findings to the data analysis results are listed in the table in
section 5.12.2. The consequences of these findings to processing of this data within the
EFI System, comprising EFI and DMI are documented to the extent that it was possible to
establish this during data analysis.

Data arrives into EFI from several hundred upstream systems, which submit Claims to EFI.
Additionally data is received from internal SKAT systems. End users may also manually
input data. A large quantity of data was also received during the data migration, through
the same input mechanisms.

Data analysis has identified a number of significant issues within EFI and DMI. These
include

 Fields required for processing that are missing. A high profile example is missing
“due dates” on Claim records. Without this date, critical Application logic cannot
work. There are many other examples.

 Missing record to record relationships. An example of this is liabilities without a
corresponding claim.

Examples of both these issues are listed in the table in Section 5.12.2 along with the
number of instances identified.

During the manual code analysis by the Accenture team, it was frequently noted that deep
within the internal logic of EFI, there was Application code to work around missing data.

Related to Section 5.10, a fundamental design assumption is that data entering the
System will be correct. The analysis has not identified a documented source of this
assumption, however, it has been described by EFI Programme representatives in
workshops (e.g. the Modtag Fordring requirements gathering and the data migration
assessment), in meetings with EFI Programme management, and it is clear from the code
review that there is a lower than normal level of validation.

Unfortunately, this assumption has been proven incorrect, although no action has yet been
taken to remediate this. Without correct data, and with the “simple path” assumption, EFI is
largely defenceless.

Typical approaches used in enterprise systems are

 Validate incoming data rigorously at interfaces, and prevent non-processable data
reaching the System.

DATE: 24.09.2015

66 | P a g e

 Implement mechanisms at interfaces (e.g. batch skips, message error queues) to
“filter” broken data before entry. This includes external interfaces, and may include
internal interfaces also.

 Assume input data will be incorrect in every possible way, and ensure
comprehensive protection is implemented.

EFI+DMI does not include mechanisms to control incorrect/broken data in a systematic
way. In some cases, it implements work around logic (e.g. inferring a missing field from
other data) that may or may not be correct. This may risk making a claim non-collectable.

Another example is when claims are submitted in a foreign currency, EFI stores neither
exchange rate nor amount in original currency, which may cause problems explaining
collected amount to debtor, especially with fluctuating currencies or errors in conversion.

5.12.4 Accenture Assessment
At present, even if EFI+DMI Applications performed perfectly with perfect data, given the
data quality issues within the System it appears that the net result could be similar to the
current situation with large scale problems.

A different approach should be considered in future to ensure high quality data within the
System.

A further consequence of these findings is related to future attempts to cleanse data to
improve the quality. Arising from the observations and investigation of the Data Quality
that are documented in this Section, we have identified some technical challenges that will
arise during data cleansing.

Data Quality Finding Impact on Data Cleansing Suggested approach to Addressing

We have identified instances in
incompleteness in the data relating to
expiration date.

When Data Cleansing is undertaken, to
complete the expiration date data, it will
be necessary to identify an alternative
source from which establish a correct
expiration date.

During Retracer analysis representatives
from KA established a ‘minimum’
expiration date, which is the earliest
possible expiration date for the claim
under analysis. This could be adopted
for data cleansing in the absence of
available data.
Another suggested approach is to apply
the logic that is currently executed by the
EFI System when it retrieves a liability
record containing a blank expiration
date.
The approaches should be compared to
establish which method produces the
appropriate answer on how to fix the
incompleteness.

The expiration date is stored in two
places in DMI – the current expiration
date is stored both in the expiration date
transaction table is also stored in the
liability table.

When Data Cleansing is undertaken, to
harmonise the expiration date data, it will
be necessary to establish which of the
two dates currently stored is the correct
expiration date.

During Retracer analysis representatives
from KA established a ‘minimum’
expiration date, which is the earliest
possible expiration date for the claim
under analysis. This could be compared
to the existing stored dates for the
purpose of taking a decision on which on
which value to use for the harmonised
date.

We have not been able to establish if all
the information needed to trace the
source of an update to the expiration
date registered in DMI.

When Data Cleansing is undertaken, to
fix the expiration date data, it will be
necessary to establish what effect

Although, for some payment allocations
it will be possible to reverse engineer the
probable expiration date update in order
to trace the likely update as it is

DATE: 24.09.2015

67 | P a g e

Data Quality Finding Impact on Data Cleansing Suggested approach to Addressing

payments, and treatments had on the
value of the expiration date.

registered in DMI, an approach has not
yet been formulated that applies to all
updates.

It has not been possible to establish the
configuration settings that were in place
at any given time in the past when data
was updated. (This finding is
documented in the Technical Report.)

When Data Cleansing is undertaken, to
cleanse data affected by a Quality
Center defect that was subsequently
fixed, it will be necessary to determine
when the production configuration in
EFI/DMI was updated to apply this fix for
the defect as a pre-requisite to
establishing which data records were
updated before the fix was in place and
therefore need cleansing.

Further investigation is needed to
establish if there is an alternative
method to establish which data records
were updated before a specific
configuration change was in place, and
therefore are in need of cleansing.

Table 15 Data Quality Impact Overview

DATE: 24.09.2015

68 | P a g e

6 Appendix: List of Defined Terms
Term Definition

ACID
Atomic, Consistent, Isolated and Durable. These are the fundamental guarantees a database provides
when using transactions to ensure data integrity.

ADM

Accenture Delivery Methods (ADM) is a development methodology that supports business process
analysis, application requirements and use case analysis, application design, technical architecture
development, testing, and the deployment of a system.

See Section 10 for an overview of ADM.

Application

An Application is an executable software program that performs a function or group of functions. It is
typically composed of a single technology, and may be integrated with other applications.
The term “Application” is used to describe EFI and DMI. EFI and DMI are technically separate and are
built on different technologies in separate projects.

Automation
Automation is the practice of using applications and other IT to perform tasks that would otherwise be
performed manually, i.e. by people.
A typical example is the issue of reminder letters to debtors.

Business Process
A Business Process (or Business Process Model) is a formal description of how a business function is
performed from beginning to end. The description should indicate the activities performed by users and
applications, and the interfaces between each.

Code / Source Code
The “code” or “source code” refers to the human readable instructions that are either compiled and/or
interpreted to form object code that can be executed by a computer system.

Configuration

Configuration refers to any data that is used to control the behaviour of a system. Configuration data
may be held in files, databases or elsewhere.
An example could be a fee amount held in a database. This allows the fee to be changed, without
requiring changes to source code. Changes to configuration data should be tested as these can
completely change the behaviour of a system.

COTS
Commercial Off The Shelf [software]. COTS refers to the use of software applications (packages) to
implement a business solution. Complex business solutions will require the COTS software to be
customised, often to a significant extent.

CRM Customer Relationship Management.

Database
A database is a platform application that enables data to be stored and retrieved. Additionally, a
database can be used to guarantee the integrity of the data stored within certain constraints, using ACID
transactions and Relational Integrity.

Design
Design is the process of converting requirements or a higher level design into a more detailed design.
Designs are typically decomposed over multiple levels from a Solution Blueprint through high level
design to low level design.

DMI “Debitormotor Inddrivelse”

EFI “Et Fælles Inddrivelsessystem”

EFI Programme
The programme of work (a number of related projects) to deliver a new debt collection System for SKAT.
The EFI Programme included the EFI project, DMI project and a number of other smaller projects or
packages of work to integrate EFI and DMI with other systems within SKAT.

End to end

End to end (e2e) refers to a complete process and/or the supporting IT system. For example:

 The end-to-end process of handling a Claim includes initial receipt, performing collections
treatment(s) and finally closing the Claim.

 The corresponding IT system(s) to enable this process includes all the IT systems and
applications that integrate to perform the overall function.

Flexibility
Flexibility refers to the EFI Programme principle to implement a system that enables future business
requirements to be accommodated primarily by configuration of the system, rather than source code
changes.

Interface
An interface is the point where an application connects to something external to the application.
Interfaces may be implemented with a wide variety of technologies including files, database tables, web
services and more.

IT Information Technology

KISS principle Keep It Short and Simple – principle suggesting focus on simple solutions that meet the requirements

Maintainability
Maintainability is a non-functional characteristic of a system. It refers to the ability to make changes to an
application over its lifetime to accommodate changing requirements.

Need

As used in this document, the Needs are the detailed documented requirements established through
requirements gathering workshops for the selected sample areas.
The Needs were gathered on the basis that they described what the users originally expected or
required the system to do.

Original Need
The Original Needs were all that was intended that was required in order for the System to work as
necessary to support SKATs debt collection business service.
The Original Needs are not documented as detailed documented requirements.

Original Requirement

The Original Requirements are the requirements that were used, together with the Use Cases, as the
start of the design, build and test processes for EFI and DMI, found in these documents:

 EFI 02 Leverandørens kravopfyldelse FA v1_00

 EFI 02 Leverandørens kravopfyldelse S v1_00

DATE: 24.09.2015

69 | P a g e

Term Definition

 (See section 9.2.1 and 9.2.6 for details and hyperlinks.)

Package Software Package Software: see COTS

Referential Integrity
(RI)

Referential Integrity (RI) is the ability to enforce basic business rules at the database level. RI helps
ensure the integrity of data by guaranteeing that fundamental constraints on data (i.e. business records)
are met.
As an example, RI can enforce that every Claim has at least one Liability, or that every Debtor has an
Address.

Requirement

A requirement is a formal statement of what a system must do, in order to be working correctly.
Typically, the scope of a business application is defined by a number of requirements. Large systems
often comprise 3,000 – 10,000 requirements.
An example could be “The decision letter to debtor must in all cases contain size, period, type, and due
date of all claims covered by the decision.”

Requirements
Traceability Matrix
(RTM)

A Requirements Traceability Matrix (RTM) is
a) A list of all the requirements comprising the system

b) An audit for each requirement of where the requirement was satisfied in design, build and test.

SAP SAP is package software for performing many common business functions.

SDLC Software Development Life Cycle. SDLC is used to describe the process of creating a software system.

Service

A Service (or web service) is a self-contained unit of functionality and data that performs some useful
function.
An example Service could be a service that allows users or other applications to check the registration
number (CVR, CPR or AKR) for a customer.

Simple path
 In a software system, the simple path is the default path through the system, with no exceptions.
E.g. case processing of a single, simplistic claim with low complexity and no errors along the way.

SOA
Service Oriented Architecture (SOA) is the concept of creating systems based on integrating Services
that provide self-contained functionality.

Specification See Design.

System

A system is one or more applications that perform an overall business function.
An example system is an email system that performs all receiving, storing and sending email (although
this may be comprised of a number of discrete applications).
The term “System” is used to describe the integrated combination of EFI and DMI, which provides the
overall debt collection IT function for SKAT.

Test
A Test is a documented procedure that can be performed to validate compliance with a requirement.
As an example, with reference to the definition of Requirement above, the corresponding test would
validate that in all cases the decision letter contained the necessary details and that these were correct.

Test Stub

In any large system, some testing will have dependencies on external components, where the “remote
side” of the interface is required to perform the test.
It is usual to perform some testing where the “remote side” of the interface is performed with a fake
system that returns sufficiently real responses to enable testing.
These fake remote systems are termed “Test Stubs”.

Use Case

A Use Case is a description of the steps that a number of users (actors) must perform in order to
complete a business scenario.
Use Case descriptions can be used, together with other designs, to provide a design for a system or
application.
Use Cases typically describe the “simple path” and any number of alternate paths through the system.
Separate sets of use cases were used to describe the functionality for the EFI and DMI applications.

V Model
The “V Model” is a widely used model for defining the verification and validation processes for an IT
system, in which each design and build output is validated via a matching testing (validation) step.

Web Service
A Web Service is a Service that provides a machine to machine interface. The interface technologies
used were originally HTTP, SOAP and WSDL, but are now commonly considered to include REST.

