Cost by

FINAL HEALTH PHYSICS REPORT ON PROJECT CRESTED ICE

PREPARED BY:

JOHN C. TASCHNER
MAJOR, USAF, BSC
HEALTH PHYSICIST

LARS BÖTTER-JENSEN
DANISH ATOMIC ENERGY COMMISSION
HEALTH PHYSICIST

FINAL HEALTH PHYSICS REPORT ON PROJECT CRESTED ICE

DATE: 14 September 1968

PREPARED BY: Major John C. Taschner

Health Physicist

USAF Radiological Health Laboratory (SGHW)

Wright-Patterson AFB, Ohio, USA

Lars Botter-Jensen Health Physicist

Danish Atomic Energy Commission

Research Established Riso

Roskilde, Denmark

I. Instrumentation Used For Radiation Surveys

A. FIDLER

- l. The FIDLER is a low energy X- and gamma ray detector developed by the Lawrence Radiation Laboratory, Livermore, California, for radiation surveys of plutonium contaminated areas. Two such instruments are on load to the U.S. Air Force in support of Project "Crested Ice".
- 2. The FIDLER consists of a dector probe, an Eberline Pulse Rate Meter (Model PMR-5) and earphones for audible indication of radioactivity. The detector probe consists of a thin sodium-iodide crystal optically coupled to a photomultiplier tube. The pulse rate meter may be adjusted to measure the 17 keV X-rays from plutonium -239 or the 60 keV gamma rays and the 17 keV X-rays from americium -241 (a decay product of plutonium -241). The ability to measure plutonium contamination by means of X- or gamma ray detection, rather than the slow, tedious process of alpha monitoring, has made the FIDLER an invaluable instrument for Broken Arrow operations.
- 3. External battery packs were connected to the PMR-5 to allow the radiological monitor to carry the batteries in his pocket to prevent a decrease in battery efficiency due to freezing temperatures.

B. PAC-1S (AN/PDR-60)

- 1. The PAC-1S is the standard U.S. Air Force alpha survey meter developed by Eberline Instrument Company, Santa Fe, New Mexico. Full details on this instrument are available in T.O. 11H4-4-2-31, -32, -33, and -34 or from the manufacturer.
- PAC-1S. Battery packs were also connected externally to the

C. Staplex Air Sampler

- 1. The Staplex High Volume Air Sampler developed by the Staplex Company, Brooklyn, New York, was used for sampling large volumes of air for the assessment of airborne plutonium contamination.
- 2. The unit was equipped with an 8x10 inch filter paper holder and Whatman No. 41 filter paper was used as the particulate collection medium.

II. Radiation Surveys

A. Contaminated Waste Containers

- l. To insure the radiological cleanliness of all containers to be shipped from Thule Air Base, external surfaces of the containers located in the Tank Farm and Igloo Areas were monitored. Any measurable radioactivity was removed with Stoddard Solvent (PS-661).
- 2. Swipe samples, using Whatman No. 1 filter paper, were taken in order to assess the efficiency of decontamination procedures. These samples were obtained by wiping a 100 cm2 area adjacent to the container openings. The samples were forwarded to the USAF Radiological Health Laboratory (SGHW) for analysis. Swipe sample results appear in attachment 1-4 of this report. Technical Order 00-110N-2 states that the maximum permissible alpha activity is 100 pCi per/100cm² swipe. All containers showing swipe sample values greater than 100 pCi were decontaminated.

B. Hangar No. 1

- l. An area of approximately 30 square feet in hangar no. I was surveyed following the clean-up of approximately 20 gallons of liquid waste from an R-4360 container. No detectable activity was measured.
- 2. To insure that decontamination procedures were completely effective, ten representative swipe samples were taken in the area and were forwarded to the USAF Radiological Health Laboratory for analysis. All swipe samples showed no detectable activity.

