Simplified upwind propagation model for wind turbines

Model description by Birger Plovsing and Jørgen Jakobsen (based on manuscript to be submitted to Noise Control Engineering Journal)

Input parameters

 h_S : source height (m)

d: horizontal propagation distance (m)

 u_{10} : wind speed component 10 m above ground in the direction of propagation (m/s), negative values in upwind

Fixed model parameters (cannot be changed)

 $h_R = 1.5$ m: receiver height

 $z_0 = 0.05$ m: roughness length

 $t_0 = 10^{\circ} \text{ C}$: air temperature

 $c(t_0) = 337.4$ m/s: the sound speed at temperature t_0

Calculation of model parameter d'

Wind speed u (m/s) as a function of height z (m):

$$u(z) = u_{10} \ln \left(\frac{z}{z_0}\right) / \ln \left(\frac{10}{z_0}\right)$$

Average sound speed gradient $\Delta c/\Delta z$ (s⁻¹):

$$\frac{\Delta c}{\Delta z} = \frac{u(h_S) - u(h_R)}{h_S - h_R}$$

Effective sound speed c_0 (m/s) at the ground (z = 0) in linear sound speed profile approximation:

$$c_0 \cong c(t_0) + u_{10} - 10 \frac{\Delta c}{\Delta z}$$

Relative sound speed gradient a (m⁻¹):

$$a = \frac{\Delta c}{\Delta z} / c_0$$

Distance to shadow zone d_{SZ} (m):

$$d_{SZ} \cong \sqrt{\frac{2h_S}{|a|}} + \sqrt{\frac{2h_R}{|a|}}$$

Horizontal propagation distance relative to shadow zone distance d' (dimensionless):

$$d' = \frac{d}{d_{SZ}}$$

Method for determining the A-weighted upwind ground effect ΔL_u in excess of the A-weighted downwind ground effect ΔL_g given in "Vindmøllebekendtgørelsen":

The excess A-weighted upwind ground effect ΔL_u in dB is calculated by:

$$h'_{S} = \begin{cases} 15 & \text{if } h_{S} \leq 15 \\ h_{S} & \text{if } 15 < h_{S} < 70 \\ 70 & \text{if } h_{S} \geq 70 \end{cases}$$

$$k_{1} = \frac{(h'_{S} - 15)}{220} + 0.55$$

$$k_{2} = \frac{(h'_{S} - 15)}{50} + 2.1$$

$$\Delta L_{u} = \begin{cases} 0 & \text{if } d' \leq k_{1} \\ -15 & \text{if } d' \geq k_{2} \end{cases} \quad \text{if } k_{1} < d' < k_{2}$$

Method for determining the upwind low frequency ground effect ΔL_{uLF} in excess of the one-third octave band downwind ground effect ΔL_{gLF} given in "Vindmøllebekendtgørelsen":

For one-third octave band frequencies below 31.5 Hz ΔL_{uLF} is equal to 0 dB.

In the frequency range 31.5 Hz to 160 Hz ΔL_{uLF} in dB is calculated by the following equation where ΔL_{max} , k_1 and k_2 are defined in the table below:

$$\Delta L_{uLF} = \begin{cases} 0 & \text{if } d' \leq k_1 \\ \Delta L_{\max} & \frac{d' - k_1}{k_2 - k_1} & \text{if } k_1 < d' < k_2 \\ \Delta L_{\max} & \text{if } d' \geq k_2 \end{cases}$$

Frequency (Hz)	ΔL_{max}	k_1	k_2
31.5	-3	3	5
40	-6	2.3	5
50	-10	2	5.2
63	-14	1.7	5
80	-15	1.6	4.3
100	-15	1.5	3.6
125	-15	1.45	3.2
160	-15	1.35	3.05