WSDL Web Services Description Language

YAGNI You Aren’t Going to Need It – principle to avoid “Rolls Royce” solutions when you need a “Ford”

Table 16 Defined Terms

DATE: 24.09.2015

70 | P a g e

7 Appendix: List of Meetings

7.1 Inventory of Workshops and Interviews

7.1.1 General

7.1.2 Modtag Fordring (Receive Claim)
Date Description Participants Location

16.04.2015
Workshop 1:
Modtag Fordring / Receive Claim

SKAT TA
State attorneys
ACN analysis team

SKAT

22.04.2015
Workshop 2:
Modtag Fordring / Receive Claim

SKAT TA
State attorneys
ACN analysis team

SKAT

30.04.2015
Workshop 3:
Modtag Fordring / Receive Claim

SKAT TA
State attorneys
ACN analysis team

SKAT

11.06.2015 Review with SKAT PM
SKAT PM
ACN analysis team

SKAT

02.06.2015 Workshop with State Attorney
State attorneys
ACN analysis team

State attorney’s office

23.06.2015
Review with technical resources at
SKAT

SKAT
ACN analysis team

SKAT

Table 18 Workshops and Reviews - Modtag Fordring

Date Description Participants Location

23.02.2015 Introduction
 SKAT Personnel

 Accenture SKAT

03.03.2015 Introduction to SKAT BI
 SKAT Personnel

 Accenture SKAT

04.03.2015 EFI Architecture

 SKAT Personnel

 Supplier

 Accenture

 Valcon

SKAT

10.03.2015 Testing overview

 SKAT External
Consultants

 Accenture
SKAT

11.03.2015, 18.03.2015,
26.03.2015

SKAT TA walkthrough

 SKAT Personnel

 AccentureACN
analysis team

SKAT

11.03.2015 EFI / DMI Processing
 SKAT Personnel

 Accenture SKAT

13.05.2015 EFI / DMI coordination and integration
 SKAT Personnel

 Accenture SKAT

18.05.2015 End to end design and coordination
 SKAT Personnel

 Accenture SKAT

18.06.2015 Walkthrough of test cases in Quality center

 Accenture

 SKAT External
Consultant

SKAT

29.06.2015
Requirements tracing / overall design decisions /
negative path / system requirements

 SKAT Personnel

 Accenture

 SKAT External
Consultant

SKAT

Table 17 Meetings

DATE: 24.09.2015

71 | P a g e

7.1.3 Kundesaldi (Client Account Balance)
Date Description Participants Location

05.05.2015
Workshop 1: Kundesaldi I
DMI / Client Account
Balances

SKAT TA
State attorneys
ACN analysis team

SKAT

07.05.2015
Workshop 2: Kundesaldi I
DMI / Client Account
Balances

SKAT SME
SKAT BPO
SKAT TA
State attorneys
ACN analysis team

SKAT

12.05.2015
Workshop 3: Kundesaldi I
DMI / Client Account
Balances

SKAT SME
State attorneys
ACN analysis team

SKAT

08.06.2015 Review meeting
SKAT PM
ACN analysis team

SKAT

17.06.2015 Review meeting
SKAT PM
ACN analysis team

SKAT

18.06.2015 Review meeting
SKAT SME
ACN analysis team

SKAT

24.06.2015 Review meeting
SKAT SME
CAN analysis team

SKAT

Table 19 Workshops and Reviews - Kundesaldi

7.1.4 Betalingsordning (Payment Plans)
Date Description Participants Location

30.04.2015 Workshop 1: Payment plans

SKAT BPO
SKAT TA
State attorneys CAN analysis
team

SKAT

07.05.2015 Workshop 2: Payment plans
SKAT BPO
State attorneys ACN analysis
team

SKAT

12.05.2015 Workshop 3: Payment plans
SKAT BPO
State attorneys CAN analysis
team

SKAT

19.05.2015 Workshop 4: Payment plans
SKAT BPO
State attorneys, CAN
analysis team

SKAT

02.06.2015
Open questions regarding
requirements on payment
plans

SKAT TA
ACNanalysis team

SKAT

15.06.2015
Review of requirements for
payment plans with SKAT PM

SKAT PM
ACN Analysis team

SKAT

15.06.2015
Meeting about liability types
for payment plans

State attorneys
ACN analysis team

SKAT

25.06.2015
Review of the requirements
for payment plans with SKAT
TA

SKAT TA
SKAT BPO
ACNanalysis team

SKAT

01.07.2015
Review of the requirements
for payment plans with SKAT
BPO

SKAT BPO
ACNAnalysis team

SKAT

Table 20 Workshops and Reviews – Betalingsordning

7.1.5 Lønindeholdelse (Salary Deduction)

Date Description Participants Location

18.05.2015
Workshop 1: Lønindeholdelse
/ Salary Deduction

SKAT BPO
SKAT TA
State attorneys
ACN analysis team

SKAT

19.05.2015
Walkthrough of basic
Lønindeholdelse / Salary
Deduction processes

ACN analysis team
SKAT TA

SKAT

21.05.2015
Workshop 2: Lønindeholdelse
/ Salary Deduction

SKAT BPO
SKAT TA

SKAT

DATE: 24.09.2015

72 | P a g e

State attorneys
ACN analysis team

22.05.2015
Walkthrough of aging rules
for Lønindeholdelse / Salary
Deduction

ACN analysis team
SKAT TA

SKAT

27.05.2015
Workshop 3: Lønindeholdelse
/ Salary Deduction

SKAT BPO
SKAT TA
State attorneys
ACN analysis team

SKAT

12.06.2015
Review of Lønindeholdelse /
Salary Deduction RTM

SKAT PM
ACN analysis team

SKAT

17.06.2015
Review of Lønindeholdelse /
Salary Deduction RTM

SKAT PM
ACN analysis team

SKAT

23.06.2015 Walkthrough of current RTM
SKAT TA
ACN analysis team

SKAT

Table 21 Workshops and Reviews - Lønindeholdelse

DATE: 24.09.2015

73 | P a g e

8 Appendix: Examples of Missing and Incomplete Needs

The table below show a few examples of missing and incomplete Needs for all areas. For
a complete list, see the Needs requirement traceability matrix.

Area ID Need Description
Use
Case
score

Design
Score

Code
score

Test
Case
score

Notes

Receive
claim

1.04.3

If the claim is not an Arrest/Urgent,
then the period for when the claim
originated must be equal to or
earlier to the date received by
SKAT

1 1 1 1

This is one of many
examples, on cross
validation criteria

on received claims
that must be met in
order for SKAT to
accept a claim. Many
validation criteria
have been elicited
during the
workshops in the
form of new Needs.

Receive
claim

1.13.4

If provided, the Dunning dates
(Dunning date 1 and 2) must be in
the past.
I.e. Reminder date 1 and Reminder
date 2 must be earlier than the
current date

1 1 1 1

This is one of many
examples of
validation on single
information
elements in received

claims that must be
met in order for
SKAT to accept a
claim. Many
validation criteria
have been elicited
during the
workshops in the
form of new Needs.

Receive
claim

1.36.3
If a IOU (gældsbevis) date is
provided, then it must be a valid
date

NA 1 1 1

This is one of many
examples, on data
format validations

on received claims
that must be met in
order for SKAT to
accept a claim. Many
validation criteria
have been elicited
during the
workshops in the
form of new Needs.

Receive
claim

1.36.1

When a claim is submitted, it must
be possible to specify if a debtor
has signed an IOU for the claim.

The field is optional

1 1 1 1

This is one of many
examples, on
information need
criteria on received

claims that must be
met in order for
SKAT to accept a
claim. Many of such
criteria have been

DATE: 24.09.2015

74 | P a g e

Area ID Need Description
Use
Case
score

Design
Score

Code
score

Test
Case
score

Notes

elicited during the
workshops in the
form of new Needs.

Client
Account
Balance

1.3.29

Dette afhænger af, hvilke form for
henstand, der er tale om. Aftalt
henstand udskyder således
forældelsen. Henstand i henhold til
gældsinddrivelsesbekendtgørelsens
§ 6 er ikke forældelsesafbrydende.
Henstand i henhold til
skatteforvaltningslovens § 51 er
forældelsesafbrydende.

1 5 N/A 1

No statements in the
UC or testing done in
this area. The state
attorney has not
definitively confirmed
the legislation on this
area since the Need
is dependent on
which type of grace
period. More time is
needed to
investigate in detail.

Client
Account
Balance

1.30

Ved indbetalinger skal
dækningsrækkefølgen som
udgangspunkt følges.

For CVR Hæftere er rækkefølgen:
 1. Bøder
 2. Moms, told, A-skat og AM-
bidrag, punktafgifter, selskabs- og
acontoskat mv., renter, gebyrer mv.

1 1 N/A 1

There is no
documentation
regarding the order
of coverage for
CVRs and also no
testing done. The
state attorney initially
agrees but needs
more time to do a
proper investigation
as the order of
coverage legally
should not only be
determined based on
the types of claims
but also based on
the treatment
through which the
claims are covered.
The business
process owner
however states there
are no Needs on the
order of coverage for
CVRs.

Payment
plan

1.6

Claims which are expired at the day
of creating the payment plan can't
be expired. Legally it is not allowed
to include information about expired
claims in decision letters.

1 1 N/A 1

There are no
information regarding
the rules to include
claims that are soon
to be expired or
already expired in a
payment plan. SKAT
stakeholders
assumes that there
should never exist
expired claims in the
System. SKAT
stakeholders are
also not unanimous
on how expired
claims that are
already part of a
payment plan should
be handled.

DATE: 24.09.2015

75 | P a g e

Area ID Need Description
Use
Case
score

Design
Score

Code
score

Test
Case
score

Notes

Payment
plan

1.18

"The content of the decision letter
for created payment plans must
include at least:
- decision of the payment ability
(details of payment ability budget
excluded)
 - size of installment (interests not
included)
- frequency
- due date of the first installment
- the date of when the decision
letter is sent out
- claims (claim type, claim period,
claimant, amount)
- identification number of the
payment plan
- total amount for all claims in the
payment plan.
 - reasoning for the size of the
payment ability (what was it based
on (e.g. reference to the law))

N/A N/A N/A N/A

SKAT stakeholder
don’t know what the
original requirement
is on the content of
the letter. The letter
has been changed a
fair amount of times
since the EFI System
went live. They are
still working on the
content of the letter
both from a legal and
business
perspective.

Salary
deduction

1.3.10

The System must validate that all
unread correspondence registered
in the System from the debtor is
processed before any decisions are
made to a debtor’s salary deduction
treatment.

1 1 1 1

It is a legal Need,
that the System must
check whether a
budget or complaint
(often based on a
notification received
by a debtor) has
been sent to EFI,
and whether this
information has been
"processed" before
sending out a
decision letter on
starting salary
deduction.

If a budget sent in by
a debtor has not
been processed,
SKAT, in general,
risks starting or
changing a treatment
on an incorrect
payment ability
basis. However, this
validation is currently
not implemented.

Salary
deduction

2.4.1

Automatically suspending (Bero) an
automatic salary deduction, must
not affect the aging of the claims
included by the decision.

This is a preliminary assessment of
the Need. The state attorneys are
currently investigating the legal
Need related to bero.

1 2 1 1

The Use Case
documentation,
ODSB and code
describes that
suspension (Bero), in
conflict with this
Need, affects aging
on all claims
included in the
decision.

DATE: 24.09.2015

76 | P a g e

Area ID Need Description
Use
Case
score

Design
Score

Code
score

Test
Case
score

Notes

During the workshop,
we discussed an
inherent risk
associated with this
Need. If Bero does
not interrupt aging,
there is a risk that a
caseworker sets the
Bero period for so
long, that claims will
expire before
resuming salary
deduction. There is
to our knowledge
currently no
constraints
implemented in the
System to avert this
from happening.

Salary
deduction

4.4.4

When a main claim expires, all sub
claims: opkrævnings and
inddrivelses-interests and
inddrivelses-fees related to that
main claim will also expire.

1 1 5 1

The Use Case
documentation and
ODSB does not differ
between main claims
and sub claims,
hence this Need is
not described.
Furthermore, we
have not been able
to identify any Test
Cases that tests this
Need. Still this
functionality is
implemented.
This is a large risk,
since aging rules in
regards to the main
claims and various
sub claims
(accumulated
interest and
simulated interest for
types: inddrivelses-
interests and
opkrævnings-
interests, fees and
fines) differs and are
highly complex.