C. Igloo Area

1. Two igloos and adjacent areas were used to store various size POL tanks, R-4360 engine containers and 55 gallon drums, all containing contaminated pieces of aircraft gathered at the crash site.

2. Following the loading of these containers aboard ship the igloos and adjacent areas were surveyed with the FIDLER and PAC-1S instruments. No detectable radioactivity was measured. This area may be returned to normal use.

D. Tank Farm

- l. Contaminated snow, ice, and debris were removed from the crash site and placed in 25,000 gallon POL tanks located in the tank farm during the initial phase of Project "Crested Ice". Health physics surveillance over this area during the transfer of the melted snow and ice to R-4360 containers was reported in Section IV of the SAAMA Task Group Report.
- 2. During the transfer of the POL tanks and R-4360 containers to the dock for loading aboard ship, health physics activities consisted of monitoring the truck tires with a PAC-1S instrument and examining the containers for leaks. In addition, the ground was monitored with the FIDLER after each tank was removed. All tanks which were found to be leaking were returned to the tank farm for repair. The tanks were then monitored to insure radiological cleanliness prior to leaving the tank farm.
- 3. Following the removal of all R-4360 containers and POL tanks from tank farm, the area was monitored with the FIDLER. Several isolated areas of plutonium contamination were detected. These areas are shown in attachment 5 as locations A through I. Attachment 6 shows the FIDLER and PAC-1S measurements made at these locations before and after decontamination. Decontamination was accomplished by removal of the soil until the FIDLER instrument readings were less than two times background. Normal background appeared to be approximately 250 count per minute.

E. Vehicles

l. The Wanagan located adjacent to the tank farm and all vehicles used to transport the contaminated waste containers to the dock were monitored at the conclusion of the operation. No detectable activity was measured.

F. Roads Leading To The Dock

l. All roads used to transport the contaminated waste containers to the dock were monitored after the last POL tank was removed from the tank farm. No detectable activity was measured.

G. Coastline Survey

l. A coastline survey was performed along the route indicated by the red line on attachment 7. No detectable activity or aircraft debris was found.

III. Special Problems

Fire In POL Debris Tank No. 74

- The fire in this tank, caused by welding sparks, presented the possibility of airborne radioactive contamination and a potential health hazard to the firemen. All firemen involved in controlling the fire were issued Scott Air Packs (supplied air systems) to prevent the possibility of an inhalation hazard and were told to remain upwind of the fire. Air samples were taken downwind and no detectable activity was measured. Futhermore, the clothes of the firemen were monitored periodically and no detectable activity was measured.
- Swipe samples taken from inside the tank were sent to the Danish AEC Health Physics Department and the USAF Radiological Health Laboratory for analysis. The results indicated that no detectable activity collected on the inside of the tank during the fire.
- It is concluded that the contents of the tank were not sufficiently contaminated to present an airborne radioactive hazard.

IV. Conclusion

All areas which were involved in Project "Crested Ice" have been cleaned and monitored so that no radioactive contamination above maximum permissible levels remains. It is therefore concluded that these areas may be returned to normal use.

7 Atch

1. Swipe Sample, OL-5 Igloo Area 2. Swipe Sample, R4360 Engine Con-

tainers

- 3. Swipe Sample, POL tanks
- 4. Swipe Sample, R4360 Engine Containers

5. Tank Farm Radiation Survey

6. Activity Levels of Contaminated Areas, Tank Farm.
7. Coastline Radiation Survey

SWIPE SAMPLE RESULTS ON 55 GALLON DRUMS LOCATED AT OL-5 IGLOO AREA (15-18 JULY 1968)

SWIPE SAMPLE NO.	BARREL NO.	PALLET NO.	RESULTS
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044	500 527 528 528 526 529 501 502 503 504 504 153 144 146 127 120 124 134 134 146 127 120 124 137 128 138 139 131 138 139 131 138 138 139 131 138 138 139 130 131 131 132 133 134 135 136 137 138 138 138 138 139 130 130 130 130 130 130 130 130	11112222233333444445555566667788888999991001011111111111111111111111	NDA* NDA