Table 22 Examples of Missing and Incomplete Needs

DATE: 24.09.2015

77 | P a g e

9 Appendix: Documents Examined

9.1 EFI + DMI System Level

9.1.1 Analysis
None Identified

9.1.2 Design
Description Date / Version

08 EFI MF DMI - Processer.vsd Last changed 3/7/2013

Table 23 Design Documents Examined

9.1.3 Test
The following set of testscripts were assessed when tracing requirements and reviewing
approach to testing:

Description Date / Version

FASE2_EFI N/A

Table 24 Test Documents Examined

9.2 EFI

9.2.1 Analysis

9.2.1.1 EFI Requirements & Use Cases Analysed

Description Date / Version

EFI 02 Leverandørens kravopfyldelse FA v1_00 N/A

EFI 02 Leverandørens kravopfyldelse S v1_00 N/A

EFI 01_02 Forr processer og akt beskrivelser v1_00 N/A

UC 99.1.1 Modtag fordring via WEB 04.06.2010

UC 99.1.2 Modtag fordring System til System 14.04.2010

UC 99.1.4 Opret fordring 14.04.2010

UC 06.1.1 Opret eller rediger betalingsordning - Brugergrænseflade 27.10.2010

UC 6.1.3 EFI Use-case Send afgørelse om fastsættelse af betalingsordning – Brugergrænseflade 28.04.2010

UC 6.1.6 EFI Use-case opdater betalingsordning med ny fordring – EFI 28.04.2010

UC 60.1.15 Overvåg 18.04.2010

UC 03.1.1 Varsko kunde om lønindeholdelse 05.08.2010

UC 03.1.2 Iværksæt lønindeholdelse 05.08.2010

UC 03.1.4 Slet lønindeholdelse 05.08.2010

UC 03.1.6 Opdater lønindeholdelse med yderligere fordring 05.08.2010

UC 03.1.7 Rediger iværksat lønindeholdelse 05.08.2010

UC 03.1.8 Berostil lønindeholdelse, helt eller delvis 05.08.2010

UC 03.1.9 Genoptag lønindeholdelse 05.08.2010

UC 50.2.1 Ryk for andet end betaling 05.08.2010

UC 60.1.16 Sagsbehandl 19.05.2010

UC 04.4.3 Genberegn forældelse Version by May 2015

UC 15.1.1 Anmod om anerkendelse af fordring Version by May 2015

Proces 03.1 Iværksættelse af lønindeholdelse Version by May 2015

Table 25 EFI Requirements & Use Cases Analysed

9.2.2 Design

9.2.2.1 EFI Design Specifications

Description Date / Version

Overordnet Delsystembeskrivelse for indsatsen betalingsordning EFI_OP_00270415 27.04.2015

Overordnet Delsystembeskrivelse for Indsatser EFI_OP_00 06.11.2013

Overordnet Delsystembeskrivelse for Betalingevneberegning og Budget041214 28.07.2014

DATE: 24.09.2015

78 | P a g e

Overordnet Delsystembeskrivelse for indsatsen Lønindeholdelse EFI_OP_00 25.03.2015

Overordnet Delsystembeskrivelse for Sagsbehandlerportalen092015 14.12.2014

Overordnet forretningsmæssig beskrivelse_EFI_OP_00 21.05.2010

Modtag Fordring ODSB 1 External system interface and MF Component 05.08.2014

Modtag Fordring ODSB 2 Receive Debts Dialogues 19.06.2015

Modtag Fordring ODSB 3 Claimants and agreements 08.03.2013

Modtag Fordring ODSB 4 DMI Dialogues250315 25.03.2015

Modtag Fordring ODSB 5 Alternative Liabilities 02.07.2015

Regel matricer (EFI) N/A

Fordringstype_fordringsoplysninger N/A

ODSB_for_Hændelsesfabrikken_v_3 5 2 15.11.2012

Overordnet Delsystembeskrivelse for Inddrivelsesmotor 21.05.2015

Overordnet Delsystembeskrivelse for indsatsen Bobehandling EFI_OP_00 14.04.2015

Overordnet Delsystembeskrivelse for EFI ESDH og AandD Integration 05.03.2015

Table 26 EFI Design Specifications

9.2.3 Code

9.2.3.1 Code Base for Automated Analysis

efi-2.80.zip (md5 checksum: f2bb1dd6f9f8cf1b5ac4d13e1d3c86e4)

File Package File Package

MfservicesServices

dk.skat.efi.wls.mf
IALoenindeholdelseAfgoerelseT
ypeEnum

dk.skat.efi.wls.ia.da.do
main.indsatser.typer

Mfserviceservicesimpl dk.skat.efi.wls.mf IAMeddelelsePakke
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

fromxmlhelper
dk.skat.efi.wls.mf.adapt
er

IAOpgave
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

toxmlhelper
dk.skat.efi.wls.mf.adapt
er

IAProcent
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

mfexception
dk.skat.efi.wls.mf.com
mon.exception

IASamarbejdPart
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

mftekniskexception
dk.skat.efi.wls.mf.com
mon.exception

IASENummer
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

mfsekvensnummergenerator
dk.skat.efi.wls.mf.com
mon.sekvensnummer

IAUdlaegIndsatsOpgaveTypeEn
um

dk.skat.efi.wls.ia.da.do
main.indsatser.typer

mfsekvensnummergeneratorimpl
dk.skat.efi.wls.mf.com
mon.sekvensnummer

IAAdresse
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

aftaledao
dk.skat.efi.wls.mf.dao.a
ftale

IAAlmindelig
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

aftaledaoimpl
dk.skat.efi.wls.mf.dao.a
ftale

IAAlternativ
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

AendrFordringDao
dk.skat.efi.wls.mf.dao.f
ordring

AdresseAendretConverter
dk.skat.efi.im.converter
s.haendelser

AendrFordringDaoImpl
dk.skat.efi.wls.mf.dao.f
ordring

AnbefaletSporSkabelonConvert
er

dk.skat.efi.im.converter
s.haendelser

DATE: 24.09.2015

79 | P a g e

AlternativKontaktDao
dk.skat.efi.wls.mf.dao.f
ordring

BeloebConverter
dk.skat.efi.im.converter
s.haendelser

AlternativKontaktDaoImpl
dk.skat.efi.wls.mf.dao.f
ordring

BEODaekningAendretConverter
dk.skat.efi.im.converter
s.haendelser

FordringAktionDao
dk.skat.efi.wls.mf.dao.f
ordring

BEORateAendretConverter
dk.skat.efi.im.converter
s.haendelser

FordringAktionDaoImpl
dk.skat.efi.wls.mf.dao.f
ordring

BerostilLoenindeholdelseConve
rter

dk.skat.efi.im.converter
s.haendelser

LeveranceDao
dk.skat.efi.wls.mf.dao.f
ordring

BetalEvneFaldetConverter
dk.skat.efi.im.converter
s.haendelser

LeveranceDaoImpl
dk.skat.efi.wls.mf.dao.f
ordring

BetalEvneFaldetVarigtConverte
r

dk.skat.efi.im.converter
s.haendelser

OpretFordringDao
dk.skat.efi.wls.mf.dao.f
ordring

BetalEvneNulConverter
dk.skat.efi.im.converter
s.haendelser

OpretFordringDaoImpl
dk.skat.efi.wls.mf.dao.f
ordring

BetalEvneSBetalEvneAendretC
onverter

dk.skat.efi.im.converter
s.haendelser

Afregningoplysninger
dk.skat.efi.wls.mf.doma
in.aftale

BetalEvneSLFaldetConverter
dk.skat.efi.im.converter
s.haendelser

Aftale
dk.skat.efi.wls.mf.doma
in.aftale

BetalEvneSLStegetConverter
dk.skat.efi.im.converter
s.haendelser

AlternativAdresse
dk.skat.efi.wls.mf.doma
in.aftale

BetalEvneStegetConverter
dk.skat.efi.im.converter
s.haendelser

BerigelseValideringFelt
dk.skat.efi.wls.mf.doma
in.aftale

BetalEvneStegetVarigtConverte
r

dk.skat.efi.im.converter
s.haendelser

FordringHaverFordringType
dk.skat.efi.wls.mf.doma
in.aftale

BetalingOrdningOprettetConvert
er

dk.skat.efi.im.converter
s.haendelser

FordringOplysninger
dk.skat.efi.wls.mf.doma
in.aftale

BetalingsordningMisligeholdtCo
nverter

dk.skat.efi.im.converter
s.haendelser

FordringTypeAftale
dk.skat.efi.wls.mf.doma
in.aftale

BFSAfsoningAflysConverter
dk.skat.efi.im.converter
s.haendelser

Modregningoplysninger
dk.skat.efi.wls.mf.doma
in.aftale

BFSAfsoningOpdaterConverter
dk.skat.efi.im.converter
s.haendelser

OplysningerOmModregningPerFordrings
type

dk.skat.efi.wls.mf.doma
in.aftale

BFSGensendVarselConverter
dk.skat.efi.im.converter
s.haendelser

AftaleBerigelseKode
dk.skat.efi.wls.mf.doma
in.aftale.enums

BFSKorrektionSendConverter
dk.skat.efi.im.converter
s.haendelser

AftaleKanSkalEjKode
dk.skat.efi.wls.mf.doma
in.aftale.enums

BFSOpdaterPolitikredsConverte
r

dk.skat.efi.im.converter
s.haendelser

FordringFeltKode
dk.skat.efi.wls.mf.doma
in.aftale.enums

BFSSendAnmodningConverter
dk.skat.efi.im.converter
s.haendelser

FordringhaverAftaleType
dk.skat.efi.wls.mf.doma
in.aftale.enums

BFSSendVarselConverter
dk.skat.efi.im.converter
s.haendelser

FordringhaverArt
dk.skat.efi.wls.mf.doma
in.aftale.enums

BFSVarselAendretConverter
dk.skat.efi.im.converter
s.haendelser

DATE: 24.09.2015

80 | P a g e

FejlAdvis
dk.skat.efi.wls.mf.doma
in.common

BobGemKontaktConverter
dk.skat.efi.im.converter
s.haendelser

Kunde
dk.skat.efi.wls.mf.doma
in.common

BobSletKontaktConverter
dk.skat.efi.im.converter
s.haendelser

KundeStruktur
dk.skat.efi.wls.mf.doma
in.common

BookingSvarConverter
dk.skat.efi.im.converter
s.haendelser

MFAkteringNote
dk.skat.efi.wls.mf.doma
in.common

BosagAendrAutomatiskConvert
er

dk.skat.efi.im.converter
s.haendelser

MFKundeStruktur
dk.skat.efi.wls.mf.doma
in.common

BosagAendrConverter
dk.skat.efi.im.converter
s.haendelser

Note
dk.skat.efi.wls.mf.doma
in.common

ErkendFordringFristOverskredet
Converter

dk.skat.efi.im.converter
s.haendelser

Periode
dk.skat.efi.wls.mf.doma
in.common

ErkendFordringGenstartConvert
er

dk.skat.efi.im.converter
s.haendelser

RenteBeregningModel
dk.skat.efi.wls.mf.doma
in.common

ErkendFordringKundehenvende
lseConverter

dk.skat.efi.im.converter
s.haendelser

Rettighedshaver
dk.skat.efi.wls.mf.doma
in.common

ErkendFordringSagsbehandlerE
rkenderConverter

dk.skat.efi.im.converter
s.haendelser

ValutaBeloeb
dk.skat.efi.wls.mf.doma
in.common

ETLConverter
dk.skat.efi.im.converter
s.haendelser

AlternativKontaktType
dk.skat.efi.wls.mf.doma
in.common.enums

FordringOprettetConverter
dk.skat.efi.im.converter
s.haendelser

FejlAdvisCode
dk.skat.efi.wls.mf.doma
in.common.enums

FordringSaldoAendretConverter
dk.skat.efi.im.converter
s.haendelser

FordringAktionKode
dk.skat.efi.wls.mf.doma
in.common.enums

ForkyndelseDatoAendrConverte
r

dk.skat.efi.im.converter
s.haendelser

FordringArt
dk.skat.efi.wls.mf.doma
in.common.enums

FristOverskredetCirkulaerskrivel
seEjModtagetConverter

dk.skat.efi.im.converter
s.haendelser

FordringReturAarsag
dk.skat.efi.wls.mf.doma
in.common.enums

FristOverskredetModtagelseAfA
dkomsterklaeringConverter

dk.skat.efi.im.converter
s.haendelser

HaeftelseFormKode
dk.skat.efi.wls.mf.doma
in.common.enums

GenoptagSporSkifteConverter
dk.skat.efi.im.converter
s.haendelser

KundeNummerType
dk.skat.efi.wls.mf.doma
in.common.enums

HaeftelseForaeldelseConverter
dk.skat.efi.im.converter
s.haendelser

MFQueryEnum
dk.skat.efi.wls.mf.doma
in.common.enums

HaendelseCommonAttributesC
onverter

dk.skat.efi.im.converter
s.haendelser

SubsidiaerHaeftelse
dk.skat.efi.wls.mf.doma
in.common.enums

HaendelseConverter
dk.skat.efi.im.converter
s.haendelser

AlternativKontakt
dk.skat.efi.wls.mf.doma
in.fordring

HaendelseConverterImpl
dk.skat.efi.im.converter
s.haendelser

BasisAendrInfo
dk.skat.efi.wls.mf.doma
in.fordring

HaendelseFilterConverter
dk.skat.efi.im.converter
s.haendelser

DATE: 24.09.2015

81 | P a g e

BasisOpretInfo
dk.skat.efi.wls.mf.doma
in.fordring

HaendelseModtagConverter
dk.skat.efi.im.converter
s.haendelser

FeltVaerdier
dk.skat.efi.wls.mf.doma
in.fordring

HaendelseModtagConverterImp
l

dk.skat.efi.im.converter
s.haendelser

FordringAktion
dk.skat.efi.wls.mf.doma
in.fordring

HenstandAendretConverter
dk.skat.efi.im.converter
s.haendelser

FordringFeltVaerdier
dk.skat.efi.wls.mf.doma
in.fordring

IHaendelseConverter
dk.skat.efi.im.converter
s.haendelser

Fordringhaver
dk.skat.efi.wls.mf.doma
in.fordring

IMETLAnmeldelseStatusCheck
Converter

dk.skat.efi.im.converter
s.haendelser

HaeftelseForhold
dk.skat.efi.wls.mf.doma
in.fordring

IndkomsttypeAendretConverter
dk.skat.efi.im.converter
s.haendelser

IdentifiedKunde
dk.skat.efi.wls.mf.doma
in.fordring

IndsatsFordringFjernetConverte
r

dk.skat.efi.im.converter
s.haendelser

IndberetLeverance
dk.skat.efi.wls.mf.doma
in.fordring

IndsatsFordringTilfoejConverter
dk.skat.efi.im.converter
s.haendelser

OpretFordring
dk.skat.efi.wls.mf.doma
in.fordring

KFIAdresseConverter
dk.skat.efi.im.converter
s.haendelser

AarsagStruktur
dk.skat.efi.wls.mf.doma
in.fordring

KOBVarslFristAendretConverter
dk.skat.efi.im.converter
s.haendelser

HaeftelseStruktur
dk.skat.efi.wls.mf.doma
in.underret

KundemoedeAendrConverter
dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackService
dk.skat.efi.wls.mf.inbou
ndservice.dmi

KundemoedeGennemfoertConv
erter

dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackServiceI
mpl

dk.skat.efi.wls.mf.inbou
ndservice.dmi

LoenIndholdelseBegrundelseCo
nverter

dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackRequest
dk.skat.efi.wls.mf.inbou
ndservice.dmi.request

LoenIndholdelseGensendIvaerk
saetConverter

dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackRespon
se

dk.skat.efi.wls.mf.inbou
ndservice.dmi.respons
e

MeddelelseIkkeModtagetConve
rter

dk.skat.efi.im.converter
s.haendelser

FordringIndberetService
dk.skat.efi.wls.mf.inbou
ndservice.ekstern

MeddelelseIkkeSendtConverter
dk.skat.efi.im.converter
s.haendelser

FordringIndberetServiceImpl
dk.skat.efi.wls.mf.inbou
ndservice.ekstern

MeddelelsePakkeConverter
dk.skat.efi.im.converter
s.haendelser

FordringIndberetResponse
dk.skat.efi.wls.mf.inbou
ndservice.ekstern.resp
onse

MoedeAendrConverter
dk.skat.efi.im.converter
s.haendelser

FordringIndberetRequest
dk.skat.efi.wls.mf.inbou
ndservice.ekstern.requ
est

MultiHaendelseModtagConverte
r

dk.skat.efi.im.converter
s.haendelser

FordringOpretService
dk.skat.efi.wls.mf.inbou
ndservice.shared

MultiHaendelseModtagConverte
rImpl

dk.skat.efi.im.converter
s.haendelser

DATE: 24.09.2015

82 | P a g e

FordringOpretServiceImpl
dk.skat.efi.wls.mf.inbou
ndservice.shared

NoPayloadConverter
dk.skat.efi.im.converter
s.haendelser

SuperInboundXmlService
dk.skat.efi.wls.mf.inbou
ndxmlservice

OpgaveOpretConverter
dk.skat.efi.im.converter
s.haendelser

SuperInboundXmlServiceImpl
dk.skat.efi.wls.mf.inbou
ndxmlservice

OpretOpgavePayloadConverter
dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackXmlServ
ice

dk.skat.efi.wls.mf.inbou
ndxmlservice.dmi

RykBetalingsFristAendretConve
rter

dk.skat.efi.im.converter
s.haendelser

FordringAsynkronOpretCallbackXmlServ
iceImpl

dk.skat.efi.wls.mf.inbou
ndxmlservice.dmi

SagsbehandlerErkenderConvert
er

dk.skat.efi.im.converter
s.haendelser

FordringIndberetXmlService
dk.skat.efi.wls.mf.inbou
ndxmlservice.ekstern

ScoringConverter
dk.skat.efi.im.converter
s.haendelser

FordringIndberetXmlServiceImpl
dk.skat.efi.wls.mf.inbou
ndxmlservice.ekstern

StartIndsatsConverter
dk.skat.efi.im.converter
s.haendelser

OIOFordringIndberetXmlService
dk.skat.efi.wls.mf.inbou
ndxmlservice.ekstern.oi
o

StopIndsatsConverter
dk.skat.efi.im.converter
s.haendelser

OIOFordringIndberetXmlServiceImpl
dk.skat.efi.wls.mf.inbou
ndxmlservice.ekstern.oi
o

StopSporSkifteConverter
dk.skat.efi.im.converter
s.haendelser

SuperOIOInboundXmlServiceImpl
dk.skat.efi.wls.mf.inbou
ndxmlservice.ekstern.oi
o

UdlaegAktivAndelsboligSendRy
kkerConverter

dk.skat.efi.im.converter
s.haendelser

FordringOpretXmlService
dk.skat.efi.wls.mf.inbou
ndxmlservice.portal

UdlaegAktivAndelsboligTinglysn
ingAendrConverter

dk.skat.efi.im.converter
s.haendelser

FordringOpretXmlServiceImpl
dk.skat.efi.wls.mf.inbou
ndxmlservice.portal

UdlaegAktivAndelsboligTinglysn
ingFristAendrConverter

dk.skat.efi.im.converter
s.haendelser

AftaleService
dk.skat.efi.wls.mf.intern
alservice

UdlaegAktivFjernConverter
dk.skat.efi.im.converter
s.haendelser

AftaleServiceImpl
dk.skat.efi.wls.mf.intern
alservice

UdlaegAktivForaeldelseDatoAe
ndrConverter

dk.skat.efi.im.converter
s.haendelser

FordringAktionService
dk.skat.efi.wls.mf.intern
alservice

UdlaegAktivTinglysConverter
dk.skat.efi.im.converter
s.haendelser

FordringAktionServiceImpl
dk.skat.efi.wls.mf.intern
alservice

UdlaegBladDanConverter
dk.skat.efi.im.converter
s.haendelser

FordringHaverService
dk.skat.efi.wls.mf.intern
alservice

UdlaegEjGennemfoertConverter
dk.skat.efi.im.converter
s.haendelser

FordringHaverServiceImpl
dk.skat.efi.wls.mf.intern
alservice

UdlaegKladdeGemConverter
dk.skat.efi.im.converter
s.haendelser

FordringService
dk.skat.efi.wls.mf.intern
alservice

UdlaegPolitieftersoegningAnmo
dConverter

dk.skat.efi.im.converter
s.haendelser

DATE: 24.09.2015

83 | P a g e

FordringServiceImpl
dk.skat.efi.wls.mf.intern
alservice

UdlaegTilsigelseSendConverter
dk.skat.efi.im.converter
s.haendelser

FordringValiderService
dk.skat.efi.wls.mf.intern
alservice

HaendelseDao dk.skat.efi.im.dao

FordringValiderServiceImpl
dk.skat.efi.wls.mf.intern
alservice

HaendelseDaoImpl dk.skat.efi.im.dao

KFIMultiOpretAendrFordringService
dk.skat.efi.wls.mf.intern
alservice

HaendelseFilterDao dk.skat.efi.im.dao

KFIMultiOpretAendrFordringServiceImpl
dk.skat.efi.wls.mf.intern
alservice

HaendelseFilterDaoImpl dk.skat.efi.im.dao

KundeService
dk.skat.efi.wls.mf.intern
alservice

IndsatsDao dk.skat.efi.im.dao

KundeServiceImpl
dk.skat.efi.wls.mf.intern
alservice

IndsatsDaoImpl dk.skat.efi.im.dao

SuperInternalServiceImpl
dk.skat.efi.wls.mf.intern
alservice

KundeDao dk.skat.efi.im.dao

SuperService
dk.skat.efi.wls.mf.intern
alservice

KundeDaoImpl dk.skat.efi.im.dao

SuperServiceImpl
dk.skat.efi.wls.mf.intern
alservice

SporDao dk.skat.efi.im.dao

ValiderOgBerigHaeftelsesforholdService
dk.skat.efi.wls.mf.intern
alservice

SporDaoImpl dk.skat.efi.im.dao

ValiderOgBerigHaeftelsesforholdServiceI
mpl

dk.skat.efi.wls.mf.intern
alservice

SporRegelDao dk.skat.efi.im.dao

FordringAktionOpretFordringSchedulerT
askImpl

dk.skat.efi.wls.mf.intern
alservice.scheduling

SporRegelDaoImpl dk.skat.efi.im.dao

AbstractOpretAendrEFIFordringerSched
ulerTaskImpl

dk.skat.efi.wls.mf.intern
alservice.scheduling

SporSkabelonDao dk.skat.efi.im.dao

FordringAktionSchedulerTask
dk.skat.efi.wls.mf.intern
alservice.scheduling

SporSkabelonDaoImpl dk.skat.efi.im.dao

FordringAktionSchedulerTaskImpl
dk.skat.efi.wls.mf.intern
alservice.scheduling

SporSkabelonIndsatsSkabelon
Dao

dk.skat.efi.im.dao

FordringAktionTilbagekaldSchedulerTas
kImpl

dk.skat.efi.wls.mf.intern
alservice.scheduling

SporSkabelonIndsatsSkabelon
DaoImpl

dk.skat.efi.im.dao

OpretDMIFordringerTask
dk.skat.efi.wls.mf.intern
alservice.scheduling

HaendelsesWork
dk.skat.efi.im.dispatch
ers.haendelse

OpretDMIFordringerTaskImpl
dk.skat.efi.wls.mf.intern
alservice.scheduling

HaendelsesWorkExecuter
dk.skat.efi.im.dispatch
ers.haendelse

OpretEFIFordringerSchedulerTaskImpl
dk.skat.efi.wls.mf.intern
alservice.scheduling

HaendelsesWorkExecuterImpl
dk.skat.efi.im.dispatch
ers.haendelse

OpretEFIFordringSchedulerTask
dk.skat.efi.wls.mf.intern
alservice.scheduling

HaendelsesWorkTaskImpl
dk.skat.efi.im.dispatch
ers.haendelse

DATE: 24.09.2015

84 | P a g e

FordringAsynkronOpretService
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMIndsats dk.skat.efi.im.domain

FordringAsynkronOpretServiceImpl
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMKundeData dk.skat.efi.im.domain

DMIFordringSynkronOpretService
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMKundeLaas dk.skat.efi.im.domain

DMIFordringSynkronOpretServiceImpl
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMSpor dk.skat.efi.im.domain

DMIFordringTilbagekaldService
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMSporRegel dk.skat.efi.im.domain

DMIFordringTilbagekaldServiceImpl
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring

IMSporRegelType dk.skat.efi.im.domain

DMIFordringOpretRequest
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring
.request

IMSporSkabelon dk.skat.efi.im.domain

DMIFordringAsynkronOpretResponse
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring
.response

IMSporSkabelonIndsatsParame
ter

dk.skat.efi.im.domain

DMIFordringSynkronOpretResponse
dk.skat.efi.wls.mf.outbo
undservice.dmi.fordring
.response

IMSporSkabelonIndsatsSkabelo
n

dk.skat.efi.im.domain

KFIFordringMultiOpretService
dk.skat.efi.wls.mf.outbo
undservice.kfi

MultiOpretHaendelse
dk.skat.efi.im.haendels
eadmin

KFIFordringMultiOpretServiceImpl
dk.skat.efi.wls.mf.outbo
undservice.kfi

MultiOpretHaendelseImpl
dk.skat.efi.im.haendels
eadmin

KFIFordringMultiOpretRequest
dk.skat.efi.wls.mf.outbo
undservice.kfi.request

OpretHaendelse
dk.skat.efi.im.haendels
eadmin

FordringMultiOpretResponse
dk.skat.efi.wls.mf.outbo
undservice.kfi.response

OpretHaendelseImpl
dk.skat.efi.im.haendels
eadmin

AlternativKontaktSoegXmlService
dk.skat.efi.wls.mf.outbo
undxmlservice.akr

BudgetHent
dk.skat.efi.services.be
bb.adapters

AlternativKontaktSoegXmlServiceImpl
dk.skat.efi.wls.mf.outbo
undxmlservice.akr

EFIBetalingEvneAendrAdapterI
mpl

dk.skat.efi.services.be
bb.adapters

DMIFordringAsynkronOpretXmlService
dk.skat.efi.wls.mf.outbo
undxmlservice.dmi.ford
ring

EFIBetalingEvneAsynkronHent
AdapterImpl

dk.skat.efi.services.be
bb.adapters

DATE: 24.09.2015

85 | P a g e

DMIFordringAsynkronOpretXmlServiceI
mpl

dk.skat.efi.wls.mf.outbo
undxmlservice.dmi.ford
ring

EFIBetalingEvneBfyModtagAda
pterImpl

dk.skat.efi.services.be
bb.adapters

DMIFordringSynkronOpretXmlService
dk.skat.efi.wls.mf.outbo
undxmlservice.dmi.ford
ring