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1061 1062 1063 1064 1065 1066 1067 1072 1073 1074 1075 1076 1077 1079 1080 1081 1082 1083 1084 1085 1086 1087 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095	132 132 133 157 162 150 162 153 154 150 151 160 160 160 160 160 160 160 160 160 16	* 1 1 1 1 1 1 1 1 1 2 2	NDA 14 15 15 15 16 16 16 16 16 17 NDA 17 NDA 17 NDA 17 NDA 17 NDA 18 NDA 19 NDA 18 NDA 18 NDA 19 NDA 19 NDA 10 11 11 11 12 21 NDA 11 11 12 22 22 21 21 21 21 21 21 21 21	4 pCi 1 pCi 1 pCi 4 pCi 1 pCi 1 16 pCi
--	--	---	--	---

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	1721109 1721109 1721109 1822434343459203851	26 26 26 27 27 27 28 28 28 29 29 30 30 31 31 31 32	NDA	
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134	54 116 2 118 5 115 1	333333333333333333333333333333333333333	NDA	pCi
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147	3 106 123 105 6 112 4 108 7 71 89 69 88	36 36 36 37 37 37 38 38 38 38	NDA	pCi pCi

中山

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1176 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1191 1192 1193		46 46 46 47 47 47 48 48 48 49 49 49 50	NDA
--	--	--	---

*NDA - No detectable activity

**pCi - Picocuries (10⁻¹² curies)

SWIPE SAMPLE RESULTS FOR R4360 ENGINE CONTAINERS LOCATED IN THE IGLOO AREA (16 JULY 1968)

SWIPE SAMPLE NO.	RESULTS
R-230 R-236 R-237 R-238 R-239 R-240 R-243 R-244 R-245 R-245 R-246 R-247 R-248	NDA* NDA NDA 4± 2 pCi** NDA
R-249 R-250	NDA NDA NDA

*NDA - No detectable activity

**pCi - Picocuries (10-12 curies)

NOTE: Swipe sample No. R-XXX designates the serial number of the R-4360 engine container from which the sample was taken.

SWIPE SAMPLE RESULTS ON POL TANKS LOCATED IN THE IGLOO AREA (18 JUL 68)

SWIPE SAMPLE NO.	RESULTS
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11	NDA* NDA

*NDA - No detectable activity

NOTE: Swipe sample No. O-XX designates the POL tank number from which the sample was taken.

SWIFE SAMPLE RESULTS FOR R4360 CONTAINERS LOCATED IN THE TANK FARM (27 Jul - 31 Aug)

SWIPE SAMPLE	NO.	RESULTS
001-007	E ×¶	NDA*
008 009-010		7 [±] 2 pCi**
011 012-018		NDA 3 [±] l pCi
019		NDA 5 [±] 2 pCi
020-022 023	5 % %	NDA 2 [±] l pCi
024 025-027	3	4120- 5 pCi (1)
028	, , , , , , , , , , , , , , , , , , ,	NDA 6± 2 pCi
029-03 <i>5</i> 036		NDA 2 [±] l pCi
037-041	1.	NDA
042 043	× 2	2 [±] l pCi 12 [±] 3 pCi
044 - 051 052		NDA
053		2 [±] l pCi 2 [±] l pCi
054-056 057		NDA 2 [±] l pCi 8 [±] 4 pCi 2 [±] l pCi
058 059		8± 4 pCi
060-068		MDA
069 070 - 071		20 [±] 4 pCi NDA
072 073 - 075	1 150 mm	158 [±] 11 pCi (1) NDA
076 077 - 080		2 [±] l pCi
081		NDA 3 [±] l pCi
082 083		NDA
084-089 090	- 3 -	8 [±] 2 pCi NDA
091~093	ž	2 [±] l pCi NDA
094 095-100	į	15 [±] 3 pCi NDA
101)±(9± 3 pCi
102-111 112	(2)	NDA 6 [±] 2 pCi
113 114-116		20± 4 pCi
117	Sec 2	NDA 6± 2 pCi
118-132 133-134		NDA 2 [±] l pCi
135-140 141	*	NDA 2 1 pCi
142		5± 1 pCi
143-145		NDA