EFIBetalingEvneBudgetAendrA
dapterImpl

dk.skat.efi.services.be
bb.adapters

DMIFordringSynkronOpretXmlServiceIm
pl

dk.skat.efi.wls.mf.outbo
undxmlservice.dmi.ford
ring

EFIBetalingEvneBudgetSendAd
apter

dk.skat.efi.services.be
bb.adapters

KFIFordringMultiOpretXmlService
dk.skat.efi.wls.mf.outbo
undxmlservice.kfi

EFIBetalingEvneBudgetSendAd
apterImpl

dk.skat.efi.services.be
bb.adapters

KFIFordringMultiOpretXmlServiceImpl
dk.skat.efi.wls.mf.outbo
undxmlservice.kfi

EFIBetalingEvneEjendomModta
gAdapter

dk.skat.efi.services.be
bb.adapters

OIOMFFordringIndberetXmlService
dk.skat.efi.wls.mf.outbo
undxmlservice.oio

EFIBetalingEvneEjendomModta
gAdapterImpl

dk.skat.efi.services.be
bb.adapters

OIOMFFordringIndberetXmlServiceImpl
dk.skat.efi.wls.mf.outbo
undxmlservice.oio

EFIBetalingEvneForsoergerpligt
GenberegnAdapter

dk.skat.efi.services.be
bb.adapters

AktivitetCommon dk.skat.efi.wls.aa.loen
EFIBetalingEvneForsoergerpligt
GenberegnAdapterImpl

dk.skat.efi.services.be
bb.adapters

AktivitetConstants dk.skat.efi.wls.aa.loen
EFIBetalingEvneHentAdapterIm
pl

dk.skat.efi.services.be
bb.adapters

Berostilloenindeholdelseheltellerdelvist dk.skat.efi.wls.aa.loen
EFIBetalingEvneKoeretoejModt
agAdapter

dk.skat.efi.services.be
bb.adapters

BerostilloenindeholdelseheltellerdelvistI
mpl

dk.skat.efi.wls.aa.loen
EFIBetalingEvneKoeretoejModt
agAdapterImpl

dk.skat.efi.services.be
bb.adapters

Bookressourcertilloenindeholdelse dk.skat.efi.wls.aa.loen
EFIBetalingEvneNettoIndkomst
Aendr

dk.skat.efi.services.be
bb.adapters

BookressourcertilloenindeholdelseImpl dk.skat.efi.wls.aa.loen
EFIBetalingEvneNettoIndkomst
ListAdapter

dk.skat.efi.services.be
bb.adapters

Bookressourcetilgenoptagelseafloeninde
holdelse

dk.skat.efi.wls.aa.loen IBfyModtag
dk.skat.efi.services.be
bb.adapters

Bookressourcetilgenoptagelseafloeninde
holdelseImpl

dk.skat.efi.wls.aa.loen IBudgetHent
dk.skat.efi.services.be
bb.adapters

Bookressourcetilgenoptagloenindeholde
lseredigerloendeindeholdelseellerbooks
agsbehandler

dk.skat.efi.wls.aa.loen ILoenSimuler
dk.skat.efi.services.be
bb.adapters

Bookressourcetilgenoptagloenindeholde
lseredigerloendeindeholdelseellerbooks
agsbehandlerImpl

dk.skat.efi.wls.aa.loen INettoIndkomstAendr
dk.skat.efi.services.be
bb.adapters

DATE: 24.09.2015

86 | P a g e

Bookressourcetilmeddelelseomanmodni
ngomloenoplysninger

dk.skat.efi.wls.aa.loen
INettoIndkomstAendringHaende
lseModtag

dk.skat.efi.services.be
bb.adapters

Bookressourcetilmeddelelseomanmodni
ngomloenoplysningerImpl

dk.skat.efi.wls.aa.loen INettoIndkomstList
dk.skat.efi.services.be
bb.adapters

Bookressourcetilnedsaettelseafloeninde
holdelse

dk.skat.efi.wls.aa.loen LoenSimuler
dk.skat.efi.services.be
bb.adapters

Bookressourcetilnedsaettelseafloeninde
holdelseImpl

dk.skat.efi.wls.aa.loen
NettoIndkomstAendringHaendel
seModtag

dk.skat.efi.services.be
bb.adapters

Bookressourcetilopdateringafloenindeho
ldelsemedyderligerefordring

dk.skat.efi.wls.aa.loen DokumentOpretAdapter
dk.skat.efi.services.dp.
adapters

Bookressourcetilopdateringafloenindeho
ldelsemedyderligerefordringImpl

dk.skat.efi.wls.aa.loen MeddelelseSendAkterAdapter
dk.skat.efi.services.dp.
adapters

Bookressourcetilvarslingafstigningafloe
nindeholdelse

dk.skat.efi.wls.aa.loen
IAIndsatsBetalingOrdningHentA
daptor

dk.skat.efi.services.ia

Bookressourcetilvarslingafstigningafloe
nindeholdelseImpl

dk.skat.efi.wls.aa.loen
IAIndsatsLoenindeholdelseHent
Adaptor

dk.skat.efi.services.ia

Booksagsbehandlertilhaandteringafmed
delelsesfejl

dk.skat.efi.wls.aa.loen AddRemoveClaimController
dk.skat.efi.portal.sag.c
ontroller.actions.addre
moveclaim

Booksagsbehandlertilhaandteringafmed
delelsesfejlImpl

dk.skat.efi.wls.aa.loen BetalingsordningController
dk.skat.efi.portal.sag.c
ontroller.actions.betali
ngsordning

Forhoejloenindeholdelsesprocent dk.skat.efi.wls.aa.loen MFCreateDebtController
dk.skat.efi.portal.sag.
mf.controller.createdeb
t

ForhoejloenindeholdelsesprocentImpl dk.skat.efi.wls.aa.loen MFCreateDebtFacade
dk.skat.efi.portal.sag.
mf.facade

Genoptagloenindeholdelse dk.skat.efi.wls.aa.loen MFCreateDebtFacadeImpl
dk.skat.efi.portal.sag.
mf.facade.impl

GenoptagloenindeholdelseImpl dk.skat.efi.wls.aa.loen AktivitetCommon dk.skat.efi.wls.aa.beo

Indsatsfordringtilfoejfjern dk.skat.efi.wls.aa.loen
BEOAfbrydBetalingsordningImp
l

dk.skat.efi.wls.aa.beo

IndsatsfordringtilfoejfjernImpl dk.skat.efi.wls.aa.loen
BEOBookRessourceTilBetaling
sordningImpl

dk.skat.efi.wls.aa.beo

DATE: 24.09.2015

87 | P a g e

Ivaerksaetloenindeholdelse dk.skat.efi.wls.aa.loen
BEOBookRessourceTilMeddelel
seOmAEndretBetalingsordningI
mpl

dk.skat.efi.wls.aa.beo

IvaerksaetloenindeholdelseImpl dk.skat.efi.wls.aa.loen
BEOBookSagsbehandlerTilMed
delelsesfejlImpl

dk.skat.efi.wls.aa.beo

Ivaerksaetloenindeholdelsemedyderliger
efordringer

dk.skat.efi.wls.aa.loen
BEOBookSagsbehandlerTilOpf
oelgningImpl

dk.skat.efi.wls.aa.beo

Ivaerksaetloenindeholdelsemedyderliger
efordringerImpl

dk.skat.efi.wls.aa.loen
BEOIndsatsFordringTilfoejFjernI
mpl

dk.skat.efi.wls.aa.beo

Ivaerksaetnedsaettelseafloenindeholdels
e

dk.skat.efi.wls.aa.loen
BEORedigerBetalingsordningIm
pl

dk.skat.efi.wls.aa.beo

Ivaerksaetnedsaettelseafloenindeholdels
eImpl

dk.skat.efi.wls.aa.loen
BEOSendMeddelelseOgIvaerks
aetBetalingsordningImpl

dk.skat.efi.wls.aa.beo

Ivaerksaetstigningafloenindeholdelse dk.skat.efi.wls.aa.loen
RuleBEOBetalingordningSkalVa
ereAktiv

dk.skat.efi.wls.aa.beo.r
ules

IvaerksaetstigningafloenindeholdelseImp
l

dk.skat.efi.wls.aa.loen
RuleBEOTvungenSkalHaveBet
alingsevneFrivilligSkalHaveRate
beloeb

dk.skat.efi.wls.aa.beo.r
ules

LoenPct dk.skat.efi.wls.aa.loen AktivitetsAfviklerImpl dk.skat.efi.wls.aa

Nedsaetloenindeholdelsesprocent dk.skat.efi.wls.aa.loen IAktivitetsAfvikler dk.skat.efi.wls.aa

NedsaetloenindeholdelsesprocentImpl dk.skat.efi.wls.aa.loen AbstractAktivitet
dk.skat.efi.wls.aa.com
mon

Opdaterfristformodtagelseafangivelse dk.skat.efi.wls.aa.loen AbstractAktivitetBase
dk.skat.efi.wls.aa.com
mon

OpdaterfristformodtagelseafangivelseIm
pl

dk.skat.efi.wls.aa.loen AktivitetBase
dk.skat.efi.wls.aa.com
mon

ReplayGuard dk.skat.efi.wls.aa.loen AktivitetConditionChecker
dk.skat.efi.wls.aa.com
mon

Sendmeddelelseomanmodningomloenop
lysninger

dk.skat.efi.wls.aa.loen AktivitetFilterExecuter
dk.skat.efi.wls.aa.com
mon

Sendmeddelelseomanmodningomloenop
lysningerImpl

dk.skat.efi.wls.aa.loen AktivitetFordringList
dk.skat.efi.wls.aa.com
mon

Sendvarselomloenindeholdelse dk.skat.efi.wls.aa.loen AktivitetsAfviklerContext
dk.skat.efi.wls.aa.com
mon

SendvarselomloenindeholdelseImpl dk.skat.efi.wls.aa.loen AktivitetsAfviklerContextImpl
dk.skat.efi.wls.aa.com
mon

Sendvarslingomstigningafloenindeholdel
se

dk.skat.efi.wls.aa.loen IAktivitet
dk.skat.efi.wls.aa.com
mon

DATE: 24.09.2015

88 | P a g e

Sendvarslingomstigningafloenindeholdel
seImpl

dk.skat.efi.wls.aa.loen IConditionCheckerResult
dk.skat.efi.wls.aa.com
mon

Sletloenindeholdelse dk.skat.efi.wls.aa.loen IFilterExecuterResult
dk.skat.efi.wls.aa.com
mon

SletloenindeholdelseImpl dk.skat.efi.wls.aa.loen RuleCommonData
dk.skat.efi.wls.aa.com
mon

Stopvarselogbooksagsbehandler dk.skat.efi.wls.aa.loen FordringTilfoejFjernAktivitet
dk.skat.efi.wls.aa.com
mon.delegate

StopvarselogbooksagsbehandlerImpl dk.skat.efi.wls.aa.loen FilterData
dk.skat.efi.wls.aa.com
mon.filter

Udskydivaerksaettelseafloenindeholdels
e

dk.skat.efi.wls.aa.loen IFilter
dk.skat.efi.wls.aa.com
mon.filter

Udskydivaerksaettelseafloenindeholdels
eImpl

dk.skat.efi.wls.aa.loen IFilterResult
dk.skat.efi.wls.aa.com
mon.filter

Udskydstopgrundetindkomsttype dk.skat.efi.wls.aa.loen PayloadChecker
dk.skat.efi.wls.aa.com
mon.payload

UdskydstopgrundetindkomsttypeImpl dk.skat.efi.wls.aa.loen AbstractRule
dk.skat.efi.wls.aa.com
mon.rules

VenteTilstandState dk.skat.efi.wls.aa.loen IResult
dk.skat.efi.wls.aa.com
mon.rules

MeddelelseSendConverter
dk.skat.efi.wls.aa.loen.
meddelelse

IRule
dk.skat.efi.wls.aa.com
mon.rules

MeddelelseSendConverterImpl
dk.skat.efi.wls.aa.loen.
meddelelse

RuleBOBBehandlingNyeFordrin
ger

dk.skat.efi.wls.aa.com
mon.rules

AfgoerelseCreator
dk.skat.efi.wls.aa.loen.
model

RuleBooleanTest
dk.skat.efi.wls.aa.com
mon.rules

AfgoerelseCreatorImpl
dk.skat.efi.wls.aa.loen.
model

RuleData
dk.skat.efi.wls.aa.com
mon.rules

IndsatsAfviklerImpl dk.skat.efi.wls.ia
RuleErIndkomsttypeGyldigForIn
dsatsUndertype

dk.skat.efi.wls.aa.com
mon.rules

IndsatsGraf
dk.skat.efi.wls.ia.indsat
sgrafer

RuleFordringerDenEnkelteSald
oSkalOverstigeMinimumsbeloe
b

dk.skat.efi.wls.aa.com
mon.rules

IndsatsGrafBETALINGSORDNING
dk.skat.efi.wls.ia.indsat
sgrafer

RuleFordringerDenEnkelteSald
oSkalOverstigeMinimumsbeloe
bFordringstype

dk.skat.efi.wls.aa.com
mon.rules

IndsatsGrafLOENINDEHOLDELSE
dk.skat.efi.wls.ia.indsat
sgrafer

RuleFordringerErOmfattetAfAnd
reIkkeTilladteIndsatser

dk.skat.efi.wls.aa.com
mon.rules

IAIndsatsDAO
dk.skat.efi.wls.ia.da.da
o

RuleFordringerErOmfattetBetali
ngsordning

dk.skat.efi.wls.aa.com
mon.rules

IAIndsatsDAOImpl
dk.skat.efi.wls.ia.da.da
o

RuleFordringerSamledeSumSk
alOverstigeMinimumsBeloeb

dk.skat.efi.wls.aa.com
mon.rules

DATE: 24.09.2015

89 | P a g e

IAIndsats
dk.skat.efi.wls.ia.da.do
main.indsatser

RuleFordringerSamledeSumSk
alOverstigeMinimumsBeloebFo
dringstype

dk.skat.efi.wls.aa.com
mon.rules

IAIndsatsBetalingsordning
dk.skat.efi.wls.ia.da.do
main.indsatser

RuleFordringerSkalHaveEnFord
ringsArt

dk.skat.efi.wls.aa.com
mon.rules

IAIndsatsLoenindeholdelse
dk.skat.efi.wls.ia.da.do
main.indsatser

RuleFordringerSkalHaveEnGyld
igFundamentdato

dk.skat.efi.wls.aa.com
mon.rules

IATilstand
dk.skat.efi.wls.ia.da.do
main

RuleFordringerSomSkalFjernes
FraAndreIkkeTilladteIndsatser

dk.skat.efi.wls.aa.com
mon.rules

IAAktivitetsType
dk.skat.efi.wls.ia.da.do
main

RuleFordringersSamledeSumS
kalOverstigeGivetBeloeb

dk.skat.efi.wls.aa.com
mon.rules

AngivelseStatus
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleFordringerTidligereIndberet
tet

dk.skat.efi.wls.aa.com
mon.rules

EIndkomstBestillingStatus
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleIndsatsHaeftelsesforholdM
ellemKundeOgFordringTilladt

dk.skat.efi.wls.aa.com
mon.rules

IABeregningsGrundlag
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleIndsatsHarIkkeIndsatsType
ITilstand

dk.skat.efi.wls.aa.com
mon.rules

IALoenAngivelseBestilling
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleIndsatsTilladtForValgteFor
dringTyper

dk.skat.efi.wls.aa.com
mon.rules

IALoenindeholdelseAfgoerelse
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKOBFristOverskredetVarse
lOmIndberetning

dk.skat.efi.wls.aa.com
mon.rules

IALoenindeholdelseAfgoerelseFordring
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKOBFristOverskredetVarse
lOmIndberetningGyldighedsperi
ode

dk.skat.efi.wls.aa.com
mon.rules

IALoenindeholdelseAngivelse
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKundeErPerson
dk.skat.efi.wls.aa.com
mon.rules

IALoenindeholdelseFordring
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKundeErPersonOgHarCpr
Nummer

dk.skat.efi.wls.aa.com
mon.rules

IALoenindeholdelseReplay
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKundeHarAlleredeIndsatsM
edSammeUndertype

dk.skat.efi.wls.aa.com
mon.rules

Indberetningsart
dk.skat.efi.wls.ia.da.do
main.indsatser.loenind
eholdelse

RuleKundeSkalHaveBetalingse
vneTilLoenindeholdelse

dk.skat.efi.wls.aa.com
mon.rules

DATE: 24.09.2015

90 | P a g e

IABeloeb
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleKundeSkalHaveEnAdresse
dk.skat.efi.wls.aa.com
mon.rules

IAEnkeltmandsVirkReference
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleKundeSkalHaveEnDanskA
dresse

dk.skat.efi.wls.aa.com
mon.rules

IAFordringRef
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleMinimumAlder
dk.skat.efi.wls.aa.com
mon.rules

IAForventetIndbetaling
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleNot
dk.skat.efi.wls.aa.com
mon.rules

IAHaeftelseForaeldelse
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleResult
dk.skat.efi.wls.aa.com
mon.rules

IAHaendelse
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleUdlaegFordringerSidsteRet
tidigeBetalingsdatoForTilsigelse
Tilladt

dk.skat.efi.wls.aa.com
mon.rules

IAIdentifikator
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleUdlaegFordringerTilladtFor
FortrinsberettedeFordringstyper

dk.skat.efi.wls.aa.com
mon.rules

IAIndberetningsreference
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleUdlaegTilsigelsesAdresseS
kalVaereDanskOgHaveEtPostn
ummer

dk.skat.efi.wls.aa.com
mon.rules

IAKontakt
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

RuleUdlaegTilsigelseSkalHave
AngivetTilsigelsesform

dk.skat.efi.wls.aa.com
mon.rules

IAKundeRef
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

DPFacade
dk.skat.efi.wls.aa.com
mon.service

IAKundeRefFordringRef
dk.skat.efi.wls.ia.da.do
main.indsatser.typer

DPFacadeImpl
dk.skat.efi.wls.aa.com
mon.service

AktivitetSekvensNummerGenerator
dk.skat.efi.wls.aa.da.da
o

KFIFacade
dk.skat.efi.wls.aa.com
mon.service

AktivitetSekvensNummerGeneratorImpl
dk.skat.efi.wls.aa.da.da
o

KFIFacadeImpl
dk.skat.efi.wls.aa.com
mon.service

Table 27 Code Base for Automated Analysis

Code Samples Manually Reviewed
Area Sub-area packaged Class

CORE Treatments dk.skat.efi.wls.ia IndsatsAfviklerImpl

CORE Treatments dk.skat.efi.wls.ia.exceptions AbstractForretningsFejl

CORE Treatments dk.skat.efi.wls.ia.exceptions AbstractSystemFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

HaendelseFormatFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

IndsatsFindesEjFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

IndsatsIDFormatFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

IndsatsTypeInstantieringFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

IndsatsTypeMismatchFejl

DATE: 24.09.2015

91 | P a g e

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

IndsatsTypeUkendtFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

KundeFindesEjFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

ResultatIkkeMatchetFejl

CORE Treatments
dk.skat.efi.wls.ia.exceptions.AbstractForret
ningsFejl

SporSkabelonIndsatsSkabelonIDFormatFejl

CORE Treatments dk.skat.efi.wls.ia.exceptions.systemfejl DAOFejl

CORE Treatments dk.skat.efi.wls.ia.factories IIndsatsFactory

CORE Treatments dk.skat.efi.wls.ia.factories IndsatsFactoryImpl

CORE Treatments dk.skat.efi.wls.ia.helpers GetterWrappers

CORE Treatments dk.skat.efi.wls.ia.helpers UtilityMethods

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGraf

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafBETALINGSORDNING

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafBOBEHANDLING

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafBOEDEFORVANDLSTRAF

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafERKENDFORDRING

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafHENSTAND

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafKREDITOPLYSBUREAU

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafKUNDEMOEDE

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafLOENINDEHOLDELSE

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafMANUELSAGSBEHANDL

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafRYKKER

CORE Treatments dk.skat.efi.wls.ia.indsatsgrafer IndsatsGrafUDLAEG

CORE Treatments dk.skat.efi.wls.ia.management AngivelsesoperationerVO

CORE Treatments dk.skat.efi.wls.ia.management BegrundelsesVO

CORE Treatments dk.skat.efi.wls.ia.management EIndkomstHentStatusVO

CORE Treatments dk.skat.efi.wls.ia.management IaRestAPI

CORE Treatments dk.skat.efi.wls.ia.management IndsatsParameterVO

CORE Treatments dk.skat.efi.wls.ia.management KundeIndsatserVO

CORE Treatments dk.skat.efi.wls.ia.methodobjects StopProcesseringAfHaendelse

CORE Treatments dk.skat.efi.wls.ia.methodsobjects
FlytSporSkabelonIndsatsSkabelonParametreTilIndsatsNiv
eau.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentBoBehandlingsType.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentFordringIDerForIndsatsID.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentFundamentOplysningerForFordringerKOB.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIAIndsatsOgKundeViaKorrelationId.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIndsatsDataForFordringForKunde.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIndsatsDataForIndsatser.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIndsatsDataForKunde.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects
HentIndsatsersAktiveFordringerForKundeOpdeltPrIndsats
Id.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIndsatsIDerForFordringID.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentIndsatsTyperForIndsatser.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentRetsafgiftDatoUdlaeg.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentTillaegsafgiftDatoUdlaeg.java

DATE: 24.09.2015

92 | P a g e

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentTilstandsNavnfraTilstandsID.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentUdlaegBladInfoViaAktivId.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects HentUdlaegBladInfoViaIndsatsId.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects IForretningsProcess.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects IndsatsTypeList.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects PaakravsSkrivelseAkterAfskriv.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects PaakravsSkrivelseAkterAfskrivI.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects RetsAfgiftUdlaegBeregn.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects SignalerHaendelse.java

CORE Treatments dk.skat.efi.wls.ia.methodsobjects StartIndsats.java

CORE Treatments dk.skat.efi.wls.ia.services; ErkendFordringSynkronWrapper

CORE Treatments dk.skat.efi.wls.ia.validators Validator

CORE
Process
Engine

dk.skat.efi.wls.im.api SporAdminApi.java

CORE
Process
Engine

dk.skat.efi.wls.im.api SporafviklerApi.java

CORE
Process
Engine

dk.skat.efi.wls.im.api SporskabelonAdminApi.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain AnbefaletSporSkabelonHaendelseModtagVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain HaendelseModtagSvarVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain HaendelseModtagVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain IndsatsTypeOgUndertypeVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain IndsatsVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain KundeDataVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain MultiHaendelseModtagVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain SporHistorikVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain SporRegelVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain SporskabelonInfoVO.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain SporVo.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain VentendeHaendelseVO.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain.sporskabelon SporSkabelonIndsatsParameterVO.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain.sporskabelon SporSkabelonIndsatsSkabelonVO.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain.sporskabelon SporSkabelonSporRegelVO.java

CORE
Process
Engine

dk.skat.efi.wls.im.api.domain.sporskabelon SporSkabelonVO.java

CORE
Process
Engine

dk.skat.common.exceptions SkatSystemMultiopretHaendelseException.java

CORE
Process
Engine

dk.skat.common.exceptions UnrecoverableStateException.java

CORE
Process
Engine

dk.skat.efi.im TransaktionsIdParser.java

CORE
Process
Engine

dk.skat.efi.im.aktering Aktering.java

CORE
Process
Engine

dk.skat.efi.im.aktering AkteringFactory.java

CORE
Process
Engine

dk.skat.efi.im.aktering AkteringImpl.java

DATE: 24.09.2015

93 | P a g e

CORE
Process
Engine

dk.skat.efi.im.aktering TitleAndTextResolved.java

CORE
Process
Engine

dk.skat.efi.im.api IMSporConverter.java

CORE
Process
Engine

dk.skat.efi.im.api MultiHaendelseModtagVo2DomainConverter.java

CORE
Process
Engine

dk.skat.efi.im.api SporAdminApiImpl.java

CORE
Process
Engine

dk.skat.efi.im.api SporafviklerApiImpl.java

CORE
Process
Engine

dk.skat.efi.im.api SporVoConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser AdresseAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser AnbefaletSporSkabelonConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BeloebConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BEODaekningAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BEORateAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BerostilLoenindeholdelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneFaldetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneFaldetVarigtConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneNulConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneSBetalEvneAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneSLFaldetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneSLStegetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneStegetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalEvneStegetVarigtConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalingOrdningOprettetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BetalingsordningMisligeholdtConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSAfsoningAflysConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSAfsoningOpdaterConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSGensendVarselConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSKorrektionSendConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSOpdaterPolitikredsConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSSendAnmodningConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSSendVarselConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BFSVarselAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BobGemKontaktConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BobSletKontaktConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BookingSvarConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BosagAendrAutomatiskConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser BosagAendrConverter.java

DATE: 24.09.2015

94 | P a g e

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ErkendFordringFristOverskredetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ErkendFordringGenstartConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ErkendFordringKundehenvendelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ErkendFordringSagsbehandlerErkenderConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ETLConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser FordringOprettetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser FordringSaldoAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ForkyndelseDatoAendrConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser
FristOverskredetCirkulaerskrivelseEjModtagetConverter.ja
va