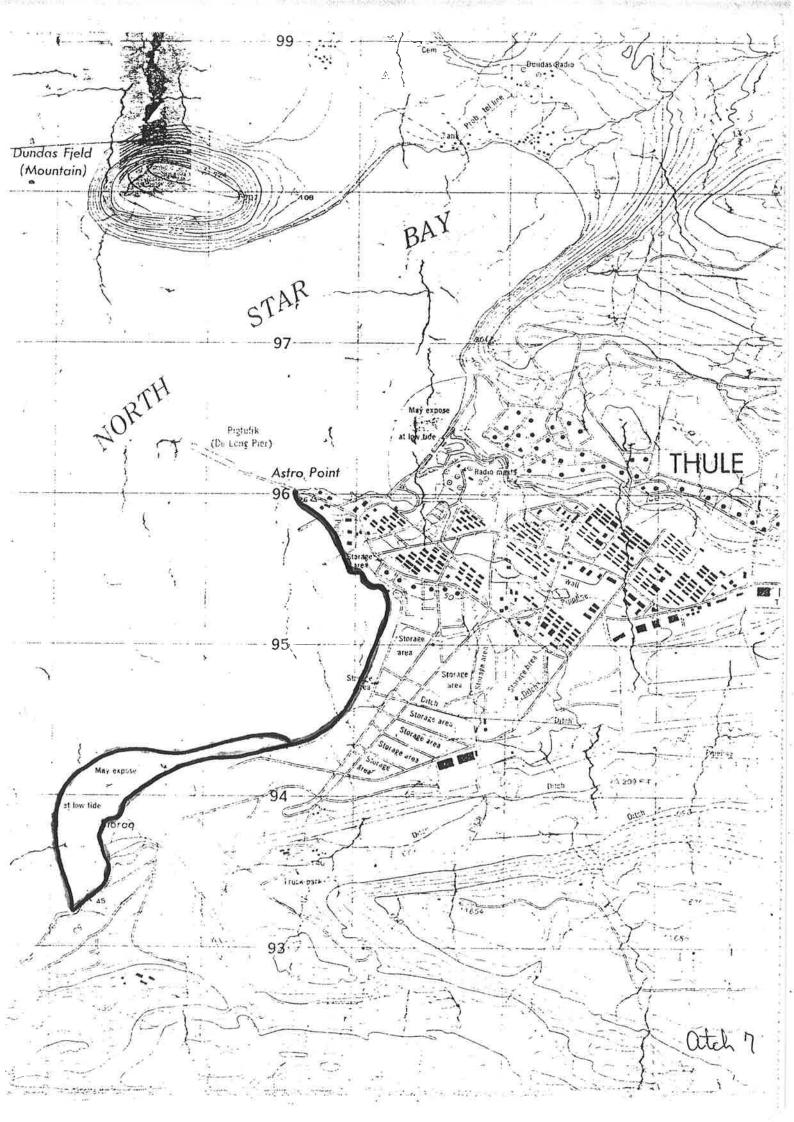
146	-
147 148 149	
150-152	
153 154-155 156	
157-161 162	
163 164	
156 157-161 162 163 164 165-166 167-168 169 170 171 172-178	
169 170	
172-178 179	
180 181-182	
183 - 184 185	
186 187-192	
193 194 - 199	
200 201 - 202 203	
204 - 205 206	
207-212 213	
214-216	
218 219	
220 221	
222-228	
230 231	
233 234-236	
218 219 220 221 222-228 229 230 231 232 233 234-236 237 238 239 240-241 242 243-256	
239 240-241	
242 243-256	
7 3 X	