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser
FristOverskredetModtagelseAfAdkomsterklaeringConverte
r.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser GenoptagSporSkifteConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaeftelseForaeldelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseCommonAttributesConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseConverterImpl.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseFilterConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseModtagConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HaendelseModtagConverterImpl.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser HenstandAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser IHaendelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser IMETLAnmeldelseStatusCheckConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser IndkomsttypeAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser IndsatsFordringFjernetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser IndsatsFordringTilfoejConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser KFIAdresseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser KOBVarslFristAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser KundemoedeAendrConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser KundemoedeGennemfoertConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser LoenIndholdelseBegrundelseConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser LoenIndholdelseGensendIvaerksaetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MeddelelseIkkeModtagetConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MeddelelseIkkeSendtConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MeddelelsePakkeConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MoedeAendrConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MultiHaendelseModtagConverter.java

DATE: 24.09.2015

95 | P a g e

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser MultiHaendelseModtagConverterImpl.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser NoPayloadConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser OpgaveOpretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser OpretOpgavePayloadConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser RykBetalingsFristAendretConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser SagsbehandlerErkenderConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser ScoringConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser StartIndsatsConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser StopIndsatsConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser StopSporSkifteConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegAktivAndelsboligSendRykkerConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegAktivAndelsboligTinglysningAendrConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser
UdlaegAktivAndelsboligTinglysningFristAendrConverter.ja
va

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegAktivFjernConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegAktivForaeldelseDatoAendrConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegAktivTinglysConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegBladDanConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegEjGennemfoertConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegKladdeGemConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegPolitieftersoegningAnmodConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.haendelser UdlaegTilsigelseSendConverter.java

CORE
Process
Engine

dk.skat.efi.im.converters.helpers AdresseConverter.java

CORE
Process
Engine

dk.skat.efi.im.dao HaendelseDao.java

CORE
Process
Engine

dk.skat.efi.im.dao HaendelseDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao HaendelseFilterDao.java

CORE
Process
Engine

dk.skat.efi.im.dao HaendelseFilterDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao IndsatsDao.java

CORE
Process
Engine

dk.skat.efi.im.dao IndsatsDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao KundeDao.java

CORE
Process
Engine

dk.skat.efi.im.dao KundeDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao SporDao.java

CORE
Process
Engine

dk.skat.efi.im.dao SporDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao SporRegelDao.java

CORE
Process
Engine

dk.skat.efi.im.dao SporRegelDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao SporSkabelonDao.java

DATE: 24.09.2015

96 | P a g e

CORE
Process
Engine

dk.skat.efi.im.dao SporSkabelonDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dao SporSkabelonIndsatsSkabelonDao.java

CORE
Process
Engine

dk.skat.efi.im.dao SporSkabelonIndsatsSkabelonDaoImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse FremtidigHaendelseCheckerTask.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse FremtidigHaendelseCheckerTaskImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse FremtidigHaendelseProcessor.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse FremtidigHaendelseProcessorImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelseRecordLogger.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelseRecordLoggerImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWork.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWorkExecuter.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWorkExecuterImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWorkTaskImpl.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWorkTimestampUpdater.java

CORE
Process
Engine

dk.skat.efi.im.dispatchers.haendelse HaendelsesWorkTimestampUpdaterImpl.java

CORE
Process
Engine

dk.skat.efi.im.domain IMGraenseZoneVaerdierType.java

CORE
Process
Engine

dk.skat.efi.im.domain IMIndsats.java

CORE
Process
Engine

dk.skat.efi.im.domain IMKundeData.java

CORE
Process
Engine

dk.skat.efi.im.domain IMKundeLaas.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSpor.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSporRegel.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSporRegelType.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSporSkabelon.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSporSkabelonIndsatsParameter.java

CORE
Process
Engine

dk.skat.efi.im.domain IMSporSkabelonIndsatsSkabelon.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser BEODaekningAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser BEORateAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser FejletHaendelseVO.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser FordringAendret.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMAdresseAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMAendretAktiv.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMAnbefaletSporSkabelonHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBerostilLoenindeholdelseHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneFaldet.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneFaldetVarigt.java

DATE: 24.09.2015

97 | P a g e

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneNul.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneSBetalEvneAendret.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneSLFaldet.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneSLSteget.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneSteget.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalEvneStegetVarigt.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalingOrdningOprettetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalingsordningMisligeholdtHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBetalingsordningMisligeholdtVO.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSAfsoningAflysHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSAfsoningOpdaterHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSGensendVarselHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSKorrektionSendHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSOpdaterPolitikredsHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSSendAnmodningHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSSendVarselHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBFSVarselAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBobAendreBosagAutomatiskHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBobAendreBosagHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBobGemKontaktHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBobOpgOpretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBobSletKontaktHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMBookingSvarHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMErkendFordringFristOverskredetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMErkendFordringGenstartHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMErkendFordringKundehenvendelseHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMETLAnmeldelseStatusCheckHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMETLAnmeldelseSvarHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMFordringOprettetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMFordringSaldoAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser
IMFristOverskredetCirkulaerskrivelseEjModtagetHaendels
e.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser
IMFristOverskredetModtagelseAfAdkomsterklaeringHaend
else.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMGenoptagSporSkifteHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaeftelseAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaeftelseForaeldelseHaendelseVO.java

DATE: 24.09.2015

98 | P a g e

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelseFilter.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelseFilterUndtagelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelseRecord.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelseTilIndsatsOpgave.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHaendelseTilIndsatsOpgaveComparator.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMHenstandAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMIndkomsttypeAendret.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMIndsatsFordringFjernetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMIndsatsFordringTilfoejHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser
IMKreditoplysningsbureauVarselFristAendretHaendelse.ja
va

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMKundeHaeftelseForaeldelseHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMKundemoedeAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMKundemoedeGennemfoertHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMLoenIndholdelseBegrundelseHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMLoenIndholdelseGensendIvaerksaetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMMeddelelseIkkeModtagetHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMMeddelelseIkkeSendtHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMMeddelelsePakkeHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMModtagerReference.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMOpgaveOpretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMRykkerBetalingsFristAendretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMSagsbehandlerErkenderHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMScoringHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMStartIndsatsHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMStartIndsatsOpgave.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMStopIndsatsHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMStopIndsatsOpgave.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMStopSporSkifteHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser
IMUdlaegAktivAndelsboligAdkomsterklaeringModtagetHa
endelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegAktivAndelsboligSendRykkerHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser
IMUdlaegAktivAndelsboligTinglysningFristAendrHaendels
e.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegAktivFjernHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegAktivForaeldelseDatoAEndrHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegAktivTinglysHaendelse.java

DATE: 24.09.2015

99 | P a g e

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegbladDanHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegEjGennemfoertHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegForkyndelsesDatoAendrHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegKladdeGemHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegMoedeAendrHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegPolitieftersoegningAnmodHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser IMUdlaegTilsigelseSendHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser KFIAdresse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser MeddelelsePakkeBilag.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser MeddelelsePakkeOpkraevBeloeb.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser MeddelelsePakkeType.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser RessourceBookInfo.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details Beloeb.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details BobehandlingKontakt.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details EFIEkstraInfo.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details EFIKunde.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details FordringAfbetaling.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details FordringBeloebInfo.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details Henvendelse.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details IMBEOEkstraInfo.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details IMDividende.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details KundeStruktur.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details Rate.java

CORE
Process
Engine

dk.skat.efi.im.domain.haendelser.details SamarbejdPart.java

CORE
Process
Engine

dk.skat.efi.im.enums HaendelseFilterUploadStatus

CORE
Process
Engine

dk.skat.efi.im.exception
IndsatsForsøgtSlettetMensHaendelseProcesseresExcepti
on.java

CORE
Process
Engine

dk.skat.efi.im.exception CirkulaerIndsatsException.java

CORE
Process
Engine

dk.skat.efi.im.exception GentagetIndsatsTypeException.java

CORE
Process
Engine

dk.skat.efi.im.exception IngenIndsatserPaaSporetException.java

CORE
Process
Engine

dk.skat.efi.im.exception SporRegelPegerPaaAktivIndsatsException.java

CORE
Process
Engine

dk.skat.efi.im.exception
SporRegelPegerPaaIkkeEksisterendeIndsatsException.ja
va

CORE
Process
Engine

dk.skat.efi.im.factory SporFactory.java

CORE
Process
Engine

dk.skat.efi.im.factory SporFactoryImpl.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin EFINotFutureDateException.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin HaendelseAdministration.java

DATE: 24.09.2015

100 | P a g e

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin HaendelseAdministrationImpl.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin MultiOpretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin MultiOpretHaendelseImpl.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin OpretHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin OpretHaendelseImpl.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin SletHaendelse.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin SletHaendelseImpl.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin TjekOmSagsbehHaendelseUnderBehandling.java

CORE
Process
Engine

dk.skat.efi.im.haendelseadmin TjekOmSagsbehHaendelseUnderBehandlingImpl.java

CORE
Process
Engine

dk.skat.efi.im.management ImRestAPI.java

CORE
Process
Engine

dk.skat.efi.im.sporadmin SporService.java

CORE
Process
Engine

dk.skat.efi.im.sporadmin SporServiceImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler HaendelseFilterHaandtering.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler HaendelseFilterHaandteringImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler HaendelsesHaandtering.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler HaendelsesHaandteringImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler OpgaveAfvikler.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler OpgaveAfviklerImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler Opgaveopretter.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler OpgaveopretterImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler SpecialHaandtering.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler SporSkifteKontrol.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler SporSkifteKontrolImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler SporSkifter.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler SporSkifterImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler UdestaaendeTjek.java

CORE
Process
Engine

dk.skat.efi.im.sporafvikler UdestaaendeTjekImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonadmin SporskabelonAdminImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonadmin SporSkabelonConverter.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonvalg GraenseZoneKontrol.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonvalg GraenseZoneKontrolImpl.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonvalg SporSkabelonValg.java

CORE
Process
Engine

dk.skat.efi.im.sporskabelonvalg SporSkabelonValgImpl.java

CORE
Process
Engine

dk.skat.efi.im.vo HaendelseAndKundeStruktur.java

CORE
Process
Engine

dk.skat.efi.im.vo HaendelseFilterList.java

DATE: 24.09.2015

101 | P a g e

CORE
Process
Engine

dk.skat.efi.im.vo HaendelseFilterUploadRapport.java

CORE
Process
Engine

dk.skat.efi.im.vo HaendelseFilterVo.java

CORE Treatments dk.skat.efi.wls.aa.beo
BEOBookRessourceTilMeddelelseOmAEndretBetalingsor
dningImpl

CORE Treatments dk.skat.efi.wls.aa.beo BEOBookSagsbehandlerTilMeddelelsesfejlImpl

CORE Treatments dk.skat.efi.wls.aa.beo BEOBookSagsbehandlerTilOpfoelgningImpl

CORE Treatments dk.skat.common.transactionstrategies TryAgainWithStatusLookupStrategy

Peripher
al

BeBB dk.skat.efi.wls.bebb.api BebbApiImpl

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

AbstractBeregnerDecorator

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

AbstractBetalingsEvneBeloeb

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

BeloebLedigTilReservation

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

BeregnAktuelLoenIndProcent

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

Beregner

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

BeregnetAarsindkomst

Peripher
al

BeBB
dk.skat.efi.wls.bebb.beregning.betalingevn
e

BeregnetLoenIndProcent

Peripher
al

BeBB dk.skat.efi.wls.bebb.beregning.budget KundeBudget

Peripher
al

BeBB dk.skat.efi.wls.bebb.betalingevne BebbKundeDataVoConverter

Peripher
al

BeBB dk.skat.efi.wls.bebb.betalingevne BeregningGrundlagVoConverter

Peripher
al

BeBB dk.skat.efi.wls.bebb.betalingevne BetalingevneAdmin

Peripher
al

BeBB dk.skat.efi.wls.bebb.betalingevne BetalingEvneAsynkronHentWorkExecuterImpl

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BebbKundeDataVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BeregningGrundlagVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BetalingEvneVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BoernebudgetVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BudgetpostBarnVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BudgetpostLaanVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BudgetpostVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BudgetpostVoksenVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt BudgetVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt EjendomVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt KoeretoejVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt KundeBudgetterVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt NettoIndkomstPostListVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt NettoIndkomstPostVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt ReservationVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo.alt SBetalingEvneVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo BebbKundeIdentifikation

DATE: 24.09.2015

102 | P a g e

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo BebbKundeIdentifikationByKFIKundeId

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo BebbKundeIdentifikationCreate

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo dk.skat.efi.wls.bebb.api.vo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo BetalingEvneMultiHentKundeListeVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo BetalingEvneMultiHentKundeVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo EjendomHaendelseKundeVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo ForsoergerpligtGenberegnVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo HenvendelsesformVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo IndkomsttypeVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo KoeretoejHaendelseKundeVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo dk.skat.efi.wls.bebb.api.vo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api.vo SReservationAendreVo

Peripher
al

BeBB dk.skat.efi.wls.bebb.api BebbApi

Peripher
al

BeBB dk.skat.efi.wls.bebb.opretkunde NettoIndkomstBeregnerImpl

Peripher
al

BeBB dk.skat.efi.wls.bebb.opretkunde CustomerAsyncronCreationWorkerImpl

Peripher
al

BeBB dk.skat.efi.wls.bebb.betalingevne BetalingEvneAsynkronHentWorkExecuterImpl

Table 28 Code Samples Manually Reviewed

9.2.4 Test
There are no “EFI” test cases, separate from DMI performed by SKAT
Test cases and test reports performed by the EFI development team were requested but
not provided.