3± 4±	2 pCi 2 pCi
NDA 3±	2 pCi
NDA 2±	l pCi
NDA 2±	l pCi
NDA 3±	l pCi
NDA 13+ 2+ NDA	3 pCi 1 pCi
6±	2 pCi
NDA 2±	l pCi
NDA 2±	l pCi
NDA 2± NDA	l pCi
15± 2±	
NDA 2±	l pCi
NDA	l pCi
NDA NDA	l pCi
NDA	l pCi
NDA 2-	l pCi
NDA 3± 17± 10±	l pCi 3 pCi 3 pCi
NDA 4± NDA	l pCi
45± NDA	l pCi
3± 2± 47±	l pCi l pCi 6 pCi
2^{\pm}	l pCi
NDA 5± 2	2 pCi
NDA 14 [±]	3 pCi
NDA 4± 2	2 pCi

200	200	200	225	200	200	500		250	250		250)	250	225		250	225
200	225	250	200	300	225	40	250	250	225	2.50	250	250	250	225	250	250	250
225	25.0	225	200	225	225	39	225	225	225	250	250	250	225	200	250	200	200
200	250 8 c 250	250	250	228	250	38	250	200	200	250	250	250	225	200	250	200 68	200
200	250	250	250	200	250	37	250	200	200	250	175	250	200	200	225	275	200
200	2550 B 6 250	W							75.00							•	
200	200	22.5	200 200 225	150	200	25.	250	225	200 6	250	225	250	200	200	250	250	175
22.5	200	250	200	200	200	34 200	250	225	200	250	22.5	250	250	200	300	3,40	200
200	225	250	175	175	200	33	250	200	500	250	200 53 200	250	225	500	255	200	200 250
225	2 200	250	225	22	225 250	35	225	200	200	250	22.5 5.2 200	250	176	225	250	007	200 250
200	200	250	200	200	20c 250	3/ 200	250	175.	175	250	57 225	225	200	200	225	25	200

All values are in units of counts per minute measured by the FIDLER survey instrument. **%**

LEVELS OF ACTIVITY OF CONTAMINATED AREAS IN THE TANK FARM


LOCATION	APPROX AREA (SQ FEET)	INSTRUMENT	ACTIVITY (COUNTS/M BEFORE DECONTAMINATION	INUTE) AFTER DECONTAMINATION
A	10	FIDLER PAC-1S	1000 700	250 NDA
B _x	5	FIDLER PAC-1S	1000	200 NDA
° C	12	FIDLER PAC-1S	1000 1000	300 NDA
D	9	FIDLER PAC-1S	2500 5000	250 NDA
E	4	FIDLER PAC-1S	1500 1000	225 NDA
F	8	FIDLER PAC-1S	3000 700	200 NDA
G	8	FIDLER PAC-1S	1000 500	225 NDA
Н	12	FIDLER PAC-1S	900 400	200 NDA
I	10	FIDLER PAC-1S	2000 400	300 NDA

258-264 265 NDA 23[±] 4 pCi 9[±] 2 pCi 3[±] 1 pCi 2[±] 1 pCi 266 267 268 NDA 48 6 pCi 2 1 pCi 18 4 pCi NDA 269**-**274 280 281 282 283-284 285 10± 3 pCi 286-287 NDA 288 6^{\pm} 2 pCi 289-293 NDA 15[±] 3 pCi 5[±] 2 pCi 20[±] 4 pCi 294 295 296 297-300 NDA 2[±] l pCi 301 302**-**307 NDA 2-1 pCi 308 309-315 NDA

*NDA - No detectable activity

**pCi - Picocuries (10⁻¹² curies)

NOTE: Swipe sample number designates the number of the R-4360 engine container from which the sample was taken.