9.2.5 Change Requests
Modtag Fordring (Receive Claim)

Change Request ID Result of Change Request

QC 694 Affected trace score

QC 1645 Affected trace score

QC 10741 Affected trace score

Kundesaldi (Client Account Balance)

Change Request ID Result of Change Request

None None

Betalingsordninger (Payment Plans)

Change Request ID Result of Change Request

None None

ønindeholdelse (Salary Deduction)

Change Request ID Result of Change Request

None None

Table 29 Change Requests DMI

9.2.6 Analysis

9.2.6.1 DMI Requirements & Use Cases Analysed

Description Date / Version

EFI 02 Leverandørens kravopfyldelse FA v1_00 N/A

EFI 02 Leverandørens kravopfyldelse S v1_00 N/A

Bilag 3 4 3_Use case og supplerende beskrivelser for DMI August 2010

DATE: 24.09.2015

103 | P a g e

Bilag 3.4 Use cases 2010

Table 30 DMI Requirements & Use Cases Analyses

9.2.7 Design

9.2.7.1 DMI Design Specifications

Description Date / Version

SKAT_Debitormotor_RTM-CIC_DMI_DMO_DMS_Technical_requirements_19 06 2014 19.06.2014

DM RTM-CIC Drift og Vedligehold v 19Juni2014 19.06.2014

DM DMI Funktionalitetsgruppering - Fordringer Modtag 08.10.2012

DM DMI Funktionalitetsgruppering Rente 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Betalingsordning_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Dækningsrækkefølge_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Dækningsrækkefølge_BT_20130116 08.10.2010

DM_DMI_Funktionalitetsgruppering_Fordringer_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Hæftelse_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Hæftelse_Forældelse_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Indbetalinger_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Modregning_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Stamdata_ 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Administration 08 OKT 2012_v1.00 08.10.2010

DM_DMI_Funktionalitetsgruppering_Processer _08 OKT 2012_ v1.00 08.10.2010

Bilag 3.6.2 Services udtræk for DMI February 2010

Table 28 DMI Design Specifications

9.2.8 Code
DMI Code as of May 2015 was assessed

Program Name Package

Z_MAST_CLAM_UPDATE ZMAST

Z_OFFS_QUER_RUN ZOFFS

ZACCH_CUST_CALC ZACCO

ZACCO_SPEC_ALV ZACCO

ZACCO_SPEC_ALV_FORMS ZACCO

ZACCO_SPEC_ALV_SCR ZACCO

ZACCO_SPEC_DATADEF_ALV ZACCO

ZBC_DWL_TRANSPORT_REQ ZADMI

ZBC_SHOW_VERSION ZADMI

ZCLAM_BO_BANK_UPDATE ZCLAM

ZCLAM_FIX_NOTI_RECE ZCLAM

ZCLAM_FIX_NOTI_RECE_METHODS ZCLAM

ZCLAM_INTE_NOTIFY ZCLAM

ZCLAM_NOCO_DIFF_DUPLICATES ZCLAM

ZCLAM_NOCO_DIFF_DUPLICATES_F01 ZCLAM

ZCLAM_NOCO_DIFF_NOTI_CREA ZCLAM

ZCLAM_NOCO_DIFF_NOTI_CREA_FORM ZCLAM

ZCLAM_NOTI_CREATE ZCLAM

ZCLAM_NOTI_DIFF ZCLAM

ZCLAM_NOTI_DIFF_01 ZCLAM

ZCLAM_RDI_COPY ZCLAM

ZCLAM_RDI_COPY_FORMS ZCLAM

ZCLAM_REP_SUM ZCLAM

ZCLAM_SETL_CORRECT_FIX ZCLAM

ZCLAM_SETL_CORRECT_FIX_EXECF01 ZCLAM

ZCLAM_SETL_NOTIFY ZCLAM

ZCLAM_SETL_NOTIFY_METHODS ZCLAM

ZCLIA_AGIN_ANALYSE_ANAL_DELETE ZCLIA

ZCLIA_AGIN_ANALYSE_ANAL_LOCK ZCLIA

ZCLIA_AGIN_ANALYSE_ANAL_ROLLBA ZCLIA

ZCLIA_AGIN_ANALYSE_ROLLBA_MAIN ZCLIA

ZCLIA_AGIN_FIX ZCLIA

ZCLIA_AGIN_FIX_DEL ZCLIA

ZCLIA_AGIN_FIX_GET ZCLIA

ZCLIA_AGIN_FIX_SELECTIONS_SF01 ZCLIA

DATE: 24.09.2015

104 | P a g e

ZCLIA_AGIN_FIX_VERIFY_PAR_IF01 ZCLIA

ZCLIA_CLIA_FIX_PEF ZCLIA

ZCLIA_CLIA_FIX_PEF_STATISTIK ZCLIA

ZCLIA_INTE_SPEC_ALV ZCLIA

ZCLIA_INTE_SPEC_ALV_FORMS ZCLIA

ZCLIA_INTE_SPEC_ALV_SCR ZCLIA

ZCLIA_LOAD_COURTFEE ZCLIA

ZCLIA_LOAD_DEPR ZCLIA

ZCLIA_MONITORING ZCLIA

ZCLIA_SERV_LIMIT_RECEIVE ZCLIA

ZCLIA_SPEC_DATADEF_ALV ZCLIA

ZCLIA_SPEC_SUM_UPDATE ZCLIA

ZCOVE_IPAY_SIMU ZCOVE

ZCOVE_IPAY_SIMU_DATA_DEF ZCOVE

ZCOVE_REDO_IPAY ZCOVE

ZCOVE_REDO_IPAY_OLD ZCOVE

ZCOVE_REDO_IPAY_TOOLS ZCOVE

ZCPEF_CLIA_EVAL ZCLIA

ZFICO_RECKEY_AGGR_CLOSE ZFICO

ZFICO_RECKEY_AGGR_INIT ZFICO

ZFICO_RECONCILE_TABLES ZFICO

ZFICO_RECONCILE_TABLES_CLASSES ZFICO

ZFICO_RECONCILE_TABLES_FORMS ZFICO

ZFICO_RECONCILE_TABLES_USERI01 ZFICO

ZFICO_WRSP_CALC ZFICO

ZFPER_CALC_PERI ZFICO

ZFPER_EVAL_VKONT ZFICO

ZFPER_RECE_RECON ZFICO

ZGENE_DOCU_FIX ZGENE

ZGENE_DOCU_NETS_FIX ZGENE

ZGENE_DW_EXTR_SELE ZGENE

ZGENE_DW_EXTRACT ZGENE

ZGENE_DW_KOBRA_SPECIAL ZGENE

ZGENE_PERF_DISPLAY ZGENE

ZGENE_PROC_MONI ZGENE

ZGENE_SHOW_LOG ZGENE

ZINST_CONV_LOAD ZINST

ZINST_FIX_RATES ZINST

ZINTE_BALANCE_FORWARD ZINTE

ZINTE_MASS_PERIOD ZINTE

ZIPAY_LOAD_REJECT ZIPAY

ZIPAY_REJECT ZIPAY

ZOPAY_RET_DUPL_FIX ZOPAY

Table 31 DMI Code

9.2.9 Test
There are no “DMI” test cases, separate from EFI performed by SKAT.
Test cases and test reports performed by the development team were not requested.

9.2.10 Change Requests
Modtag Fordring (Receive Claim)

Change Request ID Result of Change Request

QC 694 Affected trace score

QC 1645 Affected trace score

QC 10741 Affected trace score

Kundesaldi (Client Account Balance)

Change Request ID Result of Change Request

DMI ÆA114 Affected two requirements, but did not affect their trace score

Betalingsordninger (Payment Plans)

Change Request ID Result of Change Request

None None

Lønindeholdelse (Salary Deduction)

Change Request ID Result of Change Request

None None

Table 32 Change Requests

DATE: 24.09.2015

105 | P a g e

10 Appendix: Accenture Delivery Methods

This report contains descriptions of and references to the Accenture Delivery Methodology
(ADM). ADM is proprietary to Accenture and all descriptions of and references to ADM
must be kept strictly confidential and the respective party of the report must be redacted
prior to distribution.

ADM defines the project work that needs to be done and how that work can best be
accomplished. Included within ADM are methods, estimators, and procedures.

 Proven processes, deliverables and techniques that enable global teams to define
what to do and how to do it

 A comprehensive set of methods that supports multiple types of work (e.g., custom
development, package implementations and outsourcing)

 Focused on the fundamentals and discipline, especially around program and project
management

 Built on a common framework to promote growth of consistent skills

 Includes estimators for estimating level of effort

 Includes repeatable, step-by-step procedures to drive consistency

 Defines standard language, roles and deliverables

Figure 11 Accenture Delivery
Suite

DATE: 24.09.2015

106 | P a g e

10.1 Components

ADM defines the project work that needs to be done and how that work can best be
accomplished. Included within ADM are methods, estimators, and procedures.

 Methods: ADM defines the work to be done and how it can best be accomplished.
There are 3 key types of content in the methodology: processes, work products,
and roles. These 3 content types all reference each other to form the foundation of
the methodology.

 Estimators: Enable you to create an estimate of work based on Methods’ activities
and tasks. Additionally, you can create a staffing estimate and plan using the roles
from the Methods.

 Procedures: Step-by-step, role-based instructions for completing detailed
functions. The tools automate procedures, making them standard and re-usable
across Methods.

10.2 Comprehensive Coverage

The main benefit of ADM is its ability to be used to guide teams through daily project tasks
and activities. There are multiple methods in each of four categories. All methods follow a
common structure and approach. Each project chooses the method(s) that correspond
with the type of work it is delivering. A method can be used alone, or in combination with
other methods. Within these methods are processes, procedures, and work products that
support and guide teams in delivering excellence.

10.3 Structure

The Methods provide a standard 3-level framework that you can drill down into. Within that
framework are standard inputs, outputs, and roles associated with each process or task.
From this common starting point, projects can tailor the processes and deliverables to
meet their project-specific needs.

DATE: 24.09.2015

107 | P a g e

10.4 ADM for Custom Development

Overview
The Accenture Delivery Methods for Custom Development focus on the custom
development of application solutions for our clients. They also support software package
implementations where some degree of custom development is required.

The Accenture Delivery Methods for Custom Development are an application development
methodology. This methodology supports business process analysis, application
requirements and use case analysis, application's functional and technical design,
technical architecture development, and the deployment of the application.

Level 1
For

Executives

Top-level
Framework

Chart

Level 2
For

Project
Managers

Activities
(the “what”)

Level 3
For

Practitioners
Tasks

(the “how”)

• Stages
• Workstreams
• One-click access to

activities

• Planning chart
• Sub-workstreams
• Objectives
• Inputs
• Deliverables
• Roles
• Planning

considerations
• Job aids & checklists
• One-click access to

tasks

• Planning chart
• Objectives
• Inputs
• Deliverables
• Roles
• Step descriptions
• Key considerations
• Job Aids & checklists

Process Audience Methods Content

3100 Design Application

3165 Design Data Conversion

Level 1
For

Executives

Top-level
Framework

Chart

Level 2
For

Project
Managers

Activities
(the “what”)

Level 3
For

Practitioners
Tasks

(the “how”)

• Stages
• Workstreams
• One-click access to

activities

• Planning chart
• Sub-workstreams
• Objectives
• Inputs
• Deliverables
• Roles
• Planning

considerations
• Job aids & checklists
• One-click access to

tasks

• Planning chart
• Objectives
• Inputs
• Deliverables
• Roles
• Step descriptions
• Key considerations
• Job Aids & checklists

Process Audience Methods Content

3100 Design Application

3165 Design Data Conversion

Figure 12 Levels in ADM Models

DATE: 24.09.2015

108 | P a g e

Major components of this methodology include the following:

 Plan. This involves the up-front, project-level planning required to understand high-
level requirements, define the application and technology blueprints, explore
solution options, and define the solution delivery strategy.

 Application. This involves the tasks and deliverables needed to analyze, design,
build, and test a custom-built application.

 Technical Architecture. This involves the tasks and deliverables needed to
analyze, select and design, install and build, and test the development, execution,
and operations environments.

 Service Introduction. This includes tasks and deliverables needed to ensure that
the application has been developed to properly address the operational and support
requirements.

 Deploy. This includes the tasks and deliverables needed to deploy the application
to the users and transition the application management responsibilities to the
support unit.

Figure 13 Accenture Delivery Methodology